# EE/ACM 150 - Applications of Convex Optimization in Signal Processing and Communications Lecture 14

#### Andre Tkacenko

Signal Processing Research Group Jet Propulsion Laboratory

May 17, 2012



#### Outline

- 1 Robust Approximation
  - Stochastic Robust Approximation
  - Worst-Case Robust Approximation
  - Comparison of Methods
- 2 Function Fitting and Interpolation
  - Function Families
  - Constraints
  - Fitting and Interpolation Problems
  - Sparse Description and Basis Pursuit
  - Interpolation with Convex Functions

# Introduction to Stochastic Robust Approximation

For the approximation problem with basic objective  $||\mathbf{A}\mathbf{x} - \mathbf{b}||$ , it is often desirable to account for uncertainty in the data matrix  $\mathbf{A} \in \mathbb{R}^{m \times n}$ . To design a model fit robust to variations in the data, it is natural to use the expected value  $E[\cdot]$  of the basic objective.

#### Stochastic Robust Approximation Problem:

minimize 
$$E[||\mathbf{A}\mathbf{x} - \mathbf{b}||]$$
.

- This problem is always a convex optimization problem.
- It is often not tractable as it is difficult to evaluate the objective and its derivatives.

**Sum-of-Norms Problem:** One special tractable case occurs when  ${\bf A}$  assumes only a finite number of values for which

$$\Pr{\mathbf{A} = \mathbf{A}_i} = p_i, i = 1, ..., k.$$

In this case, the problem becomes

minimize 
$$p_1 ||\mathbf{A}_1 \mathbf{x} - \mathbf{b}|| + \dots + p_k ||\mathbf{A}_k \mathbf{x} - \mathbf{b}||$$
,

which is equivalent to

minimize 
$$\mathbf{p}^T \mathbf{t}$$
 subject to  $||\mathbf{A}_i \mathbf{x} - \mathbf{b}|| \le t_i$ ,  $i = 1, ..., k$ 

# Relation to Tikhonov Regularization

A common way to model the uncertainty in the data matrix  ${\bf A}$  is to decompose it as

$$\mathbf{A}=\overline{\mathbf{A}}+\mathbf{U}\,,$$

where  $\overline{\mathbf{A}}$  is the mean of  $\mathbf{A}$  (i.e.,  $\overline{\mathbf{A}} = E[\mathbf{A}]$ ) and  $\mathbf{U}$  is a random matrix with zero mean. Typically, we assume  $\overline{\mathbf{A}}$  is known as well as other information such as the covariance matrix of  $\mathbf{U}^T$  (and hence  $\mathbf{A}^T$ ) given by  $\mathbf{P} = E[\mathbf{U}^T\mathbf{U}] = E[\mathbf{A}^T\mathbf{A}]$ .

Statistical Robust Least-Squares Problem: One variation of the above problem is

minimize 
$$E[||\mathbf{A}\mathbf{x} - \mathbf{b}||_2^2]$$
.

This can be shown to be identical to the problem

minimize 
$$\left|\left|\overline{\mathbf{A}}\mathbf{x}-\mathbf{b}\right|\right|_2^2+\left|\left|\mathbf{P}^{1/2}\mathbf{x}\right|\right|_2^2$$
,

which has the solution

$$\mathbf{x}^{\star} = \left(\overline{\mathbf{A}}^T \overline{\mathbf{A}} + \mathbf{P}\right)^{-1} \overline{\mathbf{A}}^T \mathbf{b}$$
.

- This corresponds to *Tikhonov regularization* with data matrix  $\overline{A}$  and  $\Gamma = P^{1/2}$ .
- When  $\Gamma = \sqrt{\delta} \mathbf{I}_n$ , the interpretation is that  $U_{k,\ell}$  are zero mean, uncorrelated random variables with variance  $\delta/m$ .

# Introduction to Worst-Case Robust Approximation

Another way to account for variation in the data matrix  $\mathbf A$  is to use a set-based, worst-case approach. Here, the uncertainty in  $\mathbf A$  is described by a set  $\mathcal A\subseteq\mathbb R^{m\times n}$  of possible values. The *worst-case error* of a candidate solution  $\mathbf x\in\mathbb R^n$  is defined as

$$\xi_{wc}(\mathbf{x}) \triangleq \sup \{||\mathbf{A}\mathbf{x} - \mathbf{b}|| : \mathbf{A} \in \mathcal{A}\}\$$
,

and is always a convex function of x.

