EE/ACM 150 - Applications of Convex Optimization in Signal Processing and Communications Lecture 12

Andre Tkacenko

Signal Processing Research Group Jet Propulsion Laboratory

May 10, 2012

Outline

Optimality Conditions

- Certificate of Suboptimality and Stopping Criteria
- Karush-Kuhn-Tucker Conditions

2 Perturbation and Sensitivity Analysis

- Global Sensitivity Results
- Local Sensitivity Results
- 3 Duality and Problem Reformulations
- 4 Lagrangian Duality for Problems with Generalized Inequalities
 - The Lagrangian, Dual Function, and Dual Problem
 - Optimality Conditions
 - Perturbation and Sensitivity Analysis

Certificate of Suboptimality/Optimality

Recall that for any primal feasible point ${\bf x}$ and dual feasible point $({\boldsymbol \lambda}, {\boldsymbol \nu}),$ we have

$$f_0(\mathbf{x}) \ge g(\boldsymbol{\lambda}, \boldsymbol{\nu}) \iff G(\mathbf{x}, \boldsymbol{\lambda}, \boldsymbol{\nu}) \triangleq f_0(\mathbf{x}) - g(\boldsymbol{\lambda}, \boldsymbol{\nu}) \ge 0.$$

Here, the quantity $G(\mathbf{x}, \lambda, \nu)$ is called the *duality gap* associated with \mathbf{x} and (λ, ν) . The *optimal duality gap* γ (i.e., the minimum value of $G(\mathbf{x}, \lambda, \nu)$ over all feasible \mathbf{x} and (λ, ν)), is given by

$$\gamma \triangleq \inf_{\mathbf{x}, \boldsymbol{\lambda}, \boldsymbol{\nu}} \{ G(\mathbf{x}, \boldsymbol{\lambda}, \boldsymbol{\nu}) \} = \inf_{\mathbf{x}} f_0(\mathbf{x}) - \sup_{\boldsymbol{\lambda}, \boldsymbol{\nu}} g(\boldsymbol{\lambda}, \boldsymbol{\nu}) = p^* - d^* \,.$$

For cases in which the primal problem is difficult to solve, we can always bound the suboptimality corresponding to a particular primal feasible point \tilde{x} by the duality gap. Specifically, we have

$$f_0(\widetilde{\mathbf{x}}) - p^\star \leq G\Big(\widetilde{\mathbf{x}}, \widetilde{\boldsymbol{\lambda}}, \widetilde{\boldsymbol{\nu}}\Big) \;,$$

for any dual feasible $(\tilde{\lambda}, \tilde{\nu})$ and so $\tilde{\mathbf{x}}$ is ϵ -suboptimal with $\epsilon = G(\tilde{\mathbf{x}}, \tilde{\lambda}, \tilde{\nu})$. Thus, $(\tilde{\lambda}, \tilde{\nu})$ is a *certificate of* $G(\tilde{\mathbf{x}}, \tilde{\lambda}, \tilde{\nu})$ -suboptimality for $\tilde{\mathbf{x}}$. As this also holds for any dual optimal point (λ^*, ν^*) for which $g(\lambda^*, \nu^*) = d^*$, we have the sharper bound $f_0(\tilde{\mathbf{x}}) - p^* \leq G(\tilde{\mathbf{x}}, \lambda^*, \nu^*)$,

and so $\widetilde{\mathbf{x}}$ is, in fact, $G(\widetilde{\mathbf{x}}, \lambda^*, \nu^*)$ -optimal. If the optimal duality gap $\gamma = 0$ (i.e., strong duality holds), then any $\widetilde{\mathbf{x}}$ for which $G(\widetilde{\mathbf{x}}, \lambda^*, \nu^*) = 0$ means that (λ^*, ν^*) is a *certificate of optimality* for $\widetilde{\mathbf{x}} = \mathbf{x}^*$.

Stopping Criteria for Optimization Algorithms

Note that the bound on the suboptimality of a given primal feasible point \mathbf{x} and dual feasible point (λ, ν) given by $G(\mathbf{x}, \lambda, \nu)$ can be computed in practice. This can be used to provide nonheuristic stopping criteria for optimization algorithms that produce a sequence of primal feasible points $\mathbf{x}^{(k)}$ and dual feasible points $(\lambda^{(k)}, \nu^{(k)})$, for $k \in \mathbb{N}$.

