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Parametric Distribution Estimation Maximum Likelihood Estimation

Maximum Likelihood and the Log-Likelihood Function
Let y ∈ Rm be a random variable whose distribution depends on a parameter x ∈ Rn.
We will denote this distribution by py|x(y) and refer to it as the likelihood function.
Example: If v ∼ N (µ,Σ), the distribution of v depends on µ ∈ Rm and Σ ∈ Sm+ .
As many common distributions are log-concave, and often independent observations
yi will be made to form the vector observation y, it is convenient to work with the
logarithm of the distribution py|x(y) called the log-likelihood function, given by

`(x) , log py|x(y) .

In maximum likelihood (ML) estimation, the parameter x is determined as the
argument which maximizes the likelihood (or log-likelihood) function.

Maximum Likelihood (ML) Estimate:

x̂ml = argmax
x

py|x(y) = argmax
x

`(x) .

Here, y is the observed value.
We can add constraints that x ∈ C explicitly, or define py|x(y) = 0 for x 6∈ C.
Determining the ML estimate is a convex optimization problem if log py|x(y) is
concave in x for fixed y.
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Parametric Distribution Estimation Maximum Likelihood Estimation

Linear Measurements with i.i.d. Noise
In many cases, observations are made following a linear measurement model given by

yi = aTi x+ vi , i = 1, . . . ,m .

x ∈ Rn is the vector of unknown parameters.
vi are independent and identically distributed (i.i.d.) measurement noise with density pv(v).
yi is the measurement: y ∈ Rm has density py|x(y) =

∏m
i=1 pv

(
yi − aTi x

)
.

ML estimation: An ML estimate x̂ml is any solution x of
maximize `(x) =

∑m
i=1 log pv

(
yi − aTi x

)
,

with observations yi for i = 1, . . . ,m.
Examples:

Gaussian noise: If vi ∼ N
(
0, σ2

)
, then pv(v) =

(
2πσ2

)−1/2
e−v

2/(2σ2) and so,

`(x) = − (m/2) log
(
2πσ2

)
−
(
1/
(
2σ2

))
||Ax− y||22 .

Thus, the ML estimate is the least-squares (LS) solution.
Laplacian noise: If pv(v) = (1/ (2a)) e−|v|/a for some a > 0, then we have,

`(x) = −m log(2a)− (1/a) ||Ax− y||1 .
Hence, the ML estimate is the `1-norm solution.
Uniform noise: If pv(v) = 1/ (2a) for v ∈ [−a, a] and pv(v) = 0 otherwise, then we have

`(x) =

{
−m log(2a) , ||Ax− y||∞ ≤ a
−∞ , otherwise

.

So, an ML estimate is any x with ||Ax− y||∞ ≤ a.
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Parametric Distribution Estimation Maximum Likelihood Estimation

ML Interpretation of Penalty Function Approximation
We can interpret any penalty function approximation problem of the form

minimize
m∑
i=1

φ
(
bi − aTi x

)
,

as an ML estimation problem with a linear measurement model with i.i.d. noise.
Specifically, these two problems are identical when the noise density pv(v) satisfies

pv(v) =
e−φ(v)´
e−φ(u) du

⇐⇒ φ(v) = −C log pv(v) ,

and the observation is y = b.

Intepretations:
Penalty functions which strongly (weakly) penalize large residuals will lead to
noise densities with small (large) tails.
Laplacian noise density has much larger tails than Gaussian noise density.
Hence, the Laplacian noise based ML estimation method will not penalize large
residuals as severely as that corresponding to the Gaussian noise density.
Residuals corresponding to ML estimation with a Gaussian density will tend to
be small, whereas those for a Laplacian density will sparse (many residuals near
zero and a few large outliers).
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Parametric Distribution Estimation Maximum Likelihood Estimation

Counting Problems with Poisson Distribution
In many cases, the random variable y has Poisson distribution with mean µ > 0:

Pr{y = k} = e−µµk

k!
.