#### Worst-Case Robust Approximation Problem:

minimize 
$$\xi_{wc}(\mathbf{x}) = \sup\{||\mathbf{A}\mathbf{x} - \mathbf{b}|| : \mathbf{A} \in \mathcal{A}\}$$
.

- This problem is always a convex optimization problem.
- Its tractability depends on the norm used and the uncertainty set A.

Finite/Polyhedral Set: If  $A = \{A_1, \dots, A_k\}$  or  $A = \text{conv}(\{A_1, \dots, A_k\})$ , the problem is equivalent to

minimize 
$$\max_{i=1,\ldots,k}\{||\mathbf{A}_i\mathbf{x}-\mathbf{b}||\}$$
.

Using an epigraph form, the problem can be in turn recast as

subject to 
$$||\mathbf{A}_i\mathbf{x} - \mathbf{b}|| \le t$$
,  $i = 1, ..., k$ 

#### Norm Bound Error

Suppose the uncertainty set A is a norm ball of the form

$$\mathcal{A} \triangleq \left\{ \overline{\mathbf{A}} + \mathbf{U} : ||\mathbf{U}|| \le a \right\} ,$$

where  $||\cdot||$  is a norm on  $\mathbb{R}^{m\times n}$ . In this case, we have

$$\xi_{\text{wc}}(\mathbf{x}) = \sup \{ ||\overline{\mathbf{A}}\mathbf{x} - \mathbf{b} + \mathbf{U}\mathbf{x}|| : ||\mathbf{U}|| \le a \}.$$

Note that the first norm above is on  $\mathbb{R}^m$ , whereas the second one is on  $\mathbb{R}^{m \times n}$ .

**Euclidean norm on**  $\mathbb{R}^m$  / maximum singular value norm on  $\mathbb{R}^{m \times n}$ : Here, the supremum is attained for

$$\mathbf{U} = a\mathbf{u}\mathbf{v}^T \,, \text{ where } \mathbf{u} = \frac{\overline{\mathbf{A}}\mathbf{x} - \mathbf{b}}{\left|\left|\overline{\mathbf{A}}\mathbf{x} - \mathbf{b}\right|\right|_2} \,, \ \mathbf{v} = \frac{\mathbf{x}}{\left|\left|\mathbf{x}\right|\right|_2} \Longrightarrow \xi_{\mathrm{wc}}(\mathbf{x}) = \left|\left|\overline{\mathbf{A}}\mathbf{x} - \mathbf{b}\right|\right|_2 + a \left|\left|\mathbf{x}\right|\right|_2 \,.$$

Thus, the robust approximation problem becomes

minimize 
$$\left|\left|\overline{\mathbf{A}}\mathbf{x}-\mathbf{b}\right|\right|_2+a\left|\left|\mathbf{x}\right|\right|_2$$
,

which can be equivalently expressed as the SOCP

minimize 
$$t_1 + at_2$$

subject to 
$$\left|\left|\overline{\mathbf{A}}\mathbf{x}-\mathbf{b}\right|\right|_2 \leq t_1 \ , \ \left|\left|\mathbf{x}\right|\right|_2 \leq t_2$$

The solution of this problem is the same as that of the regularized least-squares problem

minimize 
$$\left|\left|\overline{\mathbf{A}}\mathbf{x}-\mathbf{b}\right|\right|_{2}^{2}+\delta\left|\left|\mathbf{x}\right|\right|_{2}^{2}$$
,

for some value of the regularization parameter  $\delta$ .

## **Uncertainty Ellipsoids**

Suppose we describe the variation in  ${\bf A}$  by giving an ellipsoid of possible values for each row:

$$\mathcal{A} \triangleq \left\{ \mathbf{A} = \begin{bmatrix} \mathbf{a}_1 & \cdots & \mathbf{a}_m \end{bmatrix}^T : \mathbf{a}_i \in \mathcal{E}_i, \ i = 1, \dots, m \right\},$$

where

$$\mathcal{E}_i = \left\{ \overline{\mathbf{a}}_i + \mathbf{P}_i \mathbf{u} : ||\mathbf{u}||_2 \le 1 \right\} .$$

