EE/ACM 150 - Applications of Convex Optimization in Signal Processing and Communications
 Lecture 12

Andre Tkacenko

Signal Processing Research Group
Jet Propulsion Laboratory
May 10, 2012

Caltech

Outline

1 Optimality Conditions

- Certificate of Suboptimality and Stopping Criteria
- Karush-Kuhn-Tucker Conditions

2 Perturbation and Sensitivity Analysis

- Global Sensitivity Results
- Local Sensitivity Results

3 Duality and Problem Reformulations
4 Lagrangian Duality for Problems with Generalized Inequalities

- The Lagrangian, Dual Function, and Dual Problem
- Optimality Conditions
- Perturbation and Sensitivity Analysis

Certificate of Suboptimality/Optimality

Recall that for any primal feasible point x and dual feasible point $(\boldsymbol{\lambda}, \boldsymbol{\nu})$, we have

$$
f_{0}(\mathbf{x}) \geq g(\boldsymbol{\lambda}, \boldsymbol{\nu}) \Longleftrightarrow G(\mathbf{x}, \boldsymbol{\lambda}, \boldsymbol{\nu}) \triangleq f_{0}(\mathbf{x})-g(\boldsymbol{\lambda}, \boldsymbol{\nu}) \geq 0 .
$$

Here, the quantity $G(\mathbf{x}, \boldsymbol{\lambda}, \boldsymbol{\nu})$ is called the duality gap associated with x and $(\boldsymbol{\lambda}, \boldsymbol{\nu})$. The optimal duality gap γ (i.e., the minimum value of $G(\mathbf{x}, \boldsymbol{\lambda}, \boldsymbol{\nu})$ over all feasible \mathbf{x} and $(\boldsymbol{\lambda}, \boldsymbol{\nu})$), is given by

$$
\gamma \triangleq \inf _{\mathbf{x}, \boldsymbol{\lambda}, \boldsymbol{\nu}}\{G(\mathbf{x}, \boldsymbol{\lambda}, \boldsymbol{\nu})\}=\inf _{\mathbf{x}} f_{0}(\mathbf{x})-\sup _{\boldsymbol{\lambda}, \boldsymbol{\nu}} g(\boldsymbol{\lambda}, \boldsymbol{\nu})=p^{\star}-d^{\star}
$$

For cases in which the primal problem is difficult to solve, we can always bound the suboptimality corresponding to a particular primal feasible point \widetilde{x} by the duality gap.
Specifically, we have

$$
f_{0}(\widetilde{\mathbf{x}})-p^{\star} \leq G(\widetilde{\mathbf{x}}, \widetilde{\boldsymbol{\lambda}}, \widetilde{\boldsymbol{\nu}}),
$$

for any dual feasible $(\widetilde{\boldsymbol{\lambda}}, \widetilde{\boldsymbol{\nu}})$ and so $\widetilde{\mathbf{x}}$ is ϵ-suboptimal with $\epsilon=G(\widetilde{\mathbf{x}}, \widetilde{\boldsymbol{\lambda}}, \widetilde{\boldsymbol{\nu}})$. Thus, $(\widetilde{\lambda}, \widetilde{\nu})$ is a certificate of $G(\widetilde{\mathbf{x}}, \widetilde{\lambda}, \widetilde{\nu})$-suboptimality for $\widetilde{\mathbf{x}}$. As this also holds for any dual optimal point $\left(\boldsymbol{\lambda}^{\star}, \boldsymbol{\nu}^{\star}\right)$ for which $g\left(\boldsymbol{\lambda}^{\star}, \boldsymbol{\nu}^{\star}\right)=d^{\star}$, we have the sharper bound

$$
f_{0}(\widetilde{\mathbf{x}})-p^{\star} \leq G\left(\widetilde{\mathbf{x}}, \boldsymbol{\lambda}^{\star}, \boldsymbol{\nu}^{\star}\right),
$$

and so $\widetilde{\mathbf{x}}$ is, in fact, $G\left(\widetilde{\mathbf{x}}, \boldsymbol{\lambda}^{\star}, \boldsymbol{\nu}^{\star}\right)$-optimal. If the optimal duality gap $\gamma=0$ (i.e., strong duality holds), then any $\widetilde{\mathbf{x}}$ for which $G\left(\widetilde{\mathbf{x}}, \boldsymbol{\lambda}^{\star}, \boldsymbol{\nu}^{\star}\right)=0$ means that ($\left.\boldsymbol{\lambda}^{\star}, \boldsymbol{\nu}^{\star}\right)$ is a certificate of optimality for $\widetilde{\mathbf{x}}=\mathbf{x}^{\star}$.