Absolute accuracy stopping criterion: Suppose we choose an absolute accuracy $\epsilon_{abs} > \gamma$ (assuming that we can bound the optimal duality gap γ). Then, we terminate the algorithm when

$$f_0\left(\mathbf{x}^{(k)}\right) - g\left(\boldsymbol{\lambda}^{(k)}, \boldsymbol{\nu}^{(k)}\right) \leq \epsilon_{\mathrm{abs}} \,.$$

This *guarantees* that $\mathbf{x}^{(k)}$ is at least ϵ_{abs} -suboptimal, and $(\boldsymbol{\lambda}^{(k)}, \boldsymbol{\nu}^{(k)})$ is a certificate proving it. **Relative accuracy stopping criterion:** Suppose we choose a relative accuracy $\epsilon_{rel} > \gamma / |p^*|$

(assuming that we can bound γ and that $p^* \neq 0$). Then, we terminate the algorithm if

$$g(\boldsymbol{\lambda}^{(k)}, \boldsymbol{\nu}^{(k)}) > 0, \ \frac{f_0(\mathbf{x}^{(k)}) - g(\boldsymbol{\lambda}^{(k)}, \boldsymbol{\nu}^{(k)})}{g(\boldsymbol{\lambda}^{(k)}, \boldsymbol{\nu}^{(k)})} \le \epsilon_{\mathrm{rel}},$$

holds or

$$f_0\left(\mathbf{x}^{(k)}\right) < 0 , \; rac{f_0\left(\mathbf{x}^{(k)}
ight) - g\left(oldsymbol{\lambda}^{(k)}, oldsymbol{
u}^{(k)}
ight)}{-f_0\left(\mathbf{x}^{(k)}
ight)} \leq \epsilon_{\mathrm{rel}} \, ,$$

holds. In this case, we are guaranteed to have $\frac{f_0(\mathbf{x}^{(k)}) - p^{\star}}{|p^{\star}|} \leq \epsilon_{rel}$.

Karush-Kuhn-Tucker Conditions for Optimality

For the problem

$$\begin{array}{ll} \mbox{minimize} & f_0(\mathbf{x}) \\ \mbox{subject to} & f_i(\mathbf{x}) \leq 0 \,, \; i=1,\ldots,m \quad, \\ & h_i(\mathbf{x})=0 \,, \; i=1,\ldots,p \end{array}$$

with variable $\mathbf{x} \in \mathbb{R}^n$, assume that strong duality holds (i.e., the optimal duality gap is zero) and that \mathbf{x}^* and $(\boldsymbol{\lambda}^*, \boldsymbol{\nu}^*)$ are primal and dual optimal points, respectively. Then, we have the following *necessary* conditions for optimality, assuming $f_0, \ldots, f_m, h_1, \ldots, h_p$ are differentiable.

Karush-Kuhn-Tucker (KKT) Conditions:

Primal feasibility:

$$f_i(\mathbf{x}^{\star}) \leq 0, \ i = 1, \dots, m, \ h_i(\mathbf{x}^{\star}) = 0, \ i = 1, \dots, p.$$

2 Dual feasibility:

$$\lambda_i^\star \ge 0, \ i = 1, \dots, m$$
.

3 Complementary slackness:

$$\lambda_i^{\star} f_i\left(\mathbf{x}^{\star}\right) = 0, \ i = 1, \dots, m.$$

4 Stationarity:

$$\nabla f_0(\mathbf{x}^{\star}) + \sum_{i=1}^m \lambda_i^{\star} \nabla f_i(\mathbf{x}^{\star}) + \sum_{i=1}^p \nu_i^{\star} \nabla h_i(\mathbf{x}^{\star}) = \mathbf{0}.$$

Karush-Kuhn-Tucker Conditions for Convex Problems

For the convex problem

 $\begin{array}{ll} \mbox{minimize} & f_0(\mathbf{x}) \\ \mbox{subject to} & f_i(\mathbf{x}) \leq 0 \ , \ i=1,\ldots,m \quad , \\ & \mathbf{A}\mathbf{x}=\mathbf{b} \end{array}$

with variable $\mathbf{x} \in \mathbb{R}^n$, where f_0, \ldots, f_m are convex, let $\widetilde{\mathbf{x}}$ be any primal point and $(\widetilde{\boldsymbol{\lambda}}, \widetilde{\boldsymbol{\nu}})$ be any dual point. Then, we have the following *necessary and sufficient* conditions for optimality of $\widetilde{\mathbf{x}}$ and $(\widetilde{\boldsymbol{\lambda}}, \widetilde{\boldsymbol{\nu}})$, assuming f_0, \ldots, f_m are differentiable.