Here,  $\bar{\mathbf{a}}_i$  denotes the nominal value of  $\mathbf{a}_i$  and  $\mathbf{P}_i$  describes its variation. In this case, we have

$$\sup_{\mathbf{a}_i \in \mathcal{E}_i} \left| \mathbf{a}_i^T \mathbf{x} - b_i \right| = \sup \left\{ \left| \overline{\mathbf{a}}_i^T \mathbf{x} - b_i + \left( \mathbf{P}_i^T \mathbf{x} \right)^T \mathbf{u} \right| : ||\mathbf{u}||_2 \le 1 \right\} = \left| \overline{\mathbf{a}}_i^T \mathbf{x} - b_i \right| + \left| \left| \mathbf{P}_i^T \mathbf{x} \right| \right|_2 \,.$$

For the robust  $\ell_2$ -norm approximation problem in which  $\xi_{wc}(\mathbf{x}) = \sup_{\mathbf{A} \in \mathcal{A}} \left\{ \left| \left| \mathbf{A} \mathbf{x} - \mathbf{b} \right| \right|_2 \right\}$ , we have

$$\xi_{\text{wc}}(\mathbf{x}) = \sqrt{\sum_{i=1}^{m} \left(\sup_{\mathbf{a}_{i} \in \mathcal{E}_{i}} \left| \mathbf{a}_{i}^{T} \mathbf{x} - b_{i} \right| \right)^{2}} = \sqrt{\sum_{i=1}^{m} \left( \left| \overline{\mathbf{a}}_{i}^{T} \mathbf{x} - b_{i} \right| + \left| \left| \mathbf{P}_{i}^{T} \mathbf{x} \right| \right|_{2} \right)^{2}} \;.$$

It follows that the robust  $\ell_2$ -norm approximation problem can be expressed as the SOCP

minimize 
$$s$$
 subject to  $||\mathbf{t}||_2 \leq s$  
$$\left|\left|\mathbf{P}_i^T\mathbf{x}\right|\right|_2 \leq t_i - \left(\overline{\mathbf{a}}_i^T\mathbf{x} - b_i\right) \;,\; i = 1, \dots, m \quad \cdot$$
 
$$\left|\left|\mathbf{P}_i^T\mathbf{x}\right|\right|_2 \leq t_i + \left(\overline{\mathbf{a}}_i^T\mathbf{x} - b_i\right) \;,\; i = 1, \dots, m$$

#### Norm Bounded Error with Linear Structure

As a generalization of the norm bound description  $A = \{ \overline{A} + U : ||U|| \le a \}$ , we can consider the image of the norm ball under an affine transformation:

$$\mathcal{A} \triangleq \left\{ \overline{\mathbf{A}} + u_1 \mathbf{A}_1 + \dots + u_p \mathbf{A}_p : ||\mathbf{u}|| \le 1 \right\} ,$$

where  $||\cdot||$  is a norm on  $\mathbb{R}^p$  and the p+1 matrices  $\overline{\mathbf{A}}, \mathbf{A}_1, \dots, \mathbf{A}_p$  are given. Then, the worst-case error can be expressed as

$$\xi_{\mathrm{wc}}(\mathbf{x}) = \sup_{||\mathbf{u}|| \le 1} \left| \left| \left( \overline{\mathbf{A}} + u_1 \mathbf{A}_1 + \dots + u_p \mathbf{A}_p \right) \mathbf{x} - \mathbf{b} \right| \right| = \sup_{||\mathbf{u}|| \le 1} \left| \left| \mathbf{P}(\mathbf{x}) \mathbf{u} + \mathbf{q}(\mathbf{x}) \right| \right|,$$

where 
$$\mathbf{P}(\mathbf{x}) = \left[ \begin{array}{ccc} \mathbf{A}_1 \mathbf{x} & \cdots & \mathbf{A}_p \mathbf{x} \end{array} \right] \in \mathbb{R}^{m \times p}$$
 and  $\mathbf{q}(\mathbf{x}) = \overline{\mathbf{A}} \mathbf{x} - \mathbf{b} \in \mathbb{R}^m$ .