Stopping Criteria for Optimization Algorithms

Note that the bound on the suboptimality of a given primal feasible point \mathbf{x} and dual feasible point $(\boldsymbol{\lambda}, \boldsymbol{\nu})$ given by $G(\mathbf{x}, \boldsymbol{\lambda}, \boldsymbol{\nu})$ can be computed in practice. This can be used to provide nonheuristic stopping criteria for optimization algorithms that produce a sequence of primal feasible points $\mathbf{x}^{(k)}$ and dual feasible points $\left(\boldsymbol{\lambda}^{(k)}, \boldsymbol{\nu}^{(k)}\right)$, for $k \in \mathbb{N}$.
Absolute accuracy stopping criterion: Suppose we choose an absolute accuracy $\epsilon_{\text {abs }}>\gamma$ (assuming that we can bound the optimal duality gap γ). Then, we terminate the algorithm when

$$
f_{0}\left(\mathbf{x}^{(k)}\right)-g\left(\boldsymbol{\lambda}^{(k)}, \boldsymbol{\nu}^{(k)}\right) \leq \epsilon_{\mathrm{abs}}
$$

This guarantees that $\mathbf{x}^{(k)}$ is at least $\epsilon_{\text {abs }}$-suboptimal, and $\left(\boldsymbol{\lambda}^{(k)}, \boldsymbol{\nu}^{(k)}\right)$ is a certificate proving it.
Relative accuracy stopping criterion: Suppose we choose a relative accuracy $\epsilon_{\text {rel }}>\gamma /\left|p^{\star}\right|$ (assuming that we can bound γ and that $p^{\star} \neq 0$). Then, we terminate the algorithm if

$$
g\left(\boldsymbol{\lambda}^{(k)}, \boldsymbol{\nu}^{(k)}\right)>0, \frac{f_{0}\left(\mathbf{x}^{(k)}\right)-g\left(\boldsymbol{\lambda}^{(k)}, \boldsymbol{\nu}^{(k)}\right)}{g\left(\boldsymbol{\lambda}^{(k)}, \boldsymbol{\nu}^{(k)}\right)} \leq \epsilon_{\mathrm{rel}}
$$

holds or

$$
f_{0}\left(\mathbf{x}^{(k)}\right)<0, \frac{f_{0}\left(\mathbf{x}^{(k)}\right)-g\left(\boldsymbol{\lambda}^{(k)}, \boldsymbol{\nu}^{(k)}\right)}{-f_{0}\left(\mathbf{x}^{(k)}\right)} \leq \epsilon_{\mathrm{rel}}
$$

holds. In this case, we are guaranteed to have $\frac{f_{0}\left(\mathbf{x}^{(k)}\right)-p^{\star}}{\left|p^{\star}\right|} \leq \epsilon_{\text {rel }}$.

Karush-Kuhn-Tucker Conditions for Optimality

For the problem

$$
\begin{array}{ll}
\operatorname{minimize} & f_{0}(\mathbf{x}) \\
\text { subject to } & f_{i}(\mathbf{x}) \leq 0, i=1, \ldots, m \\
& h_{i}(\mathbf{x})=0, i=1, \ldots, p
\end{array}
$$

with variable $\mathbf{x} \in \mathbb{R}^{n}$, assume that strong duality holds (i.e., the optimal duality gap is zero) and that \mathbf{x}^{\star} and $\left(\boldsymbol{\lambda}^{\star}, \boldsymbol{\nu}^{\star}\right)$ are primal and dual optimal points, respectively. Then, we have the following necessary conditions for optimality, assuming $f_{0}, \ldots, f_{m}, h_{1}, \ldots, h_{p}$ are differentiable.

Karush-Kuhn-Tucker (KKT) Conditions:

1 Primal feasibility:

$$
f_{i}\left(\mathbf{x}^{\star}\right) \leq 0, i=1, \ldots, m, h_{i}\left(\mathbf{x}^{\star}\right)=0, i=1, \ldots, p .
$$

2 Dual feasibility:

$$
\lambda_{i}^{\star} \geq 0, i=1, \ldots, m
$$

3 Complementary slackness:

$$
\lambda_{i}^{\star} f_{i}\left(\mathbf{x}^{\star}\right)=0, i=1, \ldots, m .
$$

4 Stationarity:

$$
\nabla f_{0}\left(\mathbf{x}^{\star}\right)+\sum_{i=1}^{m} \lambda_{i}^{\star} \nabla f_{i}\left(\mathbf{x}^{\star}\right)+\sum_{i=1}^{p} \nu_{i}^{\star} \nabla h_{i}\left(\mathbf{x}^{\star}\right)=\mathbf{0} .
$$

Karush-Kuhn-Tucker Conditions for Convex Problems

For the convex problem

$$
\begin{array}{ll}
\operatorname{minimize} & f_{0}(\mathbf{x}) \\
\text { subject to } & f_{i}(\mathbf{x}) \leq 0, i=1, \ldots, m \\
& \mathbf{A x}=\mathbf{b}
\end{array}
$$

with variable $\mathbf{x} \in \mathbb{R}^{n}$, where f_{0}, \ldots, f_{m} are convex, let $\widetilde{\mathbf{x}}$ be any primal point and $(\widetilde{\boldsymbol{\lambda}}, \widetilde{\boldsymbol{\nu}})$ be any dual point. Then, we have the following necessary and sufficient conditions for optimality of $\widetilde{\mathbf{x}}$ and $(\widetilde{\boldsymbol{\lambda}}, \widetilde{\boldsymbol{\nu}})$, assuming f_{0}, \ldots, f_{m} are differentiable.

