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Optimality Conditions Certificate of Suboptimality and Stopping Criteria

Certificate of Suboptimality/Optimality
Recall that for any primal feasible point x and dual feasible point (λ,ν), we have

f0(x) ≥ g(λ,ν)⇐⇒ G(x,λ,ν) , f0(x)− g(λ,ν) ≥ 0 .

Here, the quantity G(x,λ,ν) is called the duality gap associated with x and (λ,ν).
The optimal duality gap γ (i.e., the minimum value of G(x,λ,ν) over all feasible x and
(λ,ν)), is given by

γ , inf
x,λ,ν

{G(x,λ,ν)} = inf
x
f0(x)− sup

λ,ν
g(λ,ν) = p? − d? .

For cases in which the primal problem is difficult to solve, we can always bound the
suboptimality corresponding to a particular primal feasible point x̃ by the duality gap.
Specifically, we have

f0(x̃)− p? ≤ G
(
x̃, λ̃, ν̃

)
,

for any dual feasible
(
λ̃, ν̃

)
and so x̃ is ε-suboptimal with ε = G

(
x̃, λ̃, ν̃

)
. Thus,(

λ̃, ν̃
)

is a certificate of G
(
x̃, λ̃, ν̃

)
-suboptimality for x̃. As this also holds for any dual

optimal point (λ?,ν?) for which g(λ?,ν?) = d?, we have the sharper bound
f0(x̃)− p? ≤ G(x̃,λ?,ν?) ,

and so x̃ is, in fact, G(x̃,λ?,ν?)-optimal. If the optimal duality gap γ = 0 (i.e., strong
duality holds), then any x̃ for which G(x̃,λ?,ν?) = 0 means that (λ?,ν?) is a
certificate of optimality for x̃ = x?.
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Optimality Conditions Certificate of Suboptimality and Stopping Criteria

Stopping Criteria for Optimization Algorithms
Note that the bound on the suboptimality of a given primal feasible point x and dual feasible point
(λ,ν) given by G(x,λ,ν) can be computed in practice. This can be used to provide nonheuristic
stopping criteria for optimization algorithms that produce a sequence of primal feasible points
x(k) and dual feasible points

(
λ(k),ν(k)

)
, for k ∈ N.

Absolute accuracy stopping criterion: Suppose we choose an absolute accuracy εabs > γ
(assuming that we can bound the optimal duality gap γ). Then, we terminate the algorithm when

f0
(
x(k)

)
− g
(
λ(k),ν(k)

)
≤ εabs .

This guarantees that x(k) is at least εabs-suboptimal, and
(
λ(k),ν(k)

)
is a certificate proving it.

Relative accuracy stopping criterion: Suppose we choose a relative accuracy εrel > γ/ |p?|
(assuming that we can bound γ and that p? 6= 0). Then, we terminate the algorithm if

g
(
λ(k),ν(k)

)
> 0 ,

f0
(
x(k)

)
− g
(
λ(k),ν(k)

)
g
(
λ(k),ν(k)

) ≤ εrel ,

holds or

f0
(
x(k)

)
< 0 ,

f0
(
x(k)

)
− g
(
λ(k),ν(k)

)
−f0

(
x(k)

) ≤ εrel ,

holds. In this case, we are guaranteed to have
f0

(
x(k)

)
−p?

|p?| ≤ εrel.
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Optimality Conditions Karush-Kuhn-Tucker Conditions

Karush-Kuhn-Tucker Conditions for Optimality
For the problem

minimize f0(x)

subject to fi(x) ≤ 0 , i = 1, . . . ,m

hi(x) = 0 , i = 1, . . . , p

,

with variable x ∈ Rn, assume that strong duality holds (i.e., the optimal duality gap is zero) and
that x? and (λ?,ν?) are primal and dual optimal points, respectively. Then, we have the
following necessary conditions for optimality, assuming f0, . . . , fm, h1, . . . , hp are differentiable.

Karush-Kuhn-Tucker (KKT) Conditions:

1 Primal feasibility:
fi(x

?) ≤ 0 , i = 1, . . . ,m , hi(x
?) = 0 , i = 1, . . . , p .