Often, y will represent the count or number of events of a Poisson process over some
period of time (i.e., photon arrival counts, traffic accidents, etc.). In a simple statistical
model, µ is modeled as an affine function of a vector u ∈ Rn:

µ = aTu+ b .

a ∈ Rn and b ∈ R are model parameters, whereas u ∈ Rn is an observed vector
of explanatory variables.
The goal is to estimate a and b from m observations (ui, yi) for i = 1, . . . ,m.

From this, the log-likelihood function is given by the following.

`(a, b) =

m∑
i=1

(
yi log

(
aTui + b

)
−
(
aTui + b

)
− log(yi!)

)
.

We can find an ML estimate of a and b by solving the convex optimization problem

maximize
m∑
i=1

(
yi log

(
aTui + b

)
−
(
aTui + b

))
,

with variables a ∈ Rn and b ∈ R.
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Parametric Distribution Estimation Maximum Likelihood Estimation

Logistic Regression
Consider a random variable y ∈ {0, 1} with

Pr{y = 1} = p =
exp
(
aTu+ b

)
1 + exp(aTu+ b)

, Pr{y = 0} = 1− p =
1

1 + exp(aTu+ b)
.

a ∈ Rn, b ∈ R are model parameters; u ∈ Rn is an observed explanatory variable vector.
The goal is to estimate a and b from m observations (ui, yi) for i = 1, . . . ,m.

Log-likelihood function: Assuming the data has been ordered such that y1 = · · · = yk = 1 and
yk+1 = · · · = ym = 0, we get the following.

`(a, b) = log

 k∏
i=1

exp
(
aTui + b

)
1 + exp(aTui + b)

m∏
i=k+1

1

1 + exp(aTui + b)

 ,

=
k∑
i=1

(
aTui + b

)
−

m∑
i=1

log
(
1 + exp

(
aTui + b

))
,

which is concave in a and b.

Example: (n = 1, m = 50 measurements)

Circles show 50 points (ui, yi).

Solid curve is the ML estimate of
p = exp(au+ b) / (1 + exp(au+ b)).
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Parametric Distribution Estimation Maximum Likelihood Estimation

Covariance Estimate for Gaussian Random Variables
Suppose y ∈ Rn is a Gaussian random vector with zero mean and covariance matrix
R = E

[
yyT

]
. In many cases, it may be imperative to estimate R based on

independent observations of y. Note the here, the density of y is given by

py|R(y) = (2π)−n/2 (det(R))−1/2 exp
(
−yTR−1y/2

)
.

Based on N independent observations y1, . . .yN ∈ Rn, we would like to find an ML
estimate of R. The log-likelihood function is given by the following.

`(R) = −Nn
2

log(2π)− N

2
log detR− N

2
tr
(
R−1Y

)
, where Y ,

1

N

N∑
k=1

yky
T
k .

Here, Y is the sample covariance matrix for the observations y1, . . .yN ∈ Rn. The
log-likelihood function is not a concave function of R, however it is a concave function
of S , R−1, which is called the information matrix. In this case, the new log-likelihood
function `(S) has the form

`(S) = − (Nn/2) log(2π) + (N/2) log detS − (N/2) tr(SY ) ,

and so, the ML estimate of S (and hence R) can be found by solving the problem
maximize log detS − tr(SY )

subject to S ∈ S
,

where S represents our prior knowledge of S = R−1.
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Parametric Distribution Estimation Maximum A Posteriori Probability Estimation

Bayesian Version of ML Estimation
In maximum a posteriori probability (MAP) estimation, which can be considered as a
Bayesian version of ML estimation, we assume that the underlying parameter x to be
estimated is random with some a priori or prior probability density px(x).
If x (the vector to be estimated) and y (the observation) are random variables with
joint probability density function (pdf) px,y(x,y), then we have the following.

px,y(x,y) = px|y(x,y) py(y) = py|x(x,y) px(x) ,

where, for instance, px|y(x,y) is the conditional density of x given y. Specifically, for
an observed value y = y, px|y is the a posteriori or posterior density of x. For MAP
estimation, we seek the vector x which maximizes this quantity.

MAP Estimate:

x̂map = argmax
x

px|y(x,y) = argmax
x

py|x(x,y) px(x) = argmax
x

px,y(x,y) .

Taking logarithms, we can express the MAP estimate as
x̂map = argmax

x

(
log py|x(x,y) + log px(x)

)
.