Karush-Kuhn-Tucker (KKT) Conditions for Convex Optimization Problems:

1 Primal feasibility: $f_{i}(\widetilde{\mathbf{x}}) \leq 0, i=1, \ldots, m, \mathbf{A} \widetilde{\mathbf{x}}=\mathbf{b}$.
2 Dual feasibility: $\widetilde{\lambda}_{i} \geq 0, i=1, \ldots, m$.
3 Complementary slackness: $\widetilde{\lambda}_{i} f_{i}(\widetilde{\mathbf{x}})=0, i=1, \ldots m$.
4 Stationarity: $\nabla f_{0}(\widetilde{\mathbf{x}})+\sum_{i=1}^{m} \widetilde{\lambda}_{i} \nabla f_{i}(\widetilde{\mathbf{x}})+\mathbf{A}^{T} \widetilde{\boldsymbol{\nu}}=\mathbf{0}$.
Sufficiency follows from the fact that $f_{0}(\widetilde{\mathbf{x}})=L(\widetilde{\mathbf{x}}, \widetilde{\boldsymbol{\lambda}}, \widetilde{\boldsymbol{\nu}})$, by complementary slackness, and that $g(\widetilde{\boldsymbol{\lambda}}, \widetilde{\boldsymbol{\nu}})=L(\widetilde{\mathbf{x}}, \widetilde{\boldsymbol{\lambda}}, \widetilde{\boldsymbol{\nu}})$, by convexity of $L(\mathbf{x}, \boldsymbol{\lambda}, \boldsymbol{\nu})$ in \mathbf{x} and stationarity. Hence, $f_{0}(\widetilde{\mathbf{x}})=g(\widetilde{\boldsymbol{\lambda}}, \widetilde{\boldsymbol{\nu}})$. If Slater's condition is satisfied, then x is optimal if and only if there exist $(\boldsymbol{\lambda}, \boldsymbol{\nu})$ that satisfy the KKT conditions. This is because it implies strong duality and that the dual optimum is attained.

Water-Filling Example

$$
\begin{array}{ll}
\operatorname{minimize} & -\sum_{i=1}^{n} \log \left(x_{i}+\alpha_{i}\right) \\
\text { subject to } & \mathbf{x} \succeq \mathbf{0}, \mathbf{1}^{T} \mathbf{x}=1
\end{array}
$$

where $\alpha_{i}>0$. By the KKT conditions, \mathbf{x} is optimal if and only if $\mathbf{x} \succeq \mathbf{0}, \mathbf{1}^{T} \mathbf{x}=1$, and there exist $\boldsymbol{\lambda} \in \mathbb{R}^{n}$ and $\nu \in \mathbb{R}$ such that

$$
\lambda_{i} \geq 0, \lambda_{i} x_{i}=0,-\frac{1}{x_{i}+\alpha_{i}}-\lambda_{i}+\nu=0, i=1, \ldots, n
$$

■ If $\nu<1 / \alpha_{i}$, then $\lambda_{i}=0$ and $x_{i}=1 / \nu-\alpha_{i}$.

- If $\nu \geq 1 / \alpha_{i}$, then $\lambda_{i}=\nu-1 / \alpha_{i}$ and $x_{i}=0$.
\square We can determine ν from the constraint $\mathbf{1}^{T} \mathbf{x}=\sum_{i=1}^{n} \max \left\{0,1 / \nu-\alpha_{i}\right\}=1$.

Interpretation:

- There are n patches of land, where the level of the i-th patch is at height α_{i}.
- We flood the area with a unit amount of water.
- The resulting level is $1 / \nu$.

Perturbed Optimization Problem and its Dual

For the unperturbed problem and its dual

Primal:
$\begin{array}{ll}\text { minimize } & f_{0}(\mathbf{x}) \\ \text { subject to } & f_{i}(\mathbf{x}) \leq 0, i=1, \ldots, m \\ & h_{i}(\mathbf{x})=0, i=1, \ldots, p\end{array}$

$$
h_{i}(\mathbf{x})=0, i=1, \ldots, p
$$

Dual:
$\begin{array}{ll}\text { maximize } & g(\boldsymbol{\lambda}, \boldsymbol{\nu}) \\ \text { subject to } & \boldsymbol{\lambda} \succeq \mathbf{0}\end{array}$
$\begin{array}{ll}\text { maximize } & g(\boldsymbol{\lambda}, \boldsymbol{\nu}) \\ \text { subject to } & \boldsymbol{\lambda} \succeq \mathbf{0}\end{array}$
we consider the following perturbed problem and its dual.

Perturbed Problem and its Dual:

Primal:
minimize $\quad f_{0}(\mathbf{x})$
subject to $\quad f_{i}(\mathbf{x}) \leq u_{i}, i=1, \ldots, m$

$$
h_{i}(\mathbf{x})=v_{i}, i=1, \ldots, p
$$

Dual:

maximize $g(\boldsymbol{\lambda}, \boldsymbol{\nu})-\mathbf{u}^{T} \boldsymbol{\lambda}-\mathbf{v}^{T} \boldsymbol{\nu}$
subject to $\quad \boldsymbol{\lambda} \succeq \mathbf{0}$
\square Here, \mathbf{x} is the primal variable, while \mathbf{u} and \mathbf{v} are parameters.

- We denote $p^{\star}(\mathbf{u}, \mathbf{v})$ as the optimal value as a function of \mathbf{u} and \mathbf{v}.
- We are interested in information about $p^{\star}(\mathbf{u}, \mathbf{v})$ that we can obtain from the solution of the unperturbed problem and its dual.

Global Sensitivity Inequality

Assume that strong duality holds for the unperturbed problem, and that ($\boldsymbol{\lambda}^{\star}, \boldsymbol{\nu}^{\star}$) are dual optimal for the unperturbed problem.