Robust Chebyshev approximation problem: Here we have

$$\begin{aligned} \xi_{\text{wc}}(\mathbf{x}) &= \sup_{||\mathbf{u}||_{\infty} \le 1} ||\mathbf{P}(\mathbf{x}) \, \mathbf{u} + \mathbf{q}(\mathbf{x})||_{\infty} = \max_{i=1,\dots,m} \sup_{||\mathbf{u}||_{\infty} \le 1} \left| \mathbf{p}_{i}(\mathbf{x})^{T} \, \mathbf{u} + q_{i}(\mathbf{x}) \right|, \\ &= \max_{i=1}^{m} \left\{ ||\mathbf{p}_{i}(\mathbf{x})||_{1} + |q_{i}(\mathbf{x})| \right\}. \end{aligned}$$

Hence, the robust Chebyshev approximation problem can be cast as the following LP.

minimize 
$$t$$
 subject to  $-\mathbf{y}_0 \preceq \overline{\mathbf{A}} \mathbf{x} - \mathbf{b} \preceq \mathbf{y}_0$   $-\mathbf{y}_k \preceq \mathbf{A}_k \mathbf{x} \preceq \mathbf{y}_k \,,\; k=1,\dots,p$   $\mathbf{y}_0 + \sum_{k=1}^p \mathbf{y}_k \preceq t \mathbf{1}$ 

## Norm Bounded Error with Linear Structure (Continued)

#### Robust least-squares approximation problem: Here we have

$$\xi_{wc}(\mathbf{x}) = \sup_{||\mathbf{u}||_2 \le 1} ||\mathbf{P}(\mathbf{x})\,\mathbf{u} + \mathbf{q}(\mathbf{x})||_2 ,$$

$$\text{where }\mathbf{P}(\mathbf{x})=\left[\begin{array}{ccc}\mathbf{A}_1\mathbf{x}&\cdots&\mathbf{A}_p\mathbf{x}\end{array}\right]\in\mathbb{R}^{m\times p}\text{ and }\mathbf{q}(\mathbf{x})=\overline{\mathbf{A}}\mathbf{x}-\mathbf{b}\in\mathbb{R}^m.$$

Evaluating the worst-case error  $\xi_{wc}(\mathbf{x})$  can actually by simplified by noting that it is the square root of the optimal value of the (nonconvex) quadratic optimization problem

$$\begin{aligned} & \text{maximize} & & ||\mathbf{P}(\mathbf{x})\,\mathbf{u} + \mathbf{q}(\mathbf{x})||_2^2 \\ & \text{subject to} & & \mathbf{u}^T\mathbf{u} \leq 1 \end{aligned} ,$$

with variable  $\mathbf{u} \in \mathbb{R}^p$ . This is a special nonconvex problem for which strong duality holds. The Lagrange dual of this problem can be expressed as the SDP

$$\begin{array}{ll} \text{minimize} & t + \lambda \\ \\ \text{subject to} & \begin{bmatrix} \mathbf{I}_m & \mathbf{P}(\mathbf{x}) & \mathbf{q}(\mathbf{x}) \\ \mathbf{P}(\mathbf{x})^T & \lambda \mathbf{I}_p & \mathbf{0}_{p \times 1} \\ \mathbf{q}(\mathbf{x})^T & \mathbf{0}_{1 \times p} & t \end{bmatrix} \succeq \mathbf{0} \end{array} ,$$

with variables  $t, \lambda \in \mathbb{R}$ . So, for fixed  $\mathbf{x}$ , we can compute  $(\xi_{wc}(\mathbf{x}))^2$  by solving this SDP with variables  $t, \lambda$ . But optimizing jointly over  $t, \lambda$ , and  $\mathbf{x}$  is equivalent to minimizing  $(\xi_{wc}(\mathbf{x}))^2$  over  $\mathbf{x}$ . Hence, we can solve the robust least-squares problem by solving the SDP with  $x, t, \lambda$  as variables. The problem is still an SDP when optimizing over x as P(x) and q(x) are affine in x.

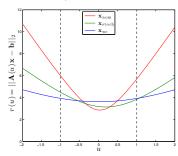
# Parameterized Example

Here, our uncertainty in  ${f A}$  is parameterized as

$$\mathbf{A}(u) = \mathbf{A}_0 + u\mathbf{A}_1 \,,$$

where u is an uncertainty parameter. For a specific instance with  $\mathbf{A}(u) \in \mathbb{R}^{10 \times 20}$ ,  $||\mathbf{A}_0||_2 = 10$ ,  $||\mathbf{A}_1||_2 = 1$ , and  $u \in [-1,1]$  (yielding a variation of around  $\pm 10\%$ ), we considered three solutions:

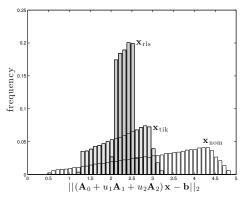
- Nominal optimal:  $\mathbf{x}_{nom}$  found by minimizing  $||\mathbf{A}_0\mathbf{x} \mathbf{b}||_2$ .
- Stochastic robust approximation:  $\mathbf{x}_{\text{stoch}}$  found by minimizing  $E[||\mathbf{A}_0\mathbf{x} \mathbf{b}||_2^2]$ , assuming  $u \sim \mathcal{U}[-1, 1]$ .
- Worst-case robust approximation:  $\mathbf{x}_{wc}$  found by minimizing  $\sup_{-1 < u < 1} ||\mathbf{A}(u)\mathbf{x} \mathbf{b}||_2 = \max\{||(\mathbf{A}_0 \mathbf{A}_1)\mathbf{x} \mathbf{b}||_2, ||(\mathbf{A}_0 + \mathbf{A}_1)\mathbf{x} \mathbf{b}||_2\}.$



# Monte Carlo Simulation Example

$$\label{eq:minimize} \min \sup_{||\mathbf{u}||_2 \leq 1} \left| \left| \left( \mathbf{A}_0 + u_1 \mathbf{A}_1 + u_2 \mathbf{A}_2 \right) \mathbf{x} - \mathbf{b} \right| \right|_2$$

- $\|\mathbf{m} = 50, n = 20, ||\mathbf{A}_0||_2 = 10, ||\mathbf{A}_1||_2 = ||\mathbf{A}_2||_2 = 1, u_1, u_2 \text{ in unit disk in } \mathbb{R}^2.$
- Compared nominal least-squares  $\mathbf{x}_{nom}$  ( $\mathbf{u}=\mathbf{0}$ ), Tikhonov regularized  $\mathbf{x}_{tik}$  ( $\delta=1$ ), and worst-case robust least-squares  $\mathbf{x}_{rls}$  solutions.
- Simulated  $10^5$  parameter vectors  ${\bf u}$  and generated histograms of the residual  $||({\bf A}_0+u_1{\bf A}_1+u_2{\bf A}_2)\,{\bf x}-{\bf b}||_2$  for each parameter value.



# Introduction and Examples of Function Families

Consider a family of functions (often called *basis functions*)  $f_1, \ldots, f_n : \mathbb{R}^k \to \mathbb{R}$  with common domain  $dom(f_i) = \mathcal{D}$ . For some  $\mathbf{x} \in \mathbb{R}^n$ , we are interested in a function  $f : \mathbb{R}^k \to \mathbb{R}$  of the form

$$f(\mathbf{u}) = x_1 f_1(\mathbf{u}) + \dots + x_n f_n(\mathbf{u}) ,$$

where  $\mathbf{u} \in \mathbb{R}^k$ . Here,  $\mathbf{x}$  is a *coefficient vector* applied to the family of basis functions  $\{f_1, \ldots, f_n\}$  to produce the function f. As  $\mathrm{dom}(f) = \mathcal{D}$ , the basis functions generate a subspace  $\mathcal{F}$  of functions on  $\mathcal{D}$ .

#### **Examples:**

Polynomials:

$$f_{\ell}(t) = t^{\ell-1} \qquad \text{(powers)}$$
 
$$\int f_{\ell}(t) \, f_m(t) \, \phi(t) \, dt = \delta[\ell-m] \qquad \text{(orthonormal, } \phi \geq 0, \deg(f_i) \leq n)$$
 
$$f_{\ell}(t) = \prod_{i=1}^n \frac{t-t_i}{t_\ell-t_i} \, , \, f_{\ell}(t_m) = \delta[\ell-m] \qquad \text{(Lagrange interpolation polynomial)}$$
 (for distinct points  $\{t_1,\ldots,t_m\}$ )

■ Piecewise polynomials and splines: The family of functions can be piecewise polynomial over  $t \in \mathbb{R}$  with knots at  $t_1 \le t_2 \le \cdots \le t_m$ . If the functions satisfy differentiability conditions at the knot points, they are referred to as *B-splines*.

## Examples of Convex Constraints on the Coefficients

In terms of the coefficient vector  $\mathbf{x}$ , there are several relevant constraints which will be useful to enforce which are also convex. This follows from the fact that we have

$$f(\mathbf{u}) = \mathbf{f}(\mathbf{u})^T \mathbf{x}$$
, where  $\mathbf{f}(\mathbf{u}) \triangleq \begin{bmatrix} f_1(\mathbf{u}) & \cdots & f_n(\mathbf{u}) \end{bmatrix}^T$ .

