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Norm Approximation Introduction and Interpretations

Basic Norm Approximation Problem
The most elementary norm approximation problem is the following unconstrained one.

Norm Approximation Problem:

minimize ||Ax− b|| ,
where A ∈ Rm×n and b ∈ Rm are the problem data, and x ∈ Rn is the variable.

A solution is often called an approximate solution to Ax ≈ b in the norm ||·||.
Residual: The vector

r , Ax− b ,

is called the residual for the problem and its components are sometimes called the
individual residuals associated with x.

Properties of Norm Approximation Problem:

It is always convex and solvable.

Its optimal value is zero if and only if b ∈ R(A).

For the more interesting case where b 6∈ R(A), we assume the following.

The columns of A are linearly independent.
The matrix A is ‘tall’ in that m > n.
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Norm Approximation Introduction and Interpretations

Interpretations of the Norm Approximation Problem
There are several interesting interpretations of the solution

x? = argmin
x
||Ax− b|| ,

to the norm approximation problem.
Geometric: The point Ax? is the one in A , R(A) that is closest to b in the
norm ||·||. In other words, it is the projection of b onto the linear subspace A.
Regression: Expressing Ax as

Ax = x1a1 + · · ·+ xnan ,

where a1, . . . ,an ∈ Rn are the columns of A, the approximation problem is to
find the best fit of the vector b by a linear combination of the columns of A.
Viewing a1, . . . ,an as regressors, the vector Ax? is called the regression of b.
Estimation: Consider a linear measurement model of the form

y = Ax + v ,

where y ∈ Rn is the vector measurement and v ∈ Rm is an unknown
measurement error or noise. The goal is to find the unknown input x. Given
y = b, the most plausible guess of x is x?.
Optimal Design: The components of x are input design variables to a linear
system with output y = Ax. Here, x? yields the result y? = Ax? that best
approximates the desired result b.
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Norm Approximation Introduction and Interpretations

Examples of the Norm Approximation Problem

Weighted norm approximation: minimize ||W (Ax− b)||, where W ∈ Rm×m is a
weighting matrix used to emphasize some residuals over others.
This is identical to the basic problem with Ã , WA and b̃ , Wb.
Least-squares approximation: minimize ||Ax− b||22 = r21 + · · ·+ r2m.
A solution x? is optimal if and only if it satisfies the normal equations

ATAx = ATb .

If rank(A) = n, then x? =
(
ATA

)−1
ATb.

Chebyshev approximation: minimize ||Ax− b||∞ = max {|r1| , . . . , |rm|}.
This can be cast and solved as an LP

minimize t

subject to −t1 � Ax− b � t1
,

with variables x ∈ Rn and t ∈ R.
Sum of absolute residuals approximation: minimize ||Ax− b||1 = |r1|+ · · ·+ |rm|.
This can be cast and solved as an LP

minimize 1Ty

subject to −y � Ax− b � y
,

with variables x ∈ Rn and y ∈ Rm.
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Norm Approximation Penalty Function Approximation

Penalty Function Approximation Problem
For `p-norm approximation, the objective is

(|r1|p + · · ·+ |rm|p)1/p .
As with least-squares problems, we can consider an equivalent problem with objective

|r1|p + · · ·+ |rm|p ,
which is a separable and symmetric function of the residuals.

A useful generalization of this appears in the penalty function approximation problem.

Penalty Function Approximation Problem:

minimize φ(r1) + · · ·+ φ(rm)

subject to r = Ax− b
,

where A ∈ Rm×n and b ∈ Rm are the problem data, r ∈ Rm and x ∈ Rn are the
variables, and φ : R→ R is the penalty function.

We will assume that φ is convex, so we have a convex optimization problem.
Often φ is symmetric, nonnegative, and satisfies φ(0) = 0.
The problem can be viewed as minimizing the total cost or penalty incurred by
the residuals r1, . . . , rm obtained for the approximation Ax of b.
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Norm Approximation Penalty Function Approximation

Examples of Penalty Functions

`p-norm:

φ(u) = |u|p , p ≥ 1 .

When p = 2, we get the quadratic
penalty function φ(u) = u2.

Deadzone-linear: (with width a > 0)

φ(u) = max {0, |u| − a} .

Log-barrier: (with limit a > 0)

φ(u) =

{
−a2 log

(
1− (u/a)2

)
, |u| < a

∞ , |u| ≥ a
.
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Norm Approximation Penalty Function Approximation

Nuances of Different Penalty Functions
For a random penalty function approximation problem with m = 100 and n = 30, we have the
following histograms for the following penalty functions.