Applying weak duality to the perturbed problem yields

$$
\begin{aligned}
p^{\star}(\mathbf{u}, \mathbf{v}) & \geq g\left(\boldsymbol{\lambda}^{\star}, \boldsymbol{\nu}^{\star}\right)-\mathbf{u}^{T} \boldsymbol{\lambda}^{\star}-\mathbf{v}^{T} \boldsymbol{\nu}^{\star}, \\
& =p(\mathbf{0}, \mathbf{0})-\mathbf{u}^{T} \boldsymbol{\lambda}^{\star}-\mathbf{v}^{T} \boldsymbol{\nu}^{\star}
\end{aligned}
$$

Sensitivity Interpretation:

- If λ_{i}^{\star} is large, then p^{\star} increases greatly if we tighten the i-th constraint (i.e., $u_{i}<0$).
- If λ_{i}^{\star} is small, then p^{\star} does not decrease much if we loosen the i-th constraint (i.e., $u_{i}>0$).
- If ν_{i}^{\star} is large and positive, then p^{\star} increases greatly if we take $v_{i}<0$. If ν_{i}^{\star} is large and negative, then p^{\star} increases greatly if we take $v_{i}>0$.
- If ν_{i}^{\star} is small and positive, then p^{\star} does not decrease much if we take $v_{i}>0$. If ν_{i}^{\star} is small and negative, then p^{\star} does not decrease much if we take $v_{i}<0$.

Local Sensitivity Analysis

Assume as before that strong duality holds for the unperturbed problem. If, in addition, $p^{\star}(\mathbf{u}, \mathbf{v})$ is differentiable at $(\mathbf{0}, \mathbf{0})$, then we have

$$
\lambda_{i}^{\star}=-\frac{\partial p^{\star}(\mathbf{0}, \mathbf{0})}{\partial u_{i}}, i=1, \ldots, m, \nu_{i}^{\star}=-\frac{\partial p^{\star}(\mathbf{0}, \mathbf{0})}{\partial v_{i}}, i=1, \ldots, p
$$

Proof: For λ_{i}^{\star}, from the global sensitivity result, we have

$$
\begin{aligned}
& \frac{\partial p^{\star}(\mathbf{0}, \mathbf{0})}{\partial u_{i}}=\lim _{t \nless 0} \frac{p^{\star}\left(t \mathbf{e}_{i}, \mathbf{0}\right)-p^{\star}(\mathbf{0}, \mathbf{0})}{t} \geq-\lambda_{i}^{\star}, \\
& \frac{\partial p^{\star}(\mathbf{0}, \mathbf{0})}{\partial u_{i}}=\lim _{t>0} \frac{p^{\star}\left(t \mathbf{e}_{i}, \mathbf{0}\right)-p^{\star}(\mathbf{0}, \mathbf{0})}{t} \leq-\lambda_{i}^{\star} .
\end{aligned}
$$

As both of these inequalities hold, they must with equality. A similar proof follows for ν_{i}^{\star}. Visual Example: Sketch of $p^{\star}(u)$ for a problem with one inequality constraint.

Duals of Equivalent Problem Formulations

■ Equivalent formulations of a problem can lead to very different duals.

- Reformulating the primal problem can be useful when the dual is difficult to derive or is uninteresting.

Common Reformulations:

- Introduce new variables and equality constraints.
- Make explicit constraints implicit or vice-versa.

■ Carry out a change of variables, such as $\mathbf{x}=\phi(\mathbf{z})$.

- Transform the objective or constraint functions. For example, we can replace $f_{0}(\mathbf{x})$ with $\psi\left(f_{0}(\mathbf{x})\right)$, where ψ is convex and increasing.

Introducing New Variables and Equality Constraints

As an example, consider the problem

$$
\text { minimize } \quad f_{0}(\mathbf{A x}+\mathbf{b}) .
$$

- The dual function is constant as we have $g=\inf _{\mathbf{x}} L(\mathbf{x})=\inf _{\mathbf{x}} f_{0}(\mathbf{A x}+\mathbf{b})=p^{\star}$.
- We have strong duality always, but the dual is rather useless.

Reformulated problem and its dual:

$$
\begin{array}{llll}
\operatorname{minimize} & f_{0}(\mathbf{y}) & \text { maximize } & \mathbf{b}^{T} \boldsymbol{\nu}-f_{0}^{\circledast}(\boldsymbol{\nu}) \\
\text { subject to } & \mathbf{A x}+\mathbf{b}-\mathbf{y}=\mathbf{0} & \text { subject to } & \mathbf{A}^{T} \boldsymbol{\nu}=\mathbf{0}
\end{array}
$$