From the last expression for the MAP estimate, we see that the second term
penalizes unlikely choices of x, according to the prior density px(x).
If the log-likelihood function is concave and the prior density for x is log-concave,
the resulting MAP estimation problem will be convex.
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Parametric Distribution Estimation Maximum A Posteriori Probability Estimation

Examples of MAP Estimation Problems
Linear measurements with i.i.d. noise: For the linear measurement model

yi = aTi x+ vi , i = 1, . . . ,m ,

where the vi are i.i.d. with density pv, the MAP estimation problem becomes

maximize
∑m
i=1 log pv

(
yi − aTi x

)
+ log px(x) .

If pv and px are log-concave, this problem is convex.

MAP estimation with perfect linear measurements: Suppose we have m deterministic linear
measurements y = Ax. In this case, the MAP estimation problem becoems the following.

maximize log px(x)

subject to Ax = y
.

If px is log-concave, this is a convex problem.
Assuming the parameters xi are i.i.d. with density px(x), the MAP estimation problem becomes

maximize
∑n
i=1 log px(xi)

subject to Ax = y
⇐⇒

maximize
∑n
i=1 φ(xi)

subject to Ax = b
,

where φ(u) = − log px(u) and b = y. In other words, the MAP estimation problem can be
expressed as a least-penalty problem. Conversely, any least-penalty problem can be expressed
as a MAP estimation problem with m perfect measurements b = Ax and xi i.i.d. with density

px(x) =
e−φ(x)´
e−φ(u), du

.
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Nonparametric Distribution Estimation

Introduction to Nonparametric Distribution Estimation
In nonparametric distribution estimation, we are interested in estimating the pdf of a
continuous random variable or the probability mass function (pmf) of a discrete
random variable.
Here, we will consider a discrete random variable X with values in the finite set
{α1, . . . , αn} ⊆ R.

The distribution of X is characterized by p ∈ Rn, where pk = Pr{X = αk}, and
satisfies

p � 0 , 1Tp = 1 .

Conversely, if p ∈ Rn satisfies p � 0 and 1Tp = 1, then it defines a probability
distribution for a random variable X, for which Pr{X = αk} = pk.

Therefore, the probability simplex{
p : p � 0 , 1Tp = 1

}
,

is in one-to-one correspondence with all possible probability distributions for a
random variable X taking values in {α1, . . . , αn}.

Given a combination of prior information and, possibly, observations and
measurements, we can often estimate the distribution p using convex optimization.
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Nonparametric Distribution Estimation

Examples of Nonparametric Distribution Estimation
Prior information:

Expected values: As E[f(X)] =
∑n
i=1 pif(αi) = cTp, where ci = f(αi) for i = 1, . . . , n,

we can incorporate expected values of functions as either objectives or constraints.
Nonlinear functions of expected values: In some cases, nonlinear functions of expected
values can be used to create convex inequality constraints in p. For example,

var(X) = E
[
X2
]
− (E[X])2 = −pT aaTp+ bTp , where ai = α2

i , bi = αi ,

is concave in p, and so constraints of the form var(X) ≥ β are convex. Similarly,
Pr{X ∈ A|X ∈ B} = Pr{X ∈ A ∩ B} /Pr{X ∈ B} = cTp/dTp ,

where ci = 1 if αi ∈ A ∩ B and 0 otherwise and di = 1 if αi ∈ B and 0 otherwise, is
linear-fractional in p, and so constraints of the form, ` ≤ Pr{X ∈ A|X ∈ B} ≤ u, are linear
inequality constraints, `dTp ≤ cTp ≤ udTp, and hence convex.

Bounding probabilities and expected values: Given prior information p ∈ P, where P is
convex, upper and lower bounds on E[f(X)] can be found by solving the convex problems,

minimize/maximize
∑n
i=1 f(αi) pi

subject to p ∈ P .

