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Robust Approximation Stochastic Robust Approximation

Introduction to Stochastic Robust Approximation
For the approximation problem with basic objective ||Ax− b||, it is often desirable to
account for uncertainty in the data matrix A ∈ Rm×n. To design a model fit robust to
variations in the data, it is natural to use the expected value E[·] of the basic objective.

Stochastic Robust Approximation Problem:

minimize E[||Ax− b||] .

This problem is always a convex optimization problem.

It is often not tractable as it is difficult to evaluate the objective and its derivatives.

Sum-of-Norms Problem: One special tractable case occurs when A assumes only a
finite number of values for which

Pr{A = Ai} = pi , i = 1, . . . , k .

In this case, the problem becomes
minimize p1 ||A1x− b||+ · · ·+ pk ||Akx− b|| ,

which is equivalent to
minimize pT t

subject to ||Aix− b|| ≤ ti , i = 1, . . . , k
.
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Robust Approximation Stochastic Robust Approximation

Relation to Tikhonov Regularization
A common way to model the uncertainty in the data matrix A is to decompose it as

A = A + U ,

where A is the mean of A (i.e., A = E[A]) and U is a random matrix with zero mean.
Typically, we assume A is known as well as other information such as the covariance
matrix of UT (and hence AT ) given by P = E

[
UTU

]
= E

[
ATA

]
.

Statistical Robust Least-Squares Problem: One variation of the above problem is

minimize E
[
||Ax− b||22

]
.

This can be shown to be identical to the problem

minimize
∣∣∣∣Ax− b

∣∣∣∣2
2
+
∣∣∣∣∣∣P1/2x

∣∣∣∣∣∣2
2
,

which has the solution
x? =

(
A
T
A + P

)−1

A
T
b .

This corresponds to Tikhonov regularization with data matrix A and Γ = P1/2.
When Γ =

√
δIn, the interpretation is that Uk,` are zero mean, uncorrelated

random variables with variance δ/m.
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Robust Approximation Worst-Case Robust Approximation

Introduction to Worst-Case Robust Approximation
Another way to account for variation in the data matrix A is to use a set-based,
worst-case approach. Here, the uncertainty in A is described by a set A ⊆ Rm×n of
possible values. The worst-case error of a candidate solution x ∈ Rn is defined as

ξwc(x) , sup {||Ax− b|| : A ∈ A} ,
and is always a convex function of x.

Worst-Case Robust Approximation Problem:

minimize ξwc(x) = sup {||Ax− b|| : A ∈ A} .

This problem is always a convex optimization problem.

Its tractability depends on the norm used and the uncertainty set A.

Finite/Polyhedral Set: If A = {A1, . . . ,Ak} or A = conv({A1, . . . ,Ak}), the problem
is equivalent to

minimize max
i=1,...,k

{||Aix− b||} .

Using an epigraph form, the problem can be in turn recast as

minimize t

subject to ||Aix− b|| ≤ t , i = 1, . . . , k
.
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Robust Approximation Worst-Case Robust Approximation

Norm Bound Error
Suppose the uncertainty set A is a norm ball of the form

A ,
{
A+U : ||U|| ≤ a

}
,

where ||·|| is a norm on Rm×n. In this case, we have

ξwc(x) = sup
{∣∣∣∣Ax− b+Ux

∣∣∣∣ : ||U|| ≤ a} .
Note that the first norm above is on Rm, whereas the second one is on Rm×n.

Euclidean norm on Rm / maximum singular value norm on Rm×n: Here, the supremum is
attained for

U = auvT , where u =
Ax− b∣∣∣∣Ax− b

∣∣∣∣
2

, v =
x

||x||2
=⇒ ξwc(x) =

∣∣∣∣Ax− b
∣∣∣∣
2
+ a ||x||2 .

Thus, the robust approximation problem becomes

minimize
∣∣∣∣Ax− b

∣∣∣∣
2
+ a ||x||2 ,

which can be equivalently expressed as the SOCP

minimize t1 + at2

subject to
∣∣∣∣Ax− b

∣∣∣∣
2
≤ t1 , ||x||2 ≤ t2

.