The dual function follows from

$$
\begin{aligned}
g(\boldsymbol{\nu}) & =\inf _{\mathbf{x}, \mathbf{y}}\left\{f_{0}(\mathbf{y})+\boldsymbol{\nu}^{T}(\mathbf{A} \mathbf{x}+\mathbf{b}-\mathbf{y})\right\} \\
& =\inf _{\mathbf{x}, \mathbf{y}}\left\{-\left(\boldsymbol{\nu}^{T} \mathbf{y}-f_{0}(\mathbf{y})\right)+\left(\mathbf{A}^{T} \boldsymbol{\nu}\right)^{T} \mathbf{x}+\mathbf{b}^{T} \boldsymbol{\nu}\right\} \\
& =\mathbf{b}^{T} \boldsymbol{\nu}-\sup _{\mathbf{y}}\left\{\boldsymbol{\nu}^{T} \mathbf{y}-f_{0}(\mathbf{y})\right\}+\inf _{\mathbf{x}}\left\{\left(\mathbf{A}^{T} \boldsymbol{\nu}\right)^{T} \mathbf{x}\right\} \\
& = \begin{cases}\mathbf{b}^{T} \boldsymbol{\nu}-f_{0}^{\circledast}(\boldsymbol{\nu}), & \mathbf{A}^{T} \boldsymbol{\nu}=\mathbf{0} \\
-\infty, & \text { otherwise }\end{cases}
\end{aligned}
$$

Examples with New Variables and Equality Constraints

Norm approximation problem:

$$
\text { minimize } \quad\|A x-b\|
$$

Using the trick of introducing new variables and new equality constraints, this becomes

$$
\begin{array}{ll}
\operatorname{minimize} & \|\mathbf{y}\| \\
\text { subject to } & \mathbf{y}=\mathbf{A x}-\mathbf{b}
\end{array}
$$

We can exploit the fact that

$$
f(\mathbf{x})=\|\mathbf{x}\| \Longleftrightarrow f^{\circledast}(\mathbf{y})= \begin{cases}0, & \|\mathbf{y}\|_{\circledast} \leq 1 \\ \infty, & \text { otherwise }\end{cases}
$$

or derive the dual function directly as follows.

$$
\begin{aligned}
g(\boldsymbol{\nu}) & =\inf _{\mathbf{x}, \mathbf{y}}\left\{\|\mathbf{y}\|+\boldsymbol{\nu}^{T}(\mathbf{y}-\mathbf{A} \mathbf{x}+\mathbf{b})\right\}=\mathbf{b}^{T} \boldsymbol{\nu}+\inf _{\mathbf{y}}\left\{\|\mathbf{y}\|+\boldsymbol{\nu}^{T} \mathbf{y}\right\}-\sup _{\mathbf{x}}\left\{\left(\mathbf{A}^{T} \boldsymbol{\nu}\right)^{T} \mathbf{x}\right\} \\
& = \begin{cases}\mathbf{b}^{T} \boldsymbol{\nu}+\inf _{\mathbf{y}}\left\{\|\mathbf{y}\|+\boldsymbol{\nu}^{T} \mathbf{y}\right\}, & \mathbf{A}^{T} \boldsymbol{\nu}=\mathbf{0} \\
-\infty, & \text { otherwise }\end{cases} \\
& = \begin{cases}\mathbf{b}^{T} \boldsymbol{\nu}, & \mathbf{A}^{T} \boldsymbol{\nu}=\mathbf{0},\|\boldsymbol{\nu}\|_{\circledast} \leq 1 \\
-\infty, & \text { otherwise }\end{cases}
\end{aligned}
$$

Dual of norm approximation problem:

$$
\begin{array}{ll}
\operatorname{maximize} & \mathbf{b}^{T} \boldsymbol{\nu} \\
\text { subject to } & \mathbf{A}^{T} \boldsymbol{\nu}=\mathbf{0},\|\boldsymbol{\nu}\|_{\circledast} \leq 1
\end{array}
$$

Implicit Constraints

LP with box constraints:

Primal:
minimize $\quad \mathbf{c}^{T} \mathbf{x}$
subject to $\quad \mathbf{A x}=\mathbf{b} \quad$ subject to $\quad \mathbf{A}^{T} \boldsymbol{\nu}+\boldsymbol{\lambda}_{\mathrm{u}}-\boldsymbol{\lambda}_{\mathrm{l}}+\mathbf{c}=\mathbf{0}$

$$
\mathbf{l} \preceq \mathbf{x} \preceq \mathbf{u}
$$

Dual: maximize $\quad-\mathbf{b}^{T} \boldsymbol{\nu}-\mathbf{u}^{T} \boldsymbol{\lambda}_{\mathrm{u}}+\mathbf{l}^{T} \boldsymbol{\lambda}_{\mathrm{l}}$
$\lambda_{\mathrm{u}} \succeq 0, \lambda_{\mathrm{l}} \succeq 0$

Reformulation with box constraints made implicit:

$$
\begin{array}{ll}
\operatorname{minimize} & f_{0}(\mathbf{x})= \begin{cases}\mathbf{c}^{T} \mathbf{x}, & \mathbf{l} \preceq \mathbf{x} \preceq \mathbf{u} \\
\infty, & \text { otherwise }\end{cases} \\
\text { subject to } & \mathbf{A} \mathbf{x}=\mathbf{b}
\end{array}
$$