ML estimation: Suppose we observe N independent samples x1, . . . , xN from the distribution
for X. Let ki denote the number of samples with value αi, so that k1 + · · ·+ kn = N . The
log-likelihood function is then `(p) =

∑n
i=1 ki log pi, which is concave in p. Thus, the ML

estimate of p can be found by solving the convex problem
maximize `(p) =

∑n
i=1 ki log pi

subject to p ∈ P .
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Nonparametric Distribution Estimation

Minimum Kullback-Leibler Divergence Problem
The problem of finding a distribution p ∈ Rn that has the minimum Kullback-Leiber divergence
from a given prior distribution q ∈ Rn, with the prior information that p ∈ P, leads to the problem

minimize
∑n
i=1 pi log(pi/qi)

subject to p ∈ P
.

When the set P is convex, the problem is convex. In the special case where q is the uniform
distribution, i.e., q = (1/n)1, the resulting solution p? is called the maximum entropy distribution.
Example: Consider 100 equidistant points αi in [−1, 1] with prior information:
E[X] ∈ [−0.1, 0.1] , E

[
X2
]
∈ [0.5, 0.6] , E

[
3X3 − 2X

]
∈ [−0.3,−0.2] , Pr{X < 0} ∈ [0.3, 0.4] .
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Left: maximum entropy distribution that satisfies the prior information constraints.
Right: bottom and top curves show minimum and maximum possible values of the
cumulative distribution function (cdf) Pr{X ≤ αi}, while the middle curve is the cdf of the
maximum entropy distribution.
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Hypothesis Testing and Optimal Detector Design Deterministic and Randomized Detectors

Hypothesis Testing and Types of Detectors
Hypothesis Testing:
Suppose x is a random variable with n values {x1, . . . ,xn} with a distribution that
depends on a parameter v with m values {v1, . . . ,vm}. This is characterized by a
matrix P ∈ Rn×m with

Pk,` = Pr{x = xk|v = v`} , k = 1, . . . , n , ` = 1, . . . ,m .

The values {v1, . . . ,vm} represent m hypotheses.
Based on an observation x of x, we wish to guess the correct value v`, a
process called hypothesis testing.

Types of Detectors:
There are two main types of detectors, namely deterministic and random detectors.

For deterministic detectors, if we observe xk, we have v̂ = ψ(k). One obvious
choice for ψ(k) is the ML detector, given by

v̂ = ψml(k) = v`?(k) where `?(k) = argmax` Pk,` .

For randomized detectors, the estimate v̂ is random with a distribution that
depends on the observed value of x. It is characterized by a matrix T ∈ Rm×n:

Ti,k = Pr{v̂ = vi|x = xk} , i = 1, . . . ,m , k = 1, . . . , n .

The columns tk of T must satisfy the probability constraints tk � 0 and 1T tk = 1.
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Hypothesis Testing and Optimal Detector Design Deterministic and Randomized Detectors

Detection Probability Matrix

For the randomized detector characterized by the matrix T, we define the detection
probability matrix as D , TP ∈ Rm×m. We have

Di,` = [TP]i,` = Pr {v̂ = vi|v = v`} , i = 1, . . . ,m , ` = 1, . . . ,m .

Hence, Di,` is the probability of guessing v̂ = vi, when in fact v = v` was the true
hypothesis.

Correct detection or detection probabilities:

P d
i = Pr {v̂ = vi|v = vi} = Di,i , i = 1, . . . ,m .

Error probabilities:

P e
i = Pr {v̂ 6= vi|v = vi} = 1−Di,i =

∑
6̀=i

D`,i , i = 1, . . . ,m .

If D = Im, then the detector is perfect: no matter what the parameter v is, we
correctly guess v̂ = v.
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Hypothesis Testing and Optimal Detector Design Optima Detector Design

Minimax and Bayes Detector Designs
Minimax Detector Design:

minimize max
i=1,...,m

P e
i

subject to tk � 0 , 1T tk = 1 , k = 1, . . . , n
.

The minimax detector minimizes the worst-case probability of error over all m
hypotheses.
It can be reformulated as an LP.

Bayes Detector Design:
In Bayes detector design, the hypotheses have a prior distribution given by q ∈ Rm:

qi = Pr{v = vi} , i = 1, . . . ,m .

With this, the probability of error of the detector is given by qTpe, where [pe]i = P e
i for

i = 1, . . . ,m is the vector of error probabilities for the hypotheses. The Bayes detector
design problem is then as follows.

minimize qTpe

subject to tk � 0 , 1T tk = 1 , k = 1, . . . , n
.