The solution of this problem is the same as that of the regularized least-squares problem

minimize
∣∣∣∣Ax− b

∣∣∣∣2
2
+ δ ||x||22 ,

for some value of the regularization parameter δ.
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Robust Approximation Worst-Case Robust Approximation

Uncertainty Ellipsoids
Suppose we describe the variation in A by giving an ellipsoid of possible values for each row:

A ,
{
A =

[
a1 · · · am

]T
: ai ∈ Ei , i = 1, . . . ,m

}
,

where
Ei =

{
ai +Piu : ||u||2 ≤ 1

}
.

Here, ai denotes the nominal value of ai and Pi describes its variation. In this case, we have

sup
ai∈Ei

∣∣∣aTi x− bi∣∣∣ = sup

{∣∣∣∣aTi x− bi + (PTi x)T u

∣∣∣∣ : ||u||2 ≤ 1

}
=
∣∣∣aTi x− bi∣∣∣+ ∣∣∣∣∣∣PTi x∣∣∣∣∣∣

2
.

For the robust `2-norm approximation problem in which ξwc(x) = sup
A∈A

{
||Ax− b||2

}
, we have

ξwc(x) =

√√√√ m∑
i=1

(
sup

ai∈Ei

∣∣aTi x− bi∣∣
)2

=

√√√√ m∑
i=1

(∣∣aTi x− bi∣∣+ ∣∣∣∣PTi x∣∣∣∣2)2 .
It follows that the robust `2-norm approximation problem can be expressed as the SOCP

minimize s

subject to ||t||2 ≤ s∣∣∣∣∣∣PTi x∣∣∣∣∣∣
2
≤ ti −

(
aTi x− bi

)
, i = 1, . . . ,m∣∣∣∣∣∣PTi x∣∣∣∣∣∣

2
≤ ti +

(
aTi x− bi

)
, i = 1, . . . ,m

.
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Robust Approximation Worst-Case Robust Approximation

Norm Bounded Error with Linear Structure
As a generalization of the norm bound description A =

{
A+U : ||U|| ≤ a

}
, we can consider

the image of the norm ball under an affine transformation:

A ,
{
A+ u1A1 + · · ·+ upAp : ||u|| ≤ 1

}
,

where ||·|| is a norm on Rp and the p+ 1 matrices A,A1, . . . ,Ap are given. Then, the
worst-case error can be expressed as

ξwc(x) = sup
||u||≤1

∣∣∣∣(A+ u1A1 + · · ·+ upAp
)
x− b

∣∣∣∣ = sup
||u||≤1

||P(x)u+ q(x)|| ,

where P(x) =
[

A1x · · · Apx
]
∈ Rm×p and q(x) = Ax− b ∈ Rm.

Robust Chebyshev approximation problem: Here we have

ξwc(x) = sup
||u||∞≤1

||P(x)u+ q(x)||∞ = max
i=1,...,m

sup
||u||∞≤1

∣∣∣pi(x)T u+ qi(x)
∣∣∣ ,

= max
i=1,...,m

{
||pi(x)||1 + |qi(x)|

}
.

Hence, the robust Chebyshev approximation problem can be cast as the following LP.

minimize t

subject to −y0 � Ax− b � y0

−yk � Akx � yk , k = 1, . . . , p

y0 +
∑p
k=1 yk � t1

.
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Robust Approximation Worst-Case Robust Approximation

Norm Bounded Error with Linear Structure (Continued)
Robust least-squares approximation problem: Here we have

ξwc(x) = sup
||u||2≤1

||P(x)u+ q(x)||2 ,

where P(x) =
[

A1x · · · Apx
]
∈ Rm×p and q(x) = Ax− b ∈ Rm.