With this reformulation, the dual function is

$$
\begin{aligned}
g(\boldsymbol{\nu}) & =\inf _{\mathbf{l} \preceq \mathbf{x} \preceq \mathbf{u}}\left\{\mathbf{c}^{T} \mathbf{x}+\boldsymbol{\nu}^{T}(\mathbf{A x}-\mathbf{b})\right\}=-\mathbf{b}^{T} \boldsymbol{\nu}+\inf _{\mathbf{l} \preceq \mathbf{x} \preceq \mathbf{u}}\left\{\left(\mathbf{A}^{T} \boldsymbol{\nu}+\mathbf{c}\right)^{T} \mathbf{x}\right\} \\
& =-\mathbf{b}^{T} \boldsymbol{\nu}-\mathbf{u}^{T}\left(\mathbf{A}^{T} \boldsymbol{\nu}+\mathbf{c}\right)^{-}+\mathbf{l}^{T}\left(\mathbf{A}^{T} \boldsymbol{\nu}+\mathbf{c}\right)^{+}
\end{aligned}
$$

where $y_{i}^{-} \triangleq \max \left\{-y_{i}, 0\right\}$ and $y_{i}^{+} \triangleq \max \left\{y_{i}, 0\right\}$.
Dual problem:

$$
\text { maximize }-\mathbf{b}^{T} \boldsymbol{\nu}-\mathbf{u}^{T}\left(\mathbf{A}^{T} \boldsymbol{\nu}+\mathbf{c}\right)^{-}+\mathbf{l}^{T}\left(\mathbf{A}^{T} \boldsymbol{\nu}+\mathbf{c}\right)^{+}
$$

The Lagrangian and Dual Function

Consider the problem with generalized inequalities given by

$$
\begin{array}{ll}
\operatorname{minimize} & f_{0}(\mathbf{x}) \\
\text { subject to } & \mathbf{f}_{i}(\mathbf{x}) \preceq \kappa_{i} \mathbf{0}, i=1, \ldots, m, \\
& h_{i}(\mathbf{x})=0, i=1, \ldots, p
\end{array}
$$

where $\mathcal{K}_{i} \subseteq \mathbb{R}^{k_{i}}$ are proper cones. We do not assume convexity here. The definitions of the Lagrangian and the dual function parallel those in the scalar case, except now, for each constraint $\mathbf{f}_{i}(\mathbf{x}) \preceq_{\kappa_{i}} \mathbf{0}$, we associate the Lagrange multiplier vector $\boldsymbol{\lambda}_{i} \in \mathbb{R}^{k_{i}}$.

The Lagrangian:

The Lagrangian $L: \mathbb{R}^{n} \times \mathbb{R}^{k_{1}} \times \cdots \times \mathbb{R}^{k_{m}} \times \mathbb{R}^{p} \rightarrow \mathbb{R}$ is defined as

$$
L\left(\mathbf{x}, \boldsymbol{\lambda}_{1}, \ldots, \boldsymbol{\lambda}_{m}, \boldsymbol{\nu}\right) \triangleq f_{0}(\mathbf{x})+\sum_{i=1}^{m} \boldsymbol{\lambda}_{i}^{T} \mathbf{f}_{i}(\mathbf{x})+\sum_{i=1}^{p} \nu_{i} h_{i}(\mathbf{x}) .
$$

Lagrange Dual Function:

The dual function $g: \mathbb{R}^{k_{1}} \times \cdots \times \mathbb{R}^{k_{m}} \times \mathbb{R}^{p} \rightarrow \mathbb{R}$ is defined as

$$
g\left(\boldsymbol{\lambda}_{1}, \ldots, \boldsymbol{\lambda}_{m}, \boldsymbol{\nu}\right) \triangleq \inf _{\mathbf{x} \in \mathcal{D}}\left\{L\left(\mathbf{x}, \boldsymbol{\lambda}_{1}, \ldots, \boldsymbol{\lambda}_{m}, \boldsymbol{\nu}\right)\right\}
$$

Lower Bound Property and the Dual Problem

Lower Bound Property: If $\boldsymbol{\lambda}_{i} \succeq_{\mathcal{K}_{i}^{\circledast}} \mathbf{0}$ for $i=1, \ldots, m$, then $g\left(\boldsymbol{\lambda}_{1}, \ldots, \boldsymbol{\lambda}_{m}, \boldsymbol{\nu}\right) \leq p^{\star}$.
Proof: If $\widetilde{\mathbf{x}}$ is feasible and $\boldsymbol{\lambda}_{i} \succeq_{\mathcal{K}_{i}^{\circledast}} \mathbf{0}$ for $i=1, \ldots, m$, then we have

$$
\begin{aligned}
g\left(\boldsymbol{\lambda}_{1}, \ldots, \boldsymbol{\lambda}_{m}, \boldsymbol{\nu}\right) & =\inf _{\mathbf{x} \in \mathcal{D}}\left\{L\left(\mathbf{x}, \boldsymbol{\lambda}_{1}, \ldots, \boldsymbol{\lambda}_{m}, \boldsymbol{\nu}\right)\right\} \\
& \leq f_{0}(\widetilde{\mathbf{x}})+\sum_{i=1}^{m} \boldsymbol{\lambda}_{i}^{T} \mathbf{f}_{i}(\widetilde{\mathbf{x}})+\sum_{i=1}^{p} \nu_{i} h_{i}(\widetilde{\mathbf{x}}) \\
& \leq f_{0}(\widetilde{\mathbf{x}})
\end{aligned}
$$

Minimizing over all feasible $\widetilde{\mathbf{x}}$ gives $g\left(\boldsymbol{\lambda}_{1}, \ldots, \boldsymbol{\lambda}_{m}, \boldsymbol{\nu}\right) \leq p^{\star}$.