This problem is an LP that has a simple analytical solution.
For the special case when q = (1/m)1, the Bayes optimal detector minimizes
the average probability of error.
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Hypothesis Testing and Optimal Detector Design Optima Detector Design

Probability Constraints and Alternate Objectives
Probability Constraints:

Detection probability lower limits:
P d
i = Di,i ≥ Li , i = 1, . . . ,m .

Error probability upper limits:
Dk,` ≤ Uk,` , k 6= ` .

Alternate Objectives or Constraints: (valid when ordering of hypothesis values
v ∈ {v1, . . . ,vm} has some significance)

Bias:

Ei[(v̂ − v)] =
m∑
k=1

(vk − vi)Dk,i , when v = vi .

Mean-square error:

Ei
[
(v̂ − v)2

]
=

m∑
k=1

(vk − vi)2Dk,i , when v = vi .

Average absolute error:

Ei[|v̂ − v|] =
m∑
k=1

|vk − vi|Dk,i , when v = vi .

Andre Tkacenko (JPL) EE/ACM 150 - Lecture 15 May 22, 2012 17 / 23



Hypothesis Testing and Optimal Detector Design Multicriterion Formulation and Scalarization

Formulations of the Optimal Detector Design Problem
Multicriterion Formulation:

minimize (with respect to Rm(m−1)
+ ) Di,` , i, ` = 1, . . . ,m , i 6= `

subject to tk � 0 , 1T tk = 1 , k = 1, . . . , n
.

Scalarization Formulation:
To scalarize the multicriterion problem, we introduce a loss matrix W ∈ Rm×m which satisfies

Wi,i = 0 , i = 1, . . . ,m , Wi,` > 0 , i, ` = 1, . . . ,m , i 6= ` .

We then form the weighted sum objective tr
(
WTD

)
. This leads to the scalarization formulation:

minimize tr
(
WTD

)
subject to tk � 0 , 1T tk = 1 , k = 1, . . . , n

.

As tr
(
WTD

)
= tr

(
WTTP

)
= tr

(
PWTT

)
=
∑n
k=1 c

T
k tk, where ck is the k-th column of

WPT , this objective is separable in tk. Thus, we can solve this problem by separately solving

minimize cTk tk
subject to tk � 0 , 1T tk = 1

,

for k = 1, . . . , n. But this LP has a simple analytic solution: find index i such that
ck,i = min` ck,` and then take t?k = ei. This optimal solution corresponds to a deterministic
detector: when x = xk is observed, our estimate is

v̂ = v`?(k) where `?(k) = argmin
`

[
WPT

]
`,k

.
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Hypothesis Testing and Optimal Detector Design Multicriterion Formulation and Scalarization

MAP and ML Detector Design Problems
MAP Detector:
For a Bayes detector design with prior distribution q, the mean probability of error is

qTpe =
m∑
`=1

q`
∑
k 6=`

Dk,` =
m∑

k,`=1

Wk,`Dk,` ,

if we define the weight matrix W as

Wk,` = q` , k, ` = 1, . . . ,m , k 6= ` , Wk,k = 0 , k = 1, . . . ,m .

Thus, we have, [
WPT

]
`,k

=
∑
i 6=`

qiPk,` =
m∑
i=1

qiPk,i − q`Pk,` .

Note that the first term is independent of `. So, when x = xk is observed, the optimal detector is

v̂ = v`?(k) where `?(k) = argmax
`

(
Pk,`q`

)
.

Since Pk,`q` given the probability that v = v` and x = xk, this detector is a MAP detector.

ML Detector:
For the special case q = (1/m)1, which corresponds to a uniform prior distribution on v, this
MAP detector reduces to an ML detector:

v̂ = v`?(k) where `?(k) = argmax
`

Pk,` .

Hence, an ML detector minimizes the average or mean probability of error.
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Hypothesis Testing and Optimal Detector Design Binary Hypothesis Testing

Likelihood-Ratio Test and Neyman-Pearson Lemma
For the special case in which m = 2, we have binary hypothesis testing. In this case,
x is generated from one of two distributions, p ∈ Rn or q ∈ Rn. Also, we have

D =

[
1− Pfp Pfn

Pfp 1− Pfn

]
.