Karush-Kuhn-Tucker (KKT) Conditions for Convex Optimization Problems:

1 Primal feasibility:
$$f_i(\tilde{\mathbf{x}}) \leq 0$$
, $i = 1, \dots, m$, $A\tilde{\mathbf{x}} = \mathbf{b}$.

2 Dual feasibility:
$$\lambda_i \ge 0$$
, $i = 1, \dots, m$.

3 Complementary slackness:
$$\lambda_i f_i(\tilde{\mathbf{x}}) = 0, \ i = 1, \dots m.$$

4 Stationarity: $\nabla f_0(\widetilde{\mathbf{x}}) + \sum_{i=1}^m \widetilde{\lambda}_i \nabla f_i(\widetilde{\mathbf{x}}) + \mathbf{A}^T \widetilde{\boldsymbol{\nu}} = \mathbf{0}.$

Sufficiency follows from the fact that $f_0(\tilde{\mathbf{x}}) = L(\tilde{\mathbf{x}}, \tilde{\boldsymbol{\lambda}}, \tilde{\boldsymbol{\nu}})$, by complementary slackness, and that $g(\tilde{\boldsymbol{\lambda}}, \tilde{\boldsymbol{\nu}}) = L(\tilde{\mathbf{x}}, \tilde{\boldsymbol{\lambda}}, \tilde{\boldsymbol{\nu}})$, by convexity of $L(\mathbf{x}, \boldsymbol{\lambda}, \boldsymbol{\nu})$ in \mathbf{x} and stationarity. Hence, $f_0(\tilde{\mathbf{x}}) = g(\tilde{\boldsymbol{\lambda}}, \tilde{\boldsymbol{\nu}})$.

If Slater's condition is satisfied, then x is optimal if and only if there exist (λ, ν) that satisfy the KKT conditions. This is because it implies strong duality and that the dual optimum is attained.

Water-Filling Example

minimize
$$-\sum_{i=1}^{n} \log(x_i + \alpha_i)$$

subject to $\mathbf{x} \succeq \mathbf{0}, \mathbf{1}^T \mathbf{x} = 1$

where $\alpha_i > 0$. By the KKT conditions, x is optimal if and only if $\mathbf{x} \succeq \mathbf{0}, \mathbf{1}^T \mathbf{x} = 1$, and there exist $\lambda \in \mathbb{R}^n$ and $\nu \in \mathbb{R}$ such that

$$\lambda_i \ge 0, \ \lambda_i x_i = 0, \ -\frac{1}{x_i + \alpha_i} - \lambda_i + \nu = 0, \ i = 1, \dots, n.$$

If
$$\nu < 1/\alpha_i$$
, then $\lambda_i = 0$ and $x_i = 1/\nu - \alpha_i$.

If $\nu > 1/\alpha_i$, then $\lambda_i = \nu - 1/\alpha_i$ and $x_i = 0$.

We can determine ν from the constraint $\mathbf{1}^T \mathbf{x} = \sum_{i=1}^n \max\{0, 1/\nu - \alpha_i\} = 1$.

Interpretation:

- There are n patches of land, where the level of the *i*-th patch is at height α_i .
- We flood the area with a unit amount of water.
- $1/\nu$ i

The resulting level is $1/\nu$.

Perturbed Optimization Problem and its Dual

For the unperturbed problem and its dual

we consider the following perturbed problem and its dual.

Perturbed Problem and its Dual:

Primal:		Dual:	
minimize	$f_0(\mathbf{x})$	maximize	$g(\boldsymbol{\lambda}, \boldsymbol{ u}) - \mathbf{u}^T \boldsymbol{\lambda} - \mathbf{v}^T \boldsymbol{ u}$
subject to	$f_i(\mathbf{x}) \le u_i, \ i = 1, \dots, m$	subject to	$oldsymbol{\lambda} \succeq 0$
	$h_i(\mathbf{x}) = v_i, \ i = 1, \dots, p$		

- Here, ${\bf x}$ is the primal variable, while ${\bf u}$ and ${\bf v}$ are parameters.
- We denote $p^{\star}(\mathbf{u}, \mathbf{v})$ as the optimal value as a function of \mathbf{u} and \mathbf{v} .
- We are interested in information about $p^*(\mathbf{u}, \mathbf{v})$ that we can obtain from the solution of the unperturbed problem and its dual.

Andre Tkacenko (JPL)

EE/ACM 150 - Lecture 12

Global Sensitivity Inequality

Assume that strong duality holds for the unperturbed problem, and that (λ^*, ν^*) are dual optimal for the unperturbed problem.