φ(u) = |u| , φ(u) = u2 , φ(u) = max{0, |u| − (1/2)} , φ(u) = − log
(
1− u2

)
.
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The shape of the penalty function has a strong influence on the distribution of the residuals.
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Norm Approximation Penalty Function Approximation

Huber Penalty Function
The Huber penalty function (with parameter M ) shares properties with the `1 and `2 penalties:

φhub(u) =

{
u2 , |u| ≤M
M (2 |u| −M) = 2M (|u| − (M/2)) , |u| > M

.

This is sometimes referred to as the robust least-squares penalty function, since the linear
growth for large u makes the approximation less sensitive to outliers.
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Left: Huber penalty function for M = 1.
Right: Affine function f(t) = α+ βt fitted to 42 points (ti, yi) (circles) using Huber (solid)
and quadratic (dashed) penalty functions.
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Norm Approximation Approximation with Constraints

Interpretations of Adding Constraints

As expected, it is possible to add constraints to the basic norm
approximation problem. When the constraints are convex, the resulting
problem is also convex. In a practical setting, constraints may arise for
a variety of reasons.

In an approximation problem setting, constraints can rule out
certain unacceptable approximations of b, or ensure that the
approximator Ax satisfies certain properties.

For an estimation problem, constraints arise as prior knowledge of
the vector x to be estimated or the estimation error v.

Constraints arise in a geometric setting in determining the
projection of b onto a more complicated set than a subspace, for
example, a cone or a polyhedron.
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Norm Approximation Approximation with Constraints

Examples of Adding Constraints
Nonnegativity constraints on variables:

minimize ||Ax− b||
subject to x � 0

.

This is useful for estimating parameters known to be nonnegative, such as powers,
intensities, or rates.
Variable bounds:

minimize ||Ax− b||
subject to l � x � u

.

This formulation arises out of prior knowledge of the intervals in which each variable lies.
Probability distribution:

minimize ||Ax− b||
subject to x � 0 , 1Tx = 1

.

This arises in the estimation of proportions or relative frequencies.
Norm ball constraint:

minimize ||Ax− b||
subject to ||x− x0|| ≤ d

.

This arises in estimation, where x0 is a prior guess of what x is, and d is a maximum
plausible deviation. The constraint can also represent a trust region in which the model
leading to the norm approximation problem is valid.
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Least-Norm Problems Interpretations

Interpretations of Least-Norm Problems
A companion to the norm approximation problem is the least-norm problem given as follows.

Least-Norm Problem:

minimize ||x||
subject to Ax = b

,

where A ∈ Rm×n and b ∈ Rm are the problem data, and x ∈ Rn is the variable.

Properties:
The problem is only interesting when A is ‘fat’, meaning m < n.
With x0 as any solution to Ax = b and Z ∈ Rn×k as any matrix whose columns are a
basis for N (A), it can be reformulated as the norm approximation problem

minimize ||x0 + Zu|| ,

with variable u ∈ Rk.
Interpretations of the solution x? = argmin

Ax=b
||x||:

Geometric: x? is the point in the affine set {x : Ax = b} with minimum distance to the
origin 0.
Estimation: b = Ax are given measurements of x; x? is the smallest (and hence ‘most
plausible’) estimate consistent with the measurements.
Design: x are design variables (inputs) and b are the known required results (outputs);
x? is the smallest (and hence ‘most efficient’) design that satisfies the requirements.
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Least-Norm Problems Examples

Examples of Least-Norm Problems
Least-squares solution of linear equations:

minimize ||x||22
subject to Ax = b

.

This can be solved via the KKT optimality conditions

2x? + AT ν? = 0 , Ax? = b⇐⇒ ν? = −2
(
AAT

)−1
b , x? = AT

(
AAT

)−1
b .

Sparse solutions via least `1-norm:

minimize ||x||1
subject to Ax = b

.

This can be solved as an LP

minimize 1Ty

subject to −y � x � y , Ax = b
.

The problem tends to produce a sparse solution x?.
Least-penalty problems: A common extension is to replace the norm objective with a
sum of penalties

minimize φ(x1) + · · ·+ φ(xn)

subject to Ax = b
.

Here, φ : R→ R is typically a convex penalty function.
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Regularized Approximation Introduction and Interpretations

Bi-Criterion Formulation of Regularized Approximation
The goal behind regularized approximation is to find a vector x that is small (if
possible), and also makes the residual r = Ax− b small. This leads to the following
bi-criterion problem.

Bi-Criterion Regularized Approximation Problem:

minimize (with respect to R2
+) (||Ax− b|| , ||x||) ,

where A ∈ Rm×n and b ∈ Rm are the problem data, x ∈ Rn is the variable, and the
norms on Rm and Rn can be different.