Function value interpolation and inequalities:

$$\begin{split} f(\mathbf{u}_{\ell}) &= z_{\ell} \Longleftrightarrow \mathbf{f}(\mathbf{u}_{\ell})^T \mathbf{x} = z_{\ell} & \text{(Interpolation condition)} \\ &|f(\mathbf{u}_{\ell}) - f(\mathbf{u}_m)| \leq L \, ||\mathbf{u}_{\ell} - \mathbf{u}_m|| \Longleftrightarrow \\ -L \, ||\mathbf{u}_{\ell} - \mathbf{u}_m|| \leq (f(\mathbf{u}_{\ell}) - f(\mathbf{u}_m))^T \, \mathbf{x} \leq L \, ||\mathbf{u}_{\ell} - \mathbf{u}_m|| & \text{(Lipschitz continuity)} \\ &f(\mathbf{u}) \geq 0 \; \; \forall \mathbf{u} \in \mathcal{D} & \text{(Nonnegativity constraint)} \end{split}$$

**Derivative constraints:** As  $\nabla f(v) = \sum_{i=1}^{n} x_i \nabla f_i(\mathbf{v})$  and  $\nabla^2 f(v) = \sum_{i=1}^{n} x_i \nabla^2 f_i(\mathbf{v})$ , both of which are linear in  $\mathbf{x}$ , constraints of the form

$$||\nabla f(\mathbf{v})|| \le M$$
,  $\ell \mathbf{I} \le \nabla^2 f(\mathbf{v}) \le \mathbf{u} \mathbf{I}$ ,

are convex in x.

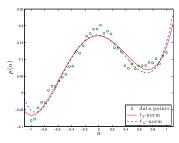
Integral constraints:

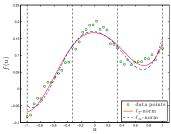
$$\int_{\mathcal{D}} \phi(\mathbf{u}) f(\mathbf{u}) \begin{cases} = a \\ \geq a \implies \mathbf{c}^T \mathbf{x} \\ \leq a \end{cases} \Rightarrow \mathbf{c}^T \mathbf{x} \begin{cases} = a \\ \geq a \\ \leq a \end{cases}, \text{ where } c_i = \int_{\mathcal{D}} \phi(\mathbf{u}) f_i(\mathbf{u}) .$$

■ Linear functional constraints: Any linear functional  $\mathcal{L}$  on the subspace of functions is a linear function of  $\mathbf{x}$ , i.e.,  $\mathcal{L}(f) = \mathbf{c}^T \mathbf{x}$  for some  $\mathbf{c} \in \mathbb{R}^n$ . The derivative and integral constraints are special cases of this.

# Types of Fitting Problems

- **Minimum norm function fitting:** Given data  $(\mathbf{u}_1, y_1), \dots, (\mathbf{u}_m, y_m)$  find a function f that minimizes  $||\mathbf{f} \mathbf{y}||$ , where  $\mathbf{f} \triangleq \begin{bmatrix} f(\mathbf{u}_1) & \cdots & f(\mathbf{u}_m) \end{bmatrix}^T$ . Here,  $m \ge n$  and typically  $m \gg n$ .
- **Least-norm interpolation:** In this case, we have m < n. We must satisfy the interpolation conditions  $f(\mathbf{u}_\ell) = y_\ell$  for  $\ell = 1, \ldots, m$  and we may seek a function that is smoothest or smallest in some sense.
- Interpolation, extrapolation, and bounding: An optimal function fit  $\hat{\mathbf{f}}$  allows us to guess the value of the function at some point  $\mathbf{v}$  not in the original data set. This is interpolation if  $\mathbf{v} \in \operatorname{conv}(\{\mathbf{u}_1,\ldots,\mathbf{u}_m\})$  and extrapolation otherwise. From this, we can produce bounds on  $f(\mathbf{v})$  by minimizing and maximizing  $f(\mathbf{v})$  subject to the constraints. This can be useful for identifying outliers.