Applying weak duality to the perturbed problem yields

$$egin{aligned} p^{\star}(\mathbf{u},\mathbf{v}) &\geq & g(oldsymbol{\lambda}^{\star},oldsymbol{
u}^{\star})-\mathbf{u}^{T}oldsymbol{\lambda}^{\star}-\mathbf{v}^{T}oldsymbol{
u}^{\star}\,, \ &= & p(\mathbf{0},\mathbf{0})-\mathbf{u}^{T}oldsymbol{\lambda}^{\star}-\mathbf{v}^{T}oldsymbol{
u}^{\star}\,. \end{aligned}$$

Sensitivity Interpretation:

- If λ_i^* is large, then p^* increases greatly if we tighten the *i*-th constraint (i.e., $u_i < 0$).
- If λ_i^* is small, then p^* does not decrease much if we loosen the *i*-th constraint (i.e., $u_i > 0$).
- If ν_i^{*} is large and positive, then p^{*} increases greatly if we take v_i < 0. If ν_i^{*} is large and negative, then p^{*} increases greatly if we take v_i > 0.
- If ν_i^{*} is small and positive, then p^{*} does not decrease much if we take v_i > 0. If ν_i^{*} is small and negative, then p^{*} does not decrease much if we take v_i < 0.</p>

Local Sensitivity Analysis

Assume as before that strong duality holds for the unperturbed problem. If, in addition, $p^*(\mathbf{u}, \mathbf{v})$ is differentiable at $(\mathbf{0}, \mathbf{0})$, then we have

$$\lambda_i^{\star} = -\frac{\partial p^{\star}(\mathbf{0}, \mathbf{0})}{\partial u_i}, \ i = 1, \dots, m, \ \nu_i^{\star} = -\frac{\partial p^{\star}(\mathbf{0}, \mathbf{0})}{\partial v_i}, \ i = 1, \dots, p.$$

Proof: For λ_i^{\star} , from the global sensitivity result, we have

$$\frac{\partial p^{\star}(\mathbf{0},\mathbf{0})}{\partial u_{i}} = \lim_{t \searrow 0} \frac{p^{\star}(t\mathbf{e}_{i},\mathbf{0}) - p^{\star}(\mathbf{0},\mathbf{0})}{t} \ge -\lambda_{i}^{\star},$$
$$\frac{\partial p^{\star}(\mathbf{0},\mathbf{0})}{\partial u_{i}} = \lim_{t \nearrow 0} \frac{p^{\star}(t\mathbf{e}_{i},\mathbf{0}) - p^{\star}(\mathbf{0},\mathbf{0})}{t} \le -\lambda_{i}^{\star}.$$

As both of these inequalities hold, they must with equality. A similar proof follows for ν_i^* . **Visual Example:** Sketch of $p^*(u)$ for a problem with one inequality constraint.

Duals of Equivalent Problem Formulations

- Equivalent formulations of a problem can lead to very different duals.
- Reformulating the primal problem can be useful when the dual is difficult to derive or is *uninteresting*.

Common Reformulations:

- Introduce new variables and equality constraints.
- Make explicit constraints implicit or vice-versa.
- Carry out a change of variables, such as $\mathbf{x} = \phi(\mathbf{z})$.
- Transform the objective or constraint functions. For example, we can replace $f_0(\mathbf{x})$ with $\psi(f_0(\mathbf{x}))$, where ψ is convex and increasing.

Introducing New Variables and Equality Constraints

As an example, consider the problem

minimize $f_0(\mathbf{Ax} + \mathbf{b})$.

The dual function is constant as we have $g = \inf_{\mathbf{x}} L(\mathbf{x}) = \inf_{\mathbf{x}} f_0(\mathbf{A}\mathbf{x} + \mathbf{b}) = p^*$.

We have strong duality always, but the dual is rather useless.

Reformulated problem and its dual:

minimize
$$f_0(\mathbf{y})$$
maximize $\mathbf{b}^T \boldsymbol{\nu} - f_0^{\circledast}(\boldsymbol{\nu})$ subject to $\mathbf{A}\mathbf{x} + \mathbf{b} - \mathbf{y} = \mathbf{0}$ subject to $\mathbf{A}^T \boldsymbol{\nu} = \mathbf{0}$