Lagrange Dual Problem:

$$
\begin{array}{ll}
\text { maximize } & g\left(\boldsymbol{\lambda}_{1}, \ldots, \boldsymbol{\lambda}_{m}, \boldsymbol{\nu}\right) \\
\text { subject to } & \boldsymbol{\lambda}_{i} \succeq_{\mathcal{K}_{i}^{\circledast}} \mathbf{0}, i=1, \ldots, m
\end{array}
$$

- Weak duality: $p^{\star} \geq d^{\star}$ always.
- Strong duality: $p^{\star}=d^{\star}$ for a convex problems with a constraint qualification. For example, if Slater's condition holds, meaning that the primal problem is strictly feasible, then we have strong duality.

Inequality Form SDP and its Dual

Primal SDP: $\left(\mathbf{F}_{i}, \mathbf{G} \in \mathbb{S}^{k}\right)$

$$
\begin{array}{ll}
\operatorname{minimize} & \mathbf{c}^{T} \mathbf{x} \\
\text { subject to } & x_{1} \mathbf{F}_{1}+\cdots+x_{n} \mathbf{F}_{n} \preceq \mathbf{G}
\end{array}
$$

- The Lagrange multiplier is a matrix $\mathbf{Z} \in \mathbb{S}^{k}$.
- The Lagrangian is

$$
L(\mathbf{x}, \mathbf{Z})=\mathbf{c}^{T} \mathbf{x}+\operatorname{tr}\left(\mathbf{Z}\left(x_{1} \mathbf{F}_{1}+\cdots+x_{n} \mathbf{F}_{n}-\mathbf{G}\right)\right) .
$$

- The dual function is

$$
g(\mathbf{Z})=\inf _{\mathbf{x}} L(\mathbf{x}, \mathbf{Z})= \begin{cases}-\operatorname{tr}(\mathbf{G} \mathbf{Z}), & \operatorname{tr}\left(\mathbf{F}_{i} \mathbf{Z}\right)+c_{i}=0, i=1, \ldots, n \\ -\infty, & \text { otherwise }\end{cases}
$$

Dual SDP:

$$
\begin{array}{ll}
\operatorname{maximize} & -\operatorname{tr}(\mathbf{G} \mathbf{Z}) \\
\text { subject to } & \operatorname{tr}\left(\mathbf{F}_{i} \mathbf{Z}\right)+c_{i}=0, i=1, \ldots, n \\
& \mathbf{Z} \succeq \mathbf{0}
\end{array}
$$

We have $p^{\star}=d^{\star}$ if the primal SDP is strictly feasible, meaning that there exists an \mathbf{x} such that $x_{1} \mathbf{F}_{1}+\cdots+x_{n} \mathbf{F}_{n} \prec \mathbf{G}$.

Complementary Slackness

Assume that strong duality holds (i.e., $p^{\star}=d^{\star}$), \mathbf{x}^{\star} is primal optimal, and $\left(\boldsymbol{\lambda}_{1}^{\star}, \ldots, \boldsymbol{\lambda}_{m}^{\star}, \boldsymbol{\nu}^{\star}\right)$ is dual optimal. Then, we have the following.

$$
\begin{aligned}
f_{0}\left(\mathbf{x}^{\star}\right) & =g\left(\boldsymbol{\lambda}_{1}^{\star}, \ldots, \boldsymbol{\lambda}_{m}^{\star}, \boldsymbol{\nu}^{\star}\right)=\inf _{\mathbf{x} \in \mathcal{D}} L\left(\mathbf{x}, \boldsymbol{\lambda}_{1}^{\star}, \ldots, \boldsymbol{\lambda}_{m}^{\star}, \boldsymbol{\nu}^{\star}\right) \\
& =\inf _{\mathbf{x} \in \mathcal{D}}\left\{f_{0}(\mathbf{x})+\sum_{i=1}^{m}\left(\boldsymbol{\lambda}_{i}^{\star}\right)^{T} \mathbf{f}_{i}(\mathbf{x})+\sum_{i=1}^{p} \nu_{i}^{\star} h_{i}(\mathbf{x})\right\} \\
& \leq f_{0}\left(\mathbf{x}^{\star}\right)+\sum_{i=1}^{m}\left(\boldsymbol{\lambda}_{i}^{\star}\right)^{T} \mathbf{f}_{i}\left(\mathbf{x}^{\star}\right)+\sum_{i=1}^{p} \nu_{i}^{\star} h_{i}\left(\mathbf{x}^{\star}\right) \\
& \leq f_{0}\left(\mathbf{x}^{\star}\right) .
\end{aligned}
$$

Thus, the two inequalities hold with equality. From this, we ascertain the following.
■ The primal optimal point \mathbf{x}^{\star} minimizes $L\left(\mathbf{x}, \boldsymbol{\lambda}_{1}^{\star}, \ldots, \boldsymbol{\lambda}_{m}^{\star}, \boldsymbol{\nu}^{\star}\right)$. Note that the Lagrangian $L\left(\mathbf{x}, \boldsymbol{\lambda}_{1}^{\star}, \ldots, \boldsymbol{\lambda}_{m}^{\star}, \boldsymbol{\nu}^{\star}\right)$ may have other minimizers besides \mathbf{x}^{\star}.
\square We have the complementary slackness condition $\left(\boldsymbol{\lambda}_{i}^{\star}\right)^{T} \mathbf{f}_{i}\left(\mathbf{x}^{\star}\right)=0$ for $i=1, \ldots, m$. Specifically, this implies that

$$
\boldsymbol{\lambda}_{i}^{\star} \succ_{\mathcal{K}_{i}^{\circledast}} \mathbf{0} \Longrightarrow \mathbf{f}_{i}\left(\mathbf{x}^{\star}\right)=\mathbf{0}, \mathbf{f}_{i}\left(\mathbf{x}^{\star}\right) \prec \mathcal{K}_{i} \mathbf{0} \Longrightarrow \boldsymbol{\lambda}_{i}^{\star}=\mathbf{0} .
$$

In contrast to problems with scalar inequalities, it is possible to satisfy $\left(\boldsymbol{\lambda}_{i}^{\star}\right)^{T} \mathbf{f}_{i}\left(\mathbf{x}^{\star}\right)=0$ with $\boldsymbol{\lambda}_{i}^{\star} \neq \mathbf{0}$ and $\mathbf{f}_{i}\left(\mathbf{x}^{\star}\right) \neq \mathbf{0}$.

KKT Conditions for Optimality

Under the assumption that the functions $f_{0}, \mathbf{f}_{1}, \ldots, \mathbf{f}_{m}, h_{1}, \ldots, h_{p}$ are differentiable, the KKT conditions become the following.

KKT Conditions for Problems with Generalized Inequalities:

- Primal feasibility:

$$
\mathbf{f}_{i}(\mathbf{x}) \preceq \mathcal{K}_{i} \mathbf{0}, i=1, \ldots, m, h_{i}(\mathbf{x})=0, i=1, \ldots, p
$$

- Dual feasibility:

$$
\boldsymbol{\lambda}_{i} \succeq_{\mathcal{K}_{i}^{\circledast}} \mathbf{0}, i=1, \ldots, m
$$

- Complementary slackness:

$$
\left(\boldsymbol{\lambda}_{i}^{\star}\right)^{T} \mathbf{f}_{i}\left(\mathbf{x}^{\star}\right)=0, i=1, \ldots, m .
$$

- Stationarity:

$$
\nabla f_{0}(\mathbf{x})+\sum_{i=1}^{m}\left(\frac{d \mathbf{f}_{i}(\mathbf{x})}{d \mathbf{x}}\right)^{T} \boldsymbol{\lambda}_{i}+\sum_{i=1}^{p} \nu_{i} \nabla h_{i}(\mathbf{x})=\mathbf{0}
$$

- If strong duality holds, then the KKT conditions are necessary for the optimality of any primal optimal \mathbf{x}^{\star} and dual optimal $\left(\boldsymbol{\lambda}_{1}, \ldots, \boldsymbol{\lambda}_{m}, \boldsymbol{\nu}\right)$.
■ If the primal problem is convex, then the KKT conditions are necessary and sufficient for the optimality of $\mathbf{x}^{\star},\left(\boldsymbol{\lambda}_{1}, \ldots, \boldsymbol{\lambda}_{m}, \boldsymbol{\nu}\right)$.

Perturbation and Sensitivity Results

Perturbed Problem with Generalized Inequalities and its Dual:

```
Primal:
minimize \(\quad f_{0}(\mathbf{x})\)
subject to \(\quad \mathbf{f}_{i}(\mathbf{x}) \preceq \kappa_{i} \mathbf{u}_{i}, i=1, \ldots, m\)
    \(h_{i}(\mathbf{x})=v_{i}, i=1, \ldots, p\)
```


Dual:

maximize $\quad g\left(\boldsymbol{\lambda}_{1}, \ldots, \boldsymbol{\lambda}_{m}, \boldsymbol{\nu}\right)$
$-\sum_{i=1}^{m} \mathbf{u}_{i}^{T} \boldsymbol{\lambda}_{i}-\mathbf{v}^{T} \boldsymbol{\nu}$
subject to $\quad \boldsymbol{\lambda}_{i} \succeq_{\mathcal{K}_{i}^{\circledast}} \mathbf{0}, i=1, \ldots, m$

Global Sensitivity Result: Assuming zero duality gap for the unperturbed problem, we have

$$
p^{\star}\left(\mathbf{u}_{1}, \ldots, \mathbf{u}_{m}, \mathbf{v}\right) \geq p^{\star}(\mathbf{0}, \ldots, \mathbf{0}, \mathbf{0})-\sum_{i=1}^{m} \mathbf{u}_{i}^{T} \boldsymbol{\lambda}_{i}^{\star}-\mathbf{v}^{T} \boldsymbol{\nu}
$$

Local Sensitivity Result: Assuming further that $p^{\star}\left(\mathbf{u}_{1}, \ldots, \mathbf{u}_{m}, \mathbf{v}\right)$ is differentiable at $\mathbf{u}_{1}=\mathbf{0}, \ldots, \mathbf{u}_{m}=\mathbf{0}, \mathbf{v}=\mathbf{0}$, we have

$$
\boldsymbol{\lambda}_{i}^{\star}=-\nabla_{\mathbf{u}_{i}} p^{\star}(\mathbf{0}, \ldots, \mathbf{0}, \mathbf{0}), i=1, \ldots, m, \nu_{i}^{\star}=-\frac{\partial p^{\star}(\mathbf{0}, \ldots, \mathbf{0}, \mathbf{0})}{\partial v_{i}}, i=1, \ldots, p
$$