In summary, the idea is to find a good approximation Ax ≈ b with a small x.

Interpretations:

Estimation: We assume the linear measurement model y = Ax + v holds, with
the prior knowledge that ||x|| is small.

Optimal design: A small x may be cheaper or more efficient than a larger one,
or the linear model y = Ax is only valid for small x.

Robust approximation: A good approximation Ax ≈ b with small x is less
sensitive to errors in A than a good approximation with large x.
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Regularized Approximation Introduction and Interpretations

Scalarization Form of Regularized Approximation
Solving the bi-criterion regularized approximation problem via scalarization leads to
what is called regularization.

Regularization:

minimize ||Ax− b||+ γ ||x|| ,
where γ > 0 is a problem parameter that traces out the optimal trade-off curve.

When the Euclidean norm is used for both objectives, another form of regularization is
to minimize ||Ax− b||22 + δ ||x||22 with δ > 0.
An equivalent form of regularization can be obtained by taking the convex combination
of objectives leading to the problem

minimize θ ||Ax− b||+ (1− θ) ||x|| ,
where θ ∈ (0, 1) is the trade-off parameter.
Uses:

It can be used to select the proper trade-off between size ||x|| and fit ||Ax− b||
for the application at hand.
It can help approximately solve the linear equation system Ax = b when A is
ill-conditioned or even singular.
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Regularized Approximation Types of Regularization

Tikhonov and Smoothing Regularization

The most common form of regularization is Tikhonov regularization in which both
norms are Euclidean.

Tikhonov Regularization:

minimize ||Ax− b||22 + ||Γx||22 ,

where Γ ∈ Rp×n is the Tikhonov matrix. Typically, Γ =
√
δIn. This is a least-squares

problem with solution

x? =
(
ATA + ΓTΓ

)−1

ATb .

A common extension is to add several regularization terms leading to the problem

minimize ||Ax− b||22 + ||Γ1x||22 + · · ·+ ||Γqx||
2
2 ,

where Γi ∈ Rpi×n for i = 1, . . . , q. For example, terms which satisfy

[Γix]k =

{
n (xk+1 − xk) , k = 1, . . . , n− 1 (1st order difference)

n2 (xk+1 − 2xk + xk−1) , k = 2, . . . , n− 1 (2nd order difference)
,

penalize large variations in x, and as such, result in smoothing regularization.
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Regularized Approximation Types of Regularization

Optimal Input Design Example

Consider the following linear dynamical system with impulse response h:

y(t) =

t∑
τ=0

h(τ)u(t− τ) , t = 0, 1, . . . , N .

Input design problem: multicriterion problem with 3 objectives

1 Tracking error with desired output ydes: Jtrack = 1
N+1

∑N
t=0 (y(t)− ydes(t))

2.

2 Input magnitude: Jmag = 1
N+1

∑N
t=0 (u(t))

2.

3 Input variation: Jder = 1
N

∑N−1
t=0 (u(t+ 1)− u(t))2.

The objective is to track the desired output using a small and slowly varying input signal.

Regularized least-squares formulation:

minimize Jtrack + δJder + ηJmag .

For fixed δ > 0 and η > 0, this is a least-squares problem in u(0) , . . . , u(N).
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Regularized Approximation Types of Regularization

Optimal Input Design Example (Continued)
Three solutions on the optimal trade-off surface are shown below.
(top) δ = 0, η = 0.005; (middle) δ = 0, η = 0.05; (bottom) δ = 0.3, η = 0.05.

0 50 100 150 200
−10

−5

0

5

t

u
(t
)

δ = 0, η = 0 .005

0 50 100 150 200

−1

−0.5

0

0.5

1

t

y
(t
)

δ = 0, η = 0 .005

0 50 100 150 200
−4

−2

0

2

4

t

u
(t
)

δ = 0, η = 0 .05

0 50 100 150 200

−1

−0.5

0

0.5

1

t

y
(t
)

δ = 0, η = 0 .05

0 50 100 150 200
−4

−2

0

2

4

t

u
(t
)

δ = 0 .3, η = 0 .05

0 50 100 150 200

−1

−0.5

0

0.5

1

t

y
(t
)

δ = 0 .3, η = 0 .05

As can be seen from the bottom plots, a large amount of smoothness can be obtained for only a
marginal increase in tracking error.
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Regularized Approximation Types of Regularization

`1-Norm Regularization
Regularization with an `1-norm can be used as a heuristic for finding a sparse solution. This
leads to the problem

minimize ||Ax− b||2 + γ ||x||1 .