The dual function follows from

$$g(\boldsymbol{\nu}) = \inf_{\mathbf{x},\mathbf{y}} \left\{ f_0(\mathbf{y}) + \boldsymbol{\nu}^T \left(\mathbf{A}\mathbf{x} + \mathbf{b} - \mathbf{y} \right) \right\},$$

$$= \inf_{\mathbf{x},\mathbf{y}} \left\{ - \left(\boldsymbol{\nu}^T \mathbf{y} - f_0(\mathbf{y}) \right) + \left(\mathbf{A}^T \boldsymbol{\nu} \right)^T \mathbf{x} + \mathbf{b}^T \boldsymbol{\nu} \right\},$$

$$= \mathbf{b}^T \boldsymbol{\nu} - \sup_{\mathbf{y}} \left\{ \boldsymbol{\nu}^T \mathbf{y} - f_0(\mathbf{y}) \right\} + \inf_{\mathbf{x}} \left\{ \left(\mathbf{A}^T \boldsymbol{\nu} \right)^T \mathbf{x} \right\},$$

$$= \begin{cases} \mathbf{b}^T \boldsymbol{\nu} - f_0^{\circledast}(\boldsymbol{\nu}), & \mathbf{A}^T \boldsymbol{\nu} = \mathbf{0} \\ -\infty, & \text{otherwise} \end{cases}.$$

Examples with New Variables and Equality Constraints

Norm approximation problem:

minimize
$$||\mathbf{A}\mathbf{x} - \mathbf{b}||$$

Using the trick of introducing new variables and new equality constraints, this becomes

$$\begin{array}{ll} \text{minimize} & ||\mathbf{y}|| \\ \text{subject to} & \mathbf{y} = \mathbf{A}\mathbf{x} - \mathbf{b} \end{array}$$

We can exploit the fact that

$$f(\mathbf{x}) = ||\mathbf{x}|| \iff f^{\circledast}(\mathbf{y}) = \begin{cases} 0, & ||\mathbf{y}||_{\circledast} \le 1\\ \infty, & \text{otherwise} \end{cases}$$

or derive the dual function directly as follows.

$$\begin{split} g(\boldsymbol{\nu}) &= \inf_{\mathbf{x},\mathbf{y}} \left\{ ||\mathbf{y}|| + \boldsymbol{\nu}^T \left(\mathbf{y} - \mathbf{A}\mathbf{x} + \mathbf{b} \right) \right\} = \mathbf{b}^T \boldsymbol{\nu} + \inf_{\mathbf{y}} \left\{ ||\mathbf{y}|| + \boldsymbol{\nu}^T \mathbf{y} \right\} - \sup_{\mathbf{x}} \left\{ \left(\mathbf{A}^T \boldsymbol{\nu} \right)^T \mathbf{x} \right\} ,\\ &= \left\{ \begin{array}{c} \mathbf{b}^T \boldsymbol{\nu} + \inf_{\mathbf{y}} \left\{ ||\mathbf{y}|| + \boldsymbol{\nu}^T \mathbf{y} \right\} , \quad \mathbf{A}^T \boldsymbol{\nu} = \mathbf{0} \\ -\infty , & \text{otherwise} \end{array} \right. ,\\ &= \left\{ \begin{array}{c} \mathbf{b}^T \boldsymbol{\nu} , \quad \mathbf{A}^T \boldsymbol{\nu} = \mathbf{0} , \ ||\boldsymbol{\nu}||_{\circledast} \leq 1 \\ -\infty , & \text{otherwise} \end{array} \right. . \end{split}$$

Dual of norm approximation problem:

$$\begin{array}{ll} \text{maximize} & \mathbf{b}^T \boldsymbol{\nu} \\ \text{subject to} & \mathbf{A}^T \boldsymbol{\nu} = \mathbf{0} \,, \, \left| \left| \boldsymbol{\nu} \right| \right|_{\boldsymbol{\Re}} \leq 1 \end{array}$$

Andre Tkacenko (JPL)

EE/ACM 150 - Lecture 12

,

Implicit Constraints

LP with box constraints:

Reformulation with box constraints made implicit:

minimize
$$f_0(\mathbf{x}) = \begin{cases} \mathbf{c}^T \mathbf{x} , & \mathbf{l} \leq \mathbf{x} \leq \mathbf{u} \\ \infty , & \text{otherwise} \end{cases}$$