Evaluating the worst-case error ξwc(x) can actually by simplified by noting that it is the square
root of the optimal value of the (nonconvex) quadratic optimization problem

maximize ||P(x)u+ q(x)||22
subject to uTu ≤ 1

,

with variable u ∈ Rp. This is a special nonconvex problem for which strong duality holds. The
Lagrange dual of this problem can be expressed as the SDP

minimize t+ λ

subject to

 Im P(x) q(x)

P(x)T λIp 0p×1

q(x)T 01×p t

 � 0
,

with variables t, λ ∈ R. So, for fixed x, we can compute (ξwc(x))
2 by solving this SDP with

variables t, λ. But optimizing jointly over t, λ, and x is equivalent to minimizing (ξwc(x))
2 over x.

Hence, we can solve the robust least-squares problem by solving the SDP with x, t, λ as
variables. The problem is still an SDP when optimizing over x as P(x) and q(x) are affine in x.
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Robust Approximation Comparison of Methods

Parameterized Example
Here, our uncertainty in A is parameterized as

A(u) = A0 + uA1 ,

where u is an uncertainty parameter. For a specific instance with A(u) ∈ R10×20, ||A0||2 = 10,
||A1||2 = 1, and u ∈ [−1, 1] (yielding a variation of around±10%), we considered three solutions:

Nominal optimal: xnom found by minimizing ||A0x− b||2.

Stochastic robust approximation: xstoch found by minimizing E
[
||A0x− b||22

]
, assuming

u ∼ U [−1, 1].
Worst-case robust approximation: xwc found by minimizing
sup−1≤u≤1 ||A(u)x− b||2 = max

{
||(A0 −A1)x− b||2 , ||(A0 +A1)x− b||2

}
.
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Robust Approximation Comparison of Methods

Monte Carlo Simulation Example
minimize sup

||u||2≤1
||(A0 + u1A1 + u2A2)x− b||2 .

m = 50, n = 20, ||A0||2 = 10, ||A1||2 = ||A2||2 = 1, u1, u2 in unit disk in R2.
Compared nominal least-squares xnom (u = 0), Tikhonov regularized xtik (δ = 1), and
worst-case robust least-squares xrls solutions.
Simulated 105 parameter vectors u and generated histograms of the residual
||(A0 + u1A1 + u2A2)x− b||2 for each parameter value.
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Function Fitting and Interpolation Function Families

Introduction and Examples of Function Families
Consider a family of functions (often called basis functions) f1, . . . , fn : Rk → R with
common domain dom(fi) = D. For some x ∈ Rn, we are interested in a function
f : Rk → R of the form

f(u) = x1f1(u) + · · ·+ xnfn(u) ,

where u ∈ Rk. Here, x is a coefficient vector applied to the family of basis functions
{f1, . . . , fn} to produce the function f . As dom(f) = D, the basis functions generate
a subspace F of functions on D.
Examples:

Polynomials:
f`(t) = t`−1 (powers)ˆ

f`(t) fm(t)φ(t) dt = δ[`−m] (orthonormal, φ ≥ 0, deg(fi) ≤ n)

f`(t) =
n∏
i=1
i 6=`

t− ti
t` − ti

, f`(tm) = δ[`−m]
(Lagrange interpolation polynomial)

(for distinct points {t1, . . . , tm})

Piecewise polynomials and splines: The family of functions can be piecewise
polynomial over t ∈ R with knots at t1 ≤ t2 ≤ · · · ≤ tm. If the functions satisfy
differentiability conditions at the knot points, they are referred to as B-splines.
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Function Fitting and Interpolation Constraints

Examples of Convex Constraints on the Coefficients
In terms of the coefficient vector x, there are several relevant constraints which will be useful to
enforce which are also convex. This follows from the fact that we have

f(u) = f(u)T x , where f(u) ,
[
f1(u) · · · fn(u)

]T
.

