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Markov and Chebyshev Inequality Generalization
Generalization of Markov and Chebyshev Inequalities

Convex optimization techniques can be used to generalize classical bounds on the probability of
a set. Two examples of this are the Markov inequality and the closely related Chebyshev
inequality. Recall that if x is any random variable on R, then the Markov and Chebyshev
inequalities respectively state that Pr{|x| > a} < E[|x|] /a and Pr{|x — px| > a} < 02/a for any
a > 0, where px 2 E[x] isthe meanof xand o2 £ E [(x - ux)Q] is the variance of x.
Generalization Assumptions:

® x is a random variable on § C R™ and we would like to bound Pr{x € C}, where C C S.

= Our prior knowledge is that E[fo(x)] = E[1] = ap = 1and E[f;(x)] =a;fori=1,...,n.
Generalization Approach:

m Construct the linear combination f(z) = -7 v; fi(z) and ensure that f(z) > 1¢(z) for

all z € S, where 1¢(z) is the indicator function of C (i.e., 1¢(z) = 1ifz € Cand 0 if z € C).
= If this holds, then Pr{x € C} < E[f(x)] = aTv.

Generalized Markov/Chebyshev Bound Problem:

minimize  vg + a1v1 + - + anvn
subjectto  f(z) = > i vif(z) > 1forzeC
fz2) =" gvif(z) >0forze S, z¢C
m Yields the best upper bound on Pr{x € C} given the assumptions.
= This problem is always convex as the constraints can be posed in terms of convex functions:

91(v) =1- inf f(z) SO, ga(v) =~ inf f(z) <0.

inf
zelg\cf
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Chernoff Bound Generalization
Generalization of Chernoff Bound

Convex optimization can also be used to find an alternate bound on the probability of
a set which leads to a generalization of the Chernoff bound. Recall that if x is a
random variable on R, the Chernoff bound states the following.
. A(x—u) . _ Ax
Pr{x>u} < igfo{E[e ]} < logPr{x > u} < igfo{ )\u—i—logE[e ]} .

To generalize this, we assume as before that x is a random variable on S C R™ and
that we would like to bound Pr{x € C}, where C C S. Then, for some A € R™ and
1 € R, we consider a function f : R™ — R given by

f(z) =X,
and choose X and u to ensure that f(z) > 1¢(z) for all z. This leads to the following
generalization of the Chernoff bound.

Generalized Chernoff Bound:

logPr{x € C} < ir)l\f{Sc(—)\) I logE[e)‘Tx] } .

m Sc(y) is the support function given by S¢(y) = sup {yTw :weC}
m logFE [e*T"] is the cumulant generating function of the distribution.
m Evaluating this bound is, in general, a convex optimization problem.
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Signal Detection Example
Minimum Distance Detector Example

To illustrate the probability bounding capabilities possible with convex optimization, we
consider a symbol detection example from digital communications.

m A symbol s € R" from the set {s1,...,sm} C R" (called the signal