#### Introduction to Basis Pursuit

For many applications, the function family consists of a large number of linearly dependent functions referred to as an *over-complete basis* or *dictionary*). In *basis pursuit* (BP), we seek to model the data of interest  $(\mathbf{u}_i, y_i)$  for  $i=1,\ldots,m$  using only a small number of basis functions. Specifically, we seek a function  $f(\mathbf{u}) = \mathbf{f}(\mathbf{u})^T \mathbf{x} \in \mathcal{F}$  that fits the given data well,

$$f(\mathbf{u}_i) \approx y_i, i = 1, \dots, m,$$

with a *sparse* coefficient vector  $\mathbf{x}$ , i.e., one for which  $\operatorname{card}(\mathbf{x})$  is small. In this case,  $f = \sum_{i \in \mathcal{B}} x_i f_i$ , where  $\mathcal{B} = \{i : x_i \neq 0\}$ , is a *sparse description* of the data.

#### Uses:

- Data compression: The transmitter and receiver both know the dictionary and so the signal of interest can be conveyed using only the information present in the sparse vector x.
- De-noising or smoothing: A parsimonious representation of the signal in terms of the basis functions can effect a removal of noise and a smoothing of the data.

#### Common Approach to Basis Pursuit (BP):

- 1  $\ell_1$ -norm regularization heuristic: Minimize  $\sum_{i=1}^m \left(\mathbf{f}(\mathbf{u}_i)^T \mathbf{x} y_i\right)^2 + \gamma \left||\mathbf{x}|\right|_1$ , for some  $\gamma > 0$ .
- 2 Determine sparsity pattern: Identify  $\mathcal{B} = \{i : \widehat{x}_i \neq 0\}$ , where  $\widehat{\mathbf{x}}$  is the solution from Step 1.
- 3 Refinement step: Solve the least-squares problem: minimize  $\sum_{i=1}^{m} \left( \mathbf{f}(\mathbf{u}_i)^T \mathbf{x} y_i \right)^2$ , with variables  $x_i$  for  $i \in \mathcal{B}$  and  $x_i = 0$  for  $i \notin \mathcal{B}$ .

# Time-Frequency Analysis Via BP

When the dictionary functions are localized in time and frequency, basis pursuit can be used to perform a time-frequency analysis of the signal of interest, in addition to obtaining a sparse representation in terms of the dictionary.

**Example:** Suppose each basis function is formed from the *Gabor function* given by

$$g_{\tau,\omega}(t) = e^{-\frac{(t-\tau)^2}{\sigma^2}}\cos(\omega t + \phi)$$
.

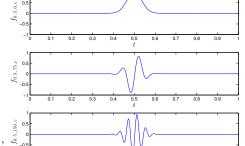
Note that  $g_{\tau,\omega}(t)$  is *localized* at time  $\tau$  and frequency  $\omega$ .

- Range of interest is  $t \in [0, 1]$ .
- All basis functions have width  $\sigma = 0.05$ .
- Dictionary consists of pulse times and frequencies

$$\begin{split} \tau &= 0.002k\,,\; k = 0, \dots, 500\,,\\ \omega &= 5k\,,\; k = 0, \dots, 30\,,\\ \phi &= 0, \pi/2 \; \text{(cosine and sine)}\,. \end{split}$$

The  $501 \times 61 = 30561$  basis elements are denoted as

$$f_{\tau,\omega,c}$$
,  $\tau = 0, 0.002, \dots, 1$ ,  $\omega = 0, 5, \dots, 150$ ,  $f_{\tau,\omega,s}$ ,  $\tau = 0, 0.002, \dots, 1$ ,  $\omega = 5, \dots, 150$ .



## Time-Frequency Analysis Via BP (Continued)

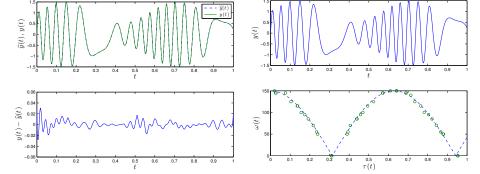
We will use BP to find a sparse representation of the signal

$$y(t) = a(t)\sin\theta(t)$$
, where  $a(t) = 1 + 0.5\sin(11t)$ ,  $\theta(t) = 30\sin(5t)$ .

Here, a(t) is the signal amplitude and  $\theta(t)$  is the total phase. We can also interpret  $\omega(t) = |d\theta/dt| = 150 |\cos(5t)|$ , as the *instantaneous frequency* of the signal at time t. Given the 501 data points  $(t_k, y_k)$  with

$$t_k = 0.005k$$
,  $y_k = y(t_k)$ ,  $k = 0, \dots, 500$ ,

we obtained the following by performing BP, which yielded a very sparse coefficient vector with only 42 nonzero coefficients out of 30561.