Function value interpolation and inequalities:
f(u`) = z` ⇐⇒ f(u`)

T x = z` (Interpolation condition)

|f(u`)− f(um)| ≤ L ||u` − um|| ⇐⇒
−L ||u` − um|| ≤ (f(u`)− f(um))T x ≤ L ||u` − um||

(Lipschitz continuity)

f(u) ≥ 0 ∀u ∈ D (Nonnegativity constraint)

Derivative constraints: As ∇f(v) =
∑n
i=1 xi∇fi(v) and ∇2f(v) =

∑n
i=1 xi∇2fi(v),

both of which are linear in x, constraints of the form
||∇f(v)|| ≤M , `I � ∇2f(v) � uI ,

are convex in x.
Integral constraints:

ˆ
D
φ(u) f(u)


= a

≥ a
≤ a

=⇒ cTx


= a

≥ a
≤ a

, where ci =
ˆ
D
φ(u) fi(u) .

Linear functional constraints: Any linear functional L on the subspace of functions is a
linear function of x, i.e., L(f) = cTx for some c ∈ Rn. The derivative and integral
constraints are special cases of this.

Andre Tkacenko (JPL) EE/ACM 150 - Lecture 14 May 17, 2012 13 / 19



Function Fitting and Interpolation Fitting and Interpolation Problems

Types of Fitting Problems

Minimum norm function fitting: Given data
(u1, y1) , . . . , (um, ym) find a function f that
minimizes ||f − y||, where
f ,

[
f(u1) · · · f(um)

]T . Here, m ≥ n
and typically m� n.

Least-norm interpolation: In this case, we
have m < n. We must satisfy the interpolation
conditions f(u`) = y` for ` = 1, . . . ,m and we
may seek a function that is smoothest or
smallest in some sense.

Interpolation, extrapolation, and bounding:
An optimal function fit f̂ allows us to guess the
value of the function at some point v not in the
original data set. This is interpolation if
v ∈ conv({u1, . . . ,um}) and extrapolation
otherwise. From this, we can produce bounds on
f(v) by minimizing and maximizing f(v) subject
to the constraints. This can be useful for
identifying outliers.
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Function Fitting and Interpolation Sparse Description and Basis Pursuit

Introduction to Basis Pursuit
For many applications, the function family consists of a large number of linearly dependent
functions referred to as an over-complete basis or dictionary). In basis pursuit (BP), we seek to
model the data of interest (ui, yi) for i = 1, . . . ,m using only a small number of basis functions.
Specifically, we seek a function f(u) = f(u)T x ∈ F that fits the given data well,

f(ui) ≈ yi , i = 1, . . . ,m ,

with a sparse coefficient vector x, i.e., one for which card(x) is small. In this case,
f =

∑
i∈B xifi, where B = {i : xi 6= 0}, is a sparse description of the data.

Uses:
Data compression: The transmitter and receiver both know the dictionary and so the signal
of interest can be conveyed using only the information present in the sparse vector x.
De-noising or smoothing: A parsimonious representation of the signal in terms of the basis
functions can effect a removal of noise and a smoothing of the data.

Common Approach to Basis Pursuit (BP):

1 `1-norm regularization heuristic: Minimize
m∑
i=1

(
f(ui)

T x− yi
)2

+γ ||x||1, for some γ > 0.

2 Determine sparsity pattern: Identify B = {i : x̂i 6= 0}, where x̂ is the solution from Step 1.

3 Refinement step: Solve the least-squares problem: minimize
m∑
i=1

(
f(ui)

T x− yi
)2

, with

variables xi for i ∈ B and xi = 0 for i 6∈ B.
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Function Fitting and Interpolation Sparse Description and Basis Pursuit

Time-Frequency Analysis Via BP
When the dictionary functions are localized in time and frequency, basis pursuit can be used to
perform a time-frequency analysis of the signal of interest, in addition to obtaining a sparse
representation in terms of the dictionary.
Example: Suppose each basis function is formed from the Gabor function given by

gτ,ω(t) = e
− (t−τ)2

σ2 cos(ωt+ φ) .

Note that gτ,ω(t) is localized at time τ and frequency ω.