subject to $\mathbf{A}\mathbf{x} = \mathbf{b}$

With this reformulation, the dual function is

$$\begin{split} g(\boldsymbol{\nu}) &= \inf_{\mathbf{l} \leq \mathbf{x} \leq \mathbf{u}} \left\{ \mathbf{c}^T \mathbf{x} + \boldsymbol{\nu}^T \left(\mathbf{A} \mathbf{x} - \mathbf{b} \right) \right\} = -\mathbf{b}^T \boldsymbol{\nu} + \inf_{\mathbf{l} \leq \mathbf{x} \leq \mathbf{u}} \left\{ \left(\mathbf{A}^T \boldsymbol{\nu} + \mathbf{c} \right)^T \mathbf{x} \right\} ,\\ &= -\mathbf{b}^T \boldsymbol{\nu} - \mathbf{u}^T \left(\mathbf{A}^T \boldsymbol{\nu} + \mathbf{c} \right)^- + \mathbf{l}^T \left(\mathbf{A}^T \boldsymbol{\nu} + \mathbf{c} \right)^+ ,\\ \text{where } y_i^- &\triangleq \max\left\{ -y_i, 0 \right\} \text{ and } y_i^+ \triangleq \max\left\{ y_i, 0 \right\}. \end{split}$$
Dual problem:

maximize
$$-\mathbf{b}^T \boldsymbol{\nu} - \mathbf{u}^T \left(\mathbf{A}^T \boldsymbol{\nu} + \mathbf{c} \right)^- + \mathbf{l}^T \left(\mathbf{A}^T \boldsymbol{\nu} + \mathbf{c} \right)^+$$

Andre Tkacenko (JPL)

.

The Lagrangian and Dual Function

Consider the problem with generalized inequalities given by

$$\begin{array}{ll} \text{minimize} & f_0(\mathbf{x}) \\ \text{subject to} & \mathbf{f}_i(\mathbf{x}) \preceq_{\mathcal{K}_i} \mathbf{0}, \ i = 1, \dots, m \\ & h_i(\mathbf{x}) = 0, \ i = 1, \dots, p \end{array}$$

where $\mathcal{K}_i \subseteq \mathbb{R}^{k_i}$ are proper cones. We do not assume convexity here. The definitions of the Lagrangian and the dual function parallel those in the scalar case, except now, for each constraint $\mathbf{f}_i(\mathbf{x}) \preceq_{\mathcal{K}_i} \mathbf{0}$, we associate the Lagrange multiplier vector $\boldsymbol{\lambda}_i \in \mathbb{R}^{k_i}$.

The Lagrangian:

The Lagrangian
$$L : \mathbb{R}^n \times \mathbb{R}^{k_1} \times \cdots \times \mathbb{R}^{k_m} \times \mathbb{R}^p \to \mathbb{R}$$
 is defined as
 $L(\mathbf{x}, \boldsymbol{\lambda}_1, \dots, \boldsymbol{\lambda}_m, \boldsymbol{\nu}) \triangleq f_0(\mathbf{x}) + \sum_{i=1}^m \boldsymbol{\lambda}_i^T \mathbf{f}_i(\mathbf{x}) + \sum_{i=1}^p \nu_i h_i(\mathbf{x}) \;.$

Lagrange Dual Function:

The dual function $g : \mathbb{R}^{k_1} \times \cdots \times \mathbb{R}^{k_m} \times \mathbb{R}^p \to \mathbb{R}$ is defined as $g(\boldsymbol{\lambda}_1, \dots, \boldsymbol{\lambda}_m, \boldsymbol{\nu}) \triangleq \inf_{\mathbf{x} \in \mathcal{D}} \{L(\mathbf{x}, \boldsymbol{\lambda}_1, \dots, \boldsymbol{\lambda}_m, \boldsymbol{\nu})\}.$

Andre Tkacenko (JPL)

EE/ACM 150 - Lecture 12

Lower Bound Property and the Dual Problem

Lower Bound Property: If $\lambda_i \succeq_{\mathcal{K}_i^{\circledast}} \mathbf{0}$ for i = 1, ..., m, then $g(\lambda_1, ..., \lambda_m, \nu) \leq p^*$. *Proof:* If $\tilde{\mathbf{x}}$ is feasible and $\lambda_i \succeq_{\mathcal{K}^{\circledast}} \mathbf{0}$ for i = 1, ..., m, then we have

$$egin{aligned} g(oldsymbol{\lambda}_1,\ldots,oldsymbol{\lambda}_m,oldsymbol{
u}) &= \inf_{\mathbf{x}\in\mathcal{D}}\left\{L(\mathbf{x},oldsymbol{\lambda}_1,\ldots,oldsymbol{\lambda}_m,oldsymbol{
u})
ight\}\,,\ &\leq f_0(\widetilde{\mathbf{x}})\,,\ &\leq f_0(\widetilde{\mathbf{x}})\,. \end{aligned}$$

Minimizing over all feasible $\widetilde{\mathbf{x}}$ gives $g(\boldsymbol{\lambda}_1, \dots, \boldsymbol{\lambda}_m, \boldsymbol{\nu}) \leq p^{\star}$.