By varying γ, the optimal trade-off curve obtained is an approximation to the optimal trade-off
between ||Ax− b||2 and the sparsity or cardinality card(x) of the vector x.

Regressor Selection Problem:

Given a matrix A ∈ Rm×n whose columns are potential regressors, and a vector b ∈ Rm, we
wish to fit b by a linear combination of k < n columns of A.

minimize ||Ax− b||2
subject to card(x) ≤ k

.

This is an NP-hard combinatorial problem.

A straightforward way to solve it is to fix a sparsity pattern, minimize
∣∣∣∣∣∣Ãx̃− b

∣∣∣∣∣∣
2
, where Ã

is the submatrix obtained by keeping the columns of A corresponding to the sparsity
pattern and x̃ is the subvector with the nonzero components of x, and compare the optimal
value for all C(n, k) = n!/ (k! (n− k)!) sparsity patterns with k nonzeros.

A good heuristic is to use `1-norm regularization and find the smallest γ which
approximately yields card(x) = k.
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Regularized Approximation Reconstruction, Smoothing, and De-Noising

Signal Reconstruction Problem
In signal reconstruction, we are given a corrupted version of signal which we would
like to recover. The source of the corruption is typically an additive noise that is
unknown, small, and, unlike the desired signal, rapidly varying. The process of
recovering the original signal is also called de-noising or smoothing.

Signal Reconstruction Problem:

minimize (with respect to R2
+) (||x̂− xcor|| , φ(x̂)) .

x ∈ Rn is the unknown signal.

xcor = x + v is the known corrupted version of x, with additive noise v.

The variable x̂ (reconstructed signal) is the estimate of x.

Typically, the norm used is the `2-norm.

φ : Rn → R is the regularization function or smoothing objective.

Examples of smoothing functions: quadratic and total variation

φquad(x̂) =

n−1∑
i=1

(x̂i+1 − x̂i)2 , φtv(x̂) =

n−1∑
i=1

|x̂i+1 − x̂i| .
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Regularized Approximation Reconstruction, Smoothing, and De-Noising

Smoothing Operators
Suppose that the vector x ∈ Rn represents the value of some continuous parameter along the
interval [0, 1]. A simple approximation to the gradient or first derivative near i/n is given by the
first order difference

n (xi+1 − xi) , i = 1, . . . , n− 1 ,

which can be computed as ∆1x, where ∆1 ∈ R(n−1)×n is the bidiagonal Toeplitz matrix

∆1 = n


−1 1 0 · · · 0

0 −1 1
. . .

...
...

. . .
. . .

. . . 0
0 · · · 0 −1 1

 .
Similarly, a simple approximation to the second derivative near i/n is given by the second order
difference

n (n (xi+1 − xi)− n (xi − xi−1)) = n2 (xi+1 − 2xi + xi−1) , i = 2, . . . , n− 1 ,

which can be computed as ∆2x, where ∆2 ∈ R(n−2)×n is the tridiagonal Toeplitz matrix

∆2 = n2


1 −2 1 0 · · · 0

0 1 −2 1
. . .

...
...

. . .
. . .

. . .
. . . 0

0 · · · 0 1 −2 1

 .
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Regularized Approximation Reconstruction, Smoothing, and De-Noising

Quadratic Smoothing Reconstruction Example
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Left: Original signal x and noisy signal xcor.

Right: Three solutions on the optimal trade-off curve between φquad(x̂) and
||x̂− xcor||2.

Comparing the original signal with the reconstructions, the trade-off between signal
fidelity and smoothness is clear.

Andre Tkacenko (JPL) EE/ACM 150 - Lecture 13 May 15, 2012 22 / 24



Regularized Approximation Reconstruction, Smoothing, and De-Noising

Comparing Quadratic and Total Variation
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Left: Original signal x and noisy signal xcor.

Right: Optimal trade-off curves (between φ(x̂) and ||x̂− xcor||2) for quadratic
smoothing φquad (top) and total variation smoothing φtv (bottom).

As can be seen, both trade-off curves exhibit a knee, which likely represents a good
trade-off between smoothing and signal fidelity.
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Regularized Approximation Reconstruction, Smoothing, and De-Noising

Comparing Quadratic and Total Variation (Continued)
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Left: Quadratic smoothing - three solutions on the optimal trade-off curve
between φquad(x̂) and ||x̂− xcor||2.
Right: Total variation smoothing - three solutions on the optimal trade-off curve
between φtv(x̂) and ||x̂− xcor||2.

As can be seen, quadratic smoothing will smooth out both noise and sharp transitions
in the signal. Total variation smoothing, on the other hand, preserves sharp transitions
in the signal.
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