Range of interest is t ∈ [0, 1].

All basis functions have width σ = 0.05.

Dictionary consists of pulse times and
frequencies

τ = 0.002k , k = 0, . . . , 500 ,

ω = 5k , k = 0, . . . , 30 ,

φ = 0, π/2 (cosine and sine) .

The 501× 61 = 30561 basis elements
are denoted as

fτ,ω,c , τ = 0, 0.002, . . . , 1 , ω = 0, 5, . . . , 150 ,

fτ,ω,s , τ = 0, 0.002, . . . , 1 , ω = 5, . . . , 150 .
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Function Fitting and Interpolation Sparse Description and Basis Pursuit

Time-Frequency Analysis Via BP (Continued)
We will use BP to find a sparse representation of the signal

y(t) = a(t) sin θ(t) , where a(t) = 1 + 0.5 sin(11t) , θ(t) = 30 sin(5t) .

Here, a(t) is the signal amplitude and θ(t) is the total phase. We can also interpret
ω(t) = |dθ/dt| = 150 |cos(5t)|, as the instantaneous frequency of the signal at time t. Given the
501 data points (tk, yk) with

tk = 0.005k , yk = y(tk) , k = 0, . . . , 500 ,

we obtained the following by performing BP, which yielded a very sparse coefficient vector with
only 42 nonzero coefficients out of 30561.
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Function Fitting and Interpolation Interpolation with Convex Functions

Using Subgradients to Fit a Convex Function to Data
In many applications, it may be desirable to attempt to fit a convex function to a given set of data.
For some special cases, we can solve interpolation problems involving an infinite-dimensional set
of functions using finite-dimensional convex optimization.

Convex Interpolation and Subgradients:

A convex function f : Rk → R, with dom(f) = Rk satisfies the interpolation conditions
f(ui) = yi , i = 1, . . . ,m ,

at given points ui ∈ Rk if and only if there exist gi ∈ Rk for i = 1, . . . ,m such that
yj ≥ yi + gTi (uj − ui) , i, j = 1, . . . ,m .

Because of the direction of each inequality, the vector gi is called a subgradient.

If f is differentiable, we can take gi = ∇f(ui).

Proof:
Necessity: Suppose f is convex with dom(f) = Rk and f(ui) = yi. Then, at each ui, we
can find a vector gi such that

f(z) ≥ f(ui) + gTi (z− ui) .

Setting z = uj , we obtain the desired inequality.
Sufficiency: Conversely suppose g1, . . . ,gm satisfy the above inequality. Defining f as

f(z) , max
i=1,...,m

{
yi + gTi (z− ui)

}
,

we note that f is convex and that f(ui) = yi for i = 1, . . . ,m.
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Function Fitting and Interpolation Interpolation with Convex Functions

Fitting a Convex Function to Given Data
One simple application of the above result is to compute the least-squares fit of a convex function
to given data (ui, yi) for i = 1, . . . ,m:

minimize
m∑
i=1

(yi − f(ui))2

subject to f : Rk → R is convex , dom(f) = Rk
.

This infinite-dimensional problem can be
converted to the finite-dimensional QP

minimize
m∑
i=1

(yi − ŷi)2

subject to ŷj ≥ ŷi + gTi (uj − ui) , i, j = 1, . . . ,m

,

with variables ŷ ∈ Rm and g1, . . . ,gm ∈ Rk.
Variations and Extensions:

Bounding values of an interpolating convex function: To determine bounds on f(u0) given
data (ui, yi) that can be interpolated by a convex function, we solve the two LPs

minimize/maximize y0
subject to yj ≥ yi + gTi (uj − ui) , i, j = 0, . . . ,m

,

with variables y0 ∈ R, g0, . . . ,gm ∈ Rk.
Interpolation with monotone convex functions: For f to also by monotone nondecreasing
(i.e., f(u) ≥ f(v) whenever u � v), each subgradient gi must also satisfy gi � 0.
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