Lagrange Dual Problem:

$$\begin{array}{ll} \text{maximize} & g(\boldsymbol{\lambda}_1,\ldots,\boldsymbol{\lambda}_m,\boldsymbol{\nu}) \\ \text{subject to} & \boldsymbol{\lambda}_i \succeq_{\mathcal{K}_i^{\circledast}} \boldsymbol{0}, \ i=1,\ldots,m \end{array}$$

• Weak duality: $p^* \ge d^*$ always.

Strong duality: $p^* = d^*$ for a convex problems with a constraint qualification. For example, if Slater's condition holds, meaning that the primal problem is strictly feasible, then we have strong duality.

Andre Tkacenko (JPL)

EE/ACM 150 - Lecture 12

Inequality Form SDP and its Dual

Primal SDP: $(\mathbf{F}_i, \mathbf{G} \in \mathbb{S}^k)$

minimize
$$\mathbf{c}^T \mathbf{x}$$

subject to $x_1 \mathbf{F}_1 + \cdots + x_n \mathbf{F}_n \preceq \mathbf{G}$

- The Lagrange multiplier is a matrix $\mathbf{Z} \in \mathbb{S}^k$.
- The Lagrangian is

$$L(\mathbf{x}, \mathbf{Z}) = \mathbf{c}^T \mathbf{x} + \operatorname{tr}(\mathbf{Z} (x_1 \mathbf{F}_1 + \dots + x_n \mathbf{F}_n - \mathbf{G})) .$$

The dual function is

$$g(\mathbf{Z}) = \inf_{\mathbf{x}} L(\mathbf{x}, \mathbf{Z}) = \begin{cases} -\operatorname{tr}(\mathbf{G}\mathbf{Z}) , & \operatorname{tr}(\mathbf{F}_i\mathbf{Z}) + c_i = 0, \ i = 1, \dots, n \\ -\infty, & \text{otherwise} \end{cases}$$

Dual SDP:

maximize
$$-\operatorname{tr}(\mathbf{GZ})$$

subject to $\operatorname{tr}(\mathbf{F}_i\mathbf{Z}) + c_i = 0, \ i = 1, \dots, n$.
 $\mathbf{Z} \succeq \mathbf{0}$

We have $p^* = d^*$ if the primal SDP is strictly feasible, meaning that there exists an x such that $x_1 \mathbf{F}_1 + \cdots + x_n \mathbf{F}_n \prec \mathbf{G}$.

Complementary Slackness

Assume that strong duality holds (i.e., $p^* = d^*$), \mathbf{x}^* is primal optimal, and $(\lambda_1^*, \ldots, \lambda_m^*, \boldsymbol{\nu}^*)$ is dual optimal. Then, we have the following.

$$f_{0}(\mathbf{x}^{\star}) = g(\boldsymbol{\lambda}_{1}^{\star}, \dots, \boldsymbol{\lambda}_{m}^{\star}, \boldsymbol{\nu}^{\star}) = \inf_{\mathbf{x} \in \mathcal{D}} L(\mathbf{x}, \boldsymbol{\lambda}_{1}^{\star}, \dots, \boldsymbol{\lambda}_{m}^{\star}, \boldsymbol{\nu}^{\star})$$

$$= \inf_{\mathbf{x} \in \mathcal{D}} \left\{ f_{0}(\mathbf{x}) + \sum_{i=1}^{m} (\boldsymbol{\lambda}_{i}^{\star})^{T} \mathbf{f}_{i}(\mathbf{x}) + \sum_{i=1}^{p} \nu_{i}^{\star} h_{i}(\mathbf{x}) \right\},$$

$$\leq f_{0}(\mathbf{x}^{\star}) + \sum_{i=1}^{m} (\boldsymbol{\lambda}_{i}^{\star})^{T} \mathbf{f}_{i}(\mathbf{x}^{\star}) + \sum_{i=1}^{p} \nu_{i}^{\star} h_{i}(\mathbf{x}^{\star}),$$

$$\leq f_{0}(\mathbf{x}^{\star}).$$

Thus, the two inequalities hold with equality. From this, we ascertain the following.