## Using Subgradients to Fit a Convex Function to Data

In many applications, it may be desirable to attempt to fit a convex function to a given set of data. For some special cases, we can solve interpolation problems involving an infinite-dimensional set of functions using finite-dimensional convex optimization.

#### Convex Interpolation and Subgradients:

A convex function  $f: \mathbb{R}^k \to \mathbb{R}$ , with  $dom(f) = \mathbb{R}^k$  satisfies the interpolation conditions

$$f(\mathbf{u}_i) = y_i \,, \ i = 1, \dots, m \,,$$

at given points  $\mathbf{u}_i \in \mathbb{R}^k$  if and only if there exist  $\mathbf{g}_i \in \mathbb{R}^k$  for  $i=1,\ldots,m$  such that

$$y_j \ge y_i + \mathbf{g}_i^T(\mathbf{u}_j - \mathbf{u}_i)$$
,  $i, j = 1, \dots, m$ .

- **Because** of the direction of each inequality, the vector  $\mathbf{g}_i$  is called a *subgradient*.
- If f is differentiable, we can take  $\mathbf{g}_i = \nabla f(\mathbf{u}_i)$ .

#### Proof:

Necessity: Suppose f is convex with  $dom(f) = \mathbb{R}^k$  and  $f(\mathbf{u}_i) = y_i$ . Then, at each  $\mathbf{u}_i$ , we can find a vector  $\mathbf{g}_i$  such that

$$f(\mathbf{z}) \geq f(\mathbf{u}_i) + \mathbf{g}_i^T(\mathbf{z} - \mathbf{u}_i)$$
.

Setting  $\mathbf{z} = \mathbf{u}_i$ , we obtain the desired inequality.

Sufficiency: Conversely suppose  $g_1, \ldots, g_m$  satisfy the above inequality. Defining f as

$$f(\mathbf{z}) \triangleq \max_{i=1,...,m} \left\{ y_i + \mathbf{g}_i^T(\mathbf{z} - \mathbf{u}_i) \right\},$$

we note that f is convex and that  $f(\mathbf{u}_i) = y_i$  for  $i = 1, \dots, m$ .

# Fitting a Convex Function to Given Data

One simple application of the above result is to compute the least-squares fit of a convex function to given data  $(\mathbf{u}_i, y_i)$  for  $i = 1, \dots, m$ :

minimize 
$$\sum_{i=1}^m (y_i - f(\mathbf{u}_i))^2$$
 subject to  $f: \mathbb{R}^k \to \mathbb{R}$  is convex ,  $\mathrm{dom}(f) = \mathbb{R}^k$ 

subject to 
$$f:\mathbb{R}^k o\mathbb{R}$$
 is convex  $,\ \mathrm{dom}(f)=\mathbb{R}$ 

This infinite-dimensional problem can be converted to the finite-dimensional QP

minimize 
$$\sum_{i=1}^{m} (y_i - \widehat{y}_i)^2$$

subject to 
$$\widehat{y}_j \geq \widehat{y}_i + \mathbf{g}_i^T (\mathbf{u}_j - \mathbf{u}_i) \;,\; i,j = 1,\ldots,m$$

with variables  $\widehat{\mathbf{y}} \in \mathbb{R}^m$  and  $\mathbf{g}_1, \dots, \mathbf{g}_m \in \mathbb{R}^k$ .

#### Variations and Extensions:

**Bounding values of an interpolating convex function:** To determine bounds on  $f(\mathbf{u}_0)$  given data  $(\mathbf{u}_i, y_i)$  that can be interpolated by a convex function, we solve the two LPs

minimize/maximize 
$$y_0$$
 subject to  $y_j \geq y_i + \mathbf{g}_i^T(\mathbf{u}_j - \mathbf{u}_i) \;,\; i,j = 0,\dots,m$ 

with variables  $y_0 \in \mathbb{R}$ ,  $\mathbf{g}_0, \dots, \mathbf{g}_m \in \mathbb{R}^k$ .

Interpolation with monotone convex functions: For f to also by monotone nondecreasing (i.e.,  $f(\mathbf{u}) > f(\mathbf{v})$  whenever  $\mathbf{u} \succ \mathbf{v}$ ), each subgradient  $\mathbf{g}_i$  must also satisfy  $\mathbf{g}_i \succ \mathbf{0}$ .