Pfp is the probability of a false positive, or false alarm probability.

Pfn is the probability of a false negative, or missed detection probability.

The optimal trade-off curve between Pfp and Pfn is called the receiver operating
characteristic (ROC).

For a weight matrix W, an optimal detector, assuming x = xk is observed, is given by

v̂ =

{
v1 , pk/qk > W1,2/W2,1

v2 , pk/qk ≤W1,2/W2,1

,

which is a likelihood ratio threshold test with likelihood ratio pk/qk and threshold
W1,2/W2,1. Choosing different thresholds leads to different Pareto optimal detectors
that give different levels of false positive and false negative error probabilities. This
result is known as the Neyman-Pearson lemma.
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Hypothesis Testing and Optimal Detector Design Binary Hypothesis Testing

Detector Design Example
Consider a binary hypothesis testing example with n = 4 and

P =


0.70 0.10
0.20 0.10
0.05 0.70
0.05 0.10


Four Pareto optimal detector matrices are
given below.

T(1) =

[
1 1 0 1
0 0 1 0

]
T(2) =

[
1 1 0 0
0 0 1 1

]
T(3) =

[
1 0 0 0
0 1 1 1

]
T(4) =

[
1 2/3 0 0
0 1/3 1 1

]
.
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The vertices labeled 1, 2, and 3 correspond to deterministic detectors.
The point labeled 4 corresponds to a random detector.
Here, the dashed line shows Pfn = Pfp. The point at which this line intersects with the
optimal trade-off curve, namely point 4, corresponds to the minimax detector.
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Hypothesis Testing and Optimal Detector Design Robust Detectors

Worst-Case Detection Probability Matrix

When P is not known exactly, but P ∈ P, where P is a known set of possible
distributions, we can attempt to accommodate this uncertainty to develop a
robust detector.
Here, error and detection probabilities will be judged by their worst-case values
over P ∈ P.
This leads us to define a worst-case detection probability matrix Dwc as follows.
Dwc
k,` = sup

P∈P
Dk,` , k, ` = 1, . . . ,m , k 6= ` ,Dwc

k,k = inf
P∈P

Dk,k , k = 1, . . . ,m .

The off-diagonal entries of Dwc give the largest error probabilities, while the
diagonal entries give the smallest detection probabilities, over P ∈ P.
We define the worst-case probability of error as

Pwce
i , 1−Dwc

i,i ,

which is the largest probability of error, when v = vi, over all possible
distributions in P.
The robust minimax detector is defined as the detector that minimizes the
worst-case probability of error, over all hypotheses, i.e., minimizes the objective

max
i
Pwce
i = max

i=1,...,m
sup
P∈P

{
1− [TP]i,i

}
= 1− min

i=1,...,m
inf
P∈P

{
[TP]i,i

}
.
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Examples of Robust Minimax Detectors
Robust minimax detector for finite P:
When P = {P1, . . . ,Pk}, the robust minimax detector can be found by solving

maximize min
i=1,...,m

inf
P∈P

[TP]i,i = min
i=1,...,m

min
`=1,...,k

[TP`]i,i

subject to ti � 0 , 1T ti = 1 , i = 1, . . . , n
.

The objective is concave piecewise-linear, so the problem can be posed as an LP.
The resulting robust minimax detector is also optimal for the polyhedron conv(P).

Robust minimax detector for polyhedral P
When P is a polyhedron of the form

P =
{

P =
[

p1 · · · pm
]
: Akpk = bk , 1Tpk = 1 , pk � 0

}
,

the robust minimax detector design problem can be shown to be expressed as the LP
maximize γ

subject to bTi νi + µi ≥ γ , i = 1, . . . ,m

AT
i νi + µi1 � t̃i , i = 1, . . . ,m

ti � 0 , 1T ti = 1 , i = 1, . . . , n

,

with variables ν1, . . . ,νm, µ1, . . . , µn, and T (with columns t1, . . . , tn and rows
t̃1, . . . , t̃m).
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