2 Dual feasibility:
λ?i ≥ 0 , i = 1, . . . ,m .

3 Complementary slackness:
λ?i fi (x

?) = 0 , i = 1, . . . ,m .

4 Stationarity:

∇f0(x?) +

m∑
i=1

λ?i∇fi(x?) +

p∑
i=1

ν?i ∇hi(x?) = 0 .
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Optimality Conditions Karush-Kuhn-Tucker Conditions

Karush-Kuhn-Tucker Conditions for Convex Problems
For the convex problem

minimize f0(x)

subject to fi(x) ≤ 0 , i = 1, . . . ,m

Ax = b

,

with variable x ∈ Rn, where f0, . . . , fm are convex, let x̃ be any primal point and
(
λ̃, ν̃

)
be any

dual point. Then, we have the following necessary and sufficient conditions for optimality of x̃
and

(
λ̃, ν̃

)
, assuming f0, . . . , fm are differentiable.

Karush-Kuhn-Tucker (KKT) Conditions for Convex Optimization Problems:

1 Primal feasibility: fi(x̃) ≤ 0 , i = 1, . . . ,m , Ax̃ = b.

2 Dual feasibility: λ̃i ≥ 0 , i = 1, . . . ,m.

3 Complementary slackness: λ̃ifi(x̃) = 0 , i = 1, . . .m.

4 Stationarity: ∇f0(x̃) +
∑m

i=1 λ̃i∇fi(x̃) +AT ν̃ = 0.

Sufficiency follows from the fact that f0(x̃) = L
(
x̃, λ̃, ν̃

)
, by complementary slackness, and that

g
(
λ̃, ν̃

)
= L

(
x̃, λ̃, ν̃

)
, by convexity of L(x,λ,ν) in x and stationarity. Hence, f0(x̃) = g

(
λ̃, ν̃

)
.

If Slater’s condition is satisfied, then x is optimal if and only if there exist (λ,ν) that satisfy the
KKT conditions. This is because it implies strong duality and that the dual optimum is attained.
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Optimality Conditions Karush-Kuhn-Tucker Conditions

Water-Filling Example

minimize −
n∑

i=1

log(xi + αi)

subject to x � 0 ,1Tx = 1

,

where αi > 0. By the KKT conditions, x is optimal if and only if x � 0, 1Tx = 1, and
there exist λ ∈ Rn and ν ∈ R such that

λi ≥ 0 , λixi = 0 , − 1

xi + αi
− λi + ν = 0 , i = 1, . . . , n .

If ν < 1/αi, then λi = 0 and xi = 1/ν − αi.
If ν ≥ 1/αi, then λi = ν − 1/αi and xi = 0.
We can determine ν from the constraint 1Tx =

∑n
i=1 max {0, 1/ν − αi} = 1.

Interpretation:
There are n patches of land, where the
level of the i-th patch is at height αi.

We flood the area with a unit amount of
water.

The resulting level is 1/ν.
i

xi

αi

1/ν
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Perturbation and Sensitivity Analysis

Perturbed Optimization Problem and its Dual
For the unperturbed problem and its dual

Primal: Dual:

minimize f0(x) maximize g(λ,ν)

subject to fi(x) ≤ 0 , i = 1, . . . ,m subject to λ � 0

hi(x) = 0 , i = 1, . . . , p

,

we consider the following perturbed problem and its dual.

Perturbed Problem and its Dual:

Primal: Dual:

minimize f0(x) maximize g(λ,ν)− uTλ− vTν

subject to fi(x) ≤ ui , i = 1, . . . ,m subject to λ � 0

hi(x) = vi , i = 1, . . . , p

.

Here, x is the primal variable, while u and v are parameters.
We denote p?(u,v) as the optimal value as a function of u and v.
We are interested in information about p?(u,v) that we can obtain from the
solution of the unperturbed problem and its dual.
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Perturbation and Sensitivity Analysis Global Sensitivity Results

Global Sensitivity Inequality

Assume that strong duality holds for the unperturbed problem, and that (λ?,ν?) are
dual optimal for the unperturbed problem.

Applying weak duality to the perturbed problem yields

p?(u,v) ≥ g(λ?,ν?)− uTλ? − vTν? ,

= p(0,0)− uTλ? − vTν? .

Sensitivity Interpretation:

If λ?
i is large, then p? increases greatly if we tighten the i-th constraint (i.e.,

ui < 0).

If λ?
i is small, then p? does not decrease much if we loosen the i-th constraint

(i.e., ui > 0).

If ν?i is large and positive, then p? increases greatly if we take vi < 0.
If ν?i is large and negative, then p? increases greatly if we take vi > 0.

If ν?i is small and positive, then p? does not decrease much if we take vi > 0.
If ν?i is small and negative, then p? does not decrease much if we take vi < 0.
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Perturbation and Sensitivity Analysis Local Sensitivity Results

Local Sensitivity Analysis
Assume as before that strong duality holds for the unperturbed problem. If, in addition,
p?(u,v) is differentiable at (0,0), then we have

λ?
i = −∂p

?(0,0)

∂ui
, i = 1, . . . ,m , ν?i = −∂p

?(0,0)

∂vi
, i = 1, . . . , p .

Proof: For λ?
i , from the global sensitivity result, we have

∂p?(0,0)

∂ui
= lim

t↘0

p?(tei,0)− p?(0,0)
t

≥ −λ?
i ,

∂p?(0,0)

∂ui
= lim

t↗0

p?(tei,0)− p?(0,0)
t

≤ −λ?
i .

As both of these inequalities hold, they must with equality. A similar proof follows for ν?i .
Visual Example: Sketch of p?(u) for a problem with one inequality constraint.

u = 0
u

p⋆(u)

p⋆(0)− λ⋆u
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Duality and Problem Reformulations

Duals of Equivalent Problem Formulations

Equivalent formulations of a problem can lead to very different
duals.
Reformulating the primal problem can be useful when the dual is
difficult to derive or is uninteresting.

Common Reformulations:
Introduce new variables and equality constraints.
Make explicit constraints implicit or vice-versa.
Carry out a change of variables, such as x = φ(z).
Transform the objective or constraint functions.
For example, we can replace f0(x) with ψ(f0(x)), where ψ is
convex and increasing.
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Duality and Problem Reformulations

Introducing New Variables and Equality Constraints
As an example, consider the problem

minimize f0(Ax+ b) .

The dual function is constant as we have g = infx L(x) = infx f0(Ax+ b) = p?.
We have strong duality always, but the dual is rather useless.

Reformulated problem and its dual:

minimize f0(y) maximize bTν − f�
0 (ν)

subject to Ax+ b− y = 0 subject to ATν = 0
.

The dual function follows from

g(ν) = inf
x,y

{
f0(y) + νT (Ax+ b− y)

}
,

= inf
x,y

{
−
(
νTy − f0(y)

)
+
(
ATν

)T
x+ bTν

}
,

= bTν − sup
y

{
νTy − f0(y)

}
+ inf

x

{(
ATν

)T
x

}
,

=

{
bTν − f�

0 (ν) , ATν = 0

−∞ , otherwise
.
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Duality and Problem Reformulations

Examples with New Variables and Equality Constraints
Norm approximation problem:

minimize ||Ax− b|| .
Using the trick of introducing new variables and new equality constraints, this becomes

minimize ||y||
subject to y = Ax− b

.

We can exploit the fact that

f(x) = ||x|| ⇐⇒ f�(y) =

{
0 , ||y||� ≤ 1

∞ , otherwise
,

or derive the dual function directly as follows.

g(ν) = inf
x,y

{
||y||+ νT (y −Ax+ b)

}
= bT ν + inf

y

{
||y||+ νTy

}
− sup

x

{(
AT ν

)T
x

}
,

=

{
bT ν + infy

{
||y||+ νTy

}
, AT ν = 0

−∞ , otherwise
,

=

{
bT ν , AT ν = 0 , ||ν||� ≤ 1

−∞ , otherwise
.

Dual of norm approximation problem:
maximize bT ν

subject to AT ν = 0 , ||ν||� ≤ 1
.
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Duality and Problem Reformulations

Implicit Constraints
LP with box constraints:

Primal: Dual:

minimize cTx maximize −bTν − uTλu + lTλl

subject to Ax = b subject to ATν + λu − λl + c = 0

l � x � u λu � 0 ,λl � 0

,

Reformulation with box constraints made implicit:

minimize f0(x) =

{
cTx , l � x � u

∞ , otherwise

subject to Ax = b

.

With this reformulation, the dual function is

g(ν) = inf
l�x�u

{
cTx+ νT (Ax− b)

}
= −bTν + inf

l�x�u

{(
ATν + c

)T
x

}
,

= −bTν − uT
(
ATν + c

)−
+ lT

(
ATν + c

)+
,

where y−i , max {−yi, 0} and y+i , max {yi, 0}.
Dual problem:

maximize −bTν − uT
(
ATν + c

)−
+ lT

(
ATν + c

)+
.
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Lagrangian Duality for Problems with Generalized Inequalities The Lagrangian, Dual Function, and Dual Problem

The Lagrangian and Dual Function
Consider the problem with generalized inequalities given by

minimize f0(x)

subject to fi(x) �Ki 0 , i = 1, . . . ,m

hi(x) = 0 , i = 1, . . . , p

,

where Ki ⊆ Rki are proper cones. We do not assume convexity here. The definitions
of the Lagrangian and the dual function parallel those in the scalar case, except now,
for each constraint fi(x) �Ki 0, we associate the Lagrange multiplier vector λi ∈ Rki .

The Lagrangian:

The Lagrangian L : Rn × Rk1 × · · · × Rkm × Rp → R is defined as

L(x,λ1, . . . ,λm,ν) , f0(x) +

m∑
i=1

λT
i fi(x) +

p∑
i=1

νihi(x) .

Lagrange Dual Function:

The dual function g : Rk1 × · · · × Rkm × Rp → R is defined as
g(λ1, . . . ,λm,ν) , inf

x∈D
{L(x,λ1, . . . ,λm,ν)} .
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Lagrangian Duality for Problems with Generalized Inequalities The Lagrangian, Dual Function, and Dual Problem

Lower Bound Property and the Dual Problem
Lower Bound Property: If λi �K�

i
0 for i = 1, . . . ,m, then g(λ1, . . . ,λm,ν) ≤ p?.

Proof: If x̃ is feasible and λi �K�
i
0 for i = 1, . . . ,m, then we have

g(λ1, . . . ,λm,ν) = inf
x∈D
{L(x,λ1, . . . ,λm,ν)} ,

≤ f0(x̃) +
m∑
i=1

λT
i fi(x̃) +

p∑
i=1

νihi(x̃) ,

≤ f0(x̃) .

Minimizing over all feasible x̃ gives g(λ1, . . . ,λm,ν) ≤ p?.

Lagrange Dual Problem:

maximize g(λ1, . . . ,λm,ν)

subject to λi �K�
i
0 , i = 1, . . . ,m

.

Weak duality: p? ≥ d? always.
Strong duality: p? = d? for a convex problems with a constraint qualification.
For example, if Slater’s condition holds, meaning that the primal problem is
strictly feasible, then we have strong duality.
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Lagrangian Duality for Problems with Generalized Inequalities The Lagrangian, Dual Function, and Dual Problem

Inequality Form SDP and its Dual
Primal SDP: (Fi,G ∈ Sk)

minimize cTx

subject to x1F1 + · · ·+ xnFn � G
.

The Lagrange multiplier is a matrix Z ∈ Sk.
The Lagrangian is

L(x,Z) = cTx+ tr(Z (x1F1 + · · ·+ xnFn −G)) .

The dual function is

g(Z) = inf
x
L(x,Z) =

{
−tr(GZ) , tr(FiZ) + ci = 0 , i = 1, . . . , n

−∞ , otherwise
.

Dual SDP:
maximize −tr(GZ)

subject to tr(FiZ) + ci = 0 , i = 1, . . . , n

Z � 0

.

We have p? = d? if the primal SDP is strictly feasible, meaning that there exists an x
such that x1F1 + · · ·+ xnFn ≺ G.

Andre Tkacenko (JPL) EE/ACM 150 - Lecture 12 May 10, 2012 17 / 20



Lagrangian Duality for Problems with Generalized Inequalities Optimality Conditions

Complementary Slackness
Assume that strong duality holds (i.e., p? = d?), x? is primal optimal, and
(λ?

1, . . . ,λ
?
m,ν

?) is dual optimal. Then, we have the following.
f0(x

?) = g(λ?
1, . . . ,λ

?
m,ν

?) = inf
x∈D

L(x,λ?
1, . . . ,λ

?
m,ν

?)

= inf
x∈D

{
f0(x) +

m∑
i=1

(λ?
i )

T
fi(x) +

p∑
i=1

ν?i hi(x)

}
,

≤ f0(x
?) +

m∑
i=1

(λ?
i )

T
fi(x

?) +

p∑
i=1

ν?i hi(x
?) ,

≤ f0(x
?) .

Thus, the two inequalities hold with equality. From this, we ascertain the following.
The primal optimal point x? minimizes L(x,λ?

1, . . . ,λ
?
m,ν

?). Note that the
Lagrangian L(x,λ?

1, . . . ,λ
?
m,ν

?) may have other minimizers besides x?.
We have the complementary slackness condition (λ?

i )
T fi(x

?) = 0 for
i = 1, . . . ,m. Specifically, this implies that

λ?
i �K�

i
0 =⇒ fi(x

?) = 0 , fi(x
?) ≺Ki 0 =⇒ λ?

i = 0 .

In contrast to problems with scalar inequalities, it is possible to satisfy
(λ?

i )
T fi(x

?) = 0 with λ?
i 6= 0 and fi(x

?) 6= 0.
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Lagrangian Duality for Problems with Generalized Inequalities Optimality Conditions

KKT Conditions for Optimality
Under the assumption that the functions f0, f1, . . . , fm, h1, . . . , hp are differentiable, the
KKT conditions become the following.

KKT Conditions for Problems with Generalized Inequalities:

Primal feasibility:
fi(x) �Ki 0 , i = 1, . . . ,m , hi(x) = 0 , i = 1, . . . , p .

Dual feasibility:
λi �K�

i
0 , i = 1, . . . ,m .

Complementary slackness:
(λ?

i )
T
fi(x

?) = 0 , i = 1, . . . ,m .

Stationarity:

∇f0(x) +
m∑
i=1

(
dfi(x)

dx

)T

λi +

p∑
i=1

νi∇hi(x) = 0 .

If strong duality holds, then the KKT conditions are necessary for the optimality
of any primal optimal x? and dual optimal (λ1, . . . ,λm,ν).
If the primal problem is convex, then the KKT conditions are necessary and
sufficient for the optimality of x?, (λ1, . . . ,λm,ν).
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Lagrangian Duality for Problems with Generalized Inequalities Perturbation and Sensitivity Analysis

Perturbation and Sensitivity Results

Perturbed Problem with Generalized Inequalities and its Dual:

Primal: Dual:

minimize f0(x) maximize g(λ1, . . . ,λm,ν)

subject to fi(x) �Ki ui , i = 1, . . . ,m −
∑m

i=1 u
T
i λi − vTν

hi(x) = vi , i = 1, . . . , p subject to λi �K�
i
0 , i = 1, . . . ,m

.

Global Sensitivity Result: Assuming zero duality gap for the unperturbed problem,
we have

p?(u1, . . . ,um,v) ≥ p?(0, . . . ,0,0)−
m∑
i=1

uT
i λ

?
i − vTν .

Local Sensitivity Result: Assuming further that p?(u1, . . . ,um,v) is differentiable at
u1 = 0, . . . ,um = 0,v = 0, we have

λ?
i = −∇uip

?(0, . . . ,0,0) , i = 1, . . . ,m , ν?i = −∂p
?(0, . . . ,0,0)

∂vi
, i = 1, . . . , p .

Andre Tkacenko (JPL) EE/ACM 150 - Lecture 12 May 10, 2012 20 / 20


	Optimality Conditions
	Certificate of Suboptimality and Stopping Criteria
	Karush-Kuhn-Tucker Conditions

	Perturbation and Sensitivity Analysis
	Global Sensitivity Results
	Local Sensitivity Results

	Duality and Problem Reformulations
	Lagrangian Duality for Problems with Generalized Inequalities
	The Lagrangian, Dual Function, and Dual Problem
	Optimality Conditions
	Perturbation and Sensitivity Analysis