- The primal optimal point x^{*} minimizes L(x, λ₁^{*},..., λ_m^{*}, ν^{*}). Note that the Lagrangian L(x, λ₁^{*},..., λ_m^{*}, ν^{*}) may have other minimizers besides x^{*}.
- We have the *complementary slackness* condition $(\lambda_i^*)^T \mathbf{f}_i(\mathbf{x}^*) = 0$ for i = 1, ..., m. Specifically, this implies that

$$\boldsymbol{\lambda}_i^\star \succ_{\mathcal{K}_i^{\circledast}} \mathbf{0} \Longrightarrow \mathbf{f}_i(\mathbf{x}^\star) = \mathbf{0} \,, \; \mathbf{f}_i(\mathbf{x}^\star) \prec_{\mathcal{K}_i} \mathbf{0} \Longrightarrow \boldsymbol{\lambda}_i^\star = \mathbf{0} \,.$$

In contrast to problems with scalar inequalities, it is possible to satisfy $(\lambda_i^*)^T \mathbf{f}_i(\mathbf{x}^*) = 0$ with $\lambda_i^* \neq \mathbf{0}$ and $\mathbf{f}_i(\mathbf{x}^*) \neq \mathbf{0}$.

KKT Conditions for Optimality

Under the assumption that the functions $f_0, \mathbf{f}_1, \dots, \mathbf{f}_m, h_1, \dots, h_p$ are differentiable, the KKT conditions become the following.

KKT Conditions for Problems with Generalized Inequalities:

Primal feasibility:

$$\mathbf{f}_i(\mathbf{x}) \preceq_{\mathcal{K}_i} \mathbf{0}, \ i = 1, \dots, m, \ h_i(\mathbf{x}) = 0, \ i = 1, \dots, p.$$

Dual feasibility:

$$\boldsymbol{\lambda}_i \succeq_{\mathcal{K}_i^{\circledast}} \mathbf{0}, \ i = 1, \dots, m.$$

Complementary slackness:

$$\left(\boldsymbol{\lambda}_{i}^{\star}\right)^{T}\mathbf{f}_{i}(\mathbf{x}^{\star})=0,\ i=1,\ldots,m.$$

Stationarity:

$$abla f_0(\mathbf{x}) + \sum_{i=1}^m \left(rac{d\mathbf{f}_i(\mathbf{x})}{d\mathbf{x}}
ight)^T oldsymbol{\lambda}_i + \sum_{i=1}^p
u_i
abla h_i(\mathbf{x}) = \mathbf{0}$$

- If strong duality holds, then the KKT conditions are *necessary* for the optimality of any primal optimal \mathbf{x}^* and dual optimal $(\lambda_1, \ldots, \lambda_m, \nu)$.
- If the primal problem is convex, then the KKT conditions are *necessary and sufficient* for the optimality of x^{*}, (λ₁,..., λ_m, ν).

Perturbation and Sensitivity Results

Perturbed Problem with Generalized Inequalities and its Dual:

Primal:		Dual:	
minimize	$f_0(\mathbf{x})$	maximize	$g(oldsymbol{\lambda}_1,\ldots,oldsymbol{\lambda}_m,oldsymbol{ u})$
subject to	$\mathbf{f}_i(\mathbf{x}) \preceq_{\mathcal{K}_i} \mathbf{u}_i, \ i = 1, \dots, m$		$-\sum_{i=1}^m \mathbf{u}_i^T oldsymbol{\lambda}_i - \mathbf{v}^T oldsymbol{ u}$
	$h_i(\mathbf{x}) = v_i , \; i = 1, \dots, p$	subject to	$\boldsymbol{\lambda}_i \succeq_{\mathcal{K}_i^{\circledast}} 0, \ i = 1, \dots, m$

Global Sensitivity Result: Assuming zero duality gap for the unperturbed problem, we have

$$p^{\star}(\mathbf{u}_1,\ldots,\mathbf{u}_m,\mathbf{v}) \geq p^{\star}(\mathbf{0},\ldots,\mathbf{0},\mathbf{0}) - \sum_{i=1}^m \mathbf{u}_i^T \boldsymbol{\lambda}_i^{\star} - \mathbf{v}^T \boldsymbol{\nu}.$$

Local Sensitivity Result: Assuming further that $p^*(\mathbf{u}_1, \ldots, \mathbf{u}_m, \mathbf{v})$ is differentiable at $\mathbf{u}_1 = \mathbf{0}, \ldots, \mathbf{u}_m = \mathbf{0}, \mathbf{v} = \mathbf{0}$, we have

$$\boldsymbol{\lambda}_i^{\star} = -\nabla_{\mathbf{u}_i} p^{\star}(\mathbf{0}, \dots, \mathbf{0}, \mathbf{0}) , \ i = 1, \dots, m, \ \nu_i^{\star} = -\frac{\partial p^{\star}(\mathbf{0}, \dots, \mathbf{0}, \mathbf{0})}{\partial v_i}, \ i = 1, \dots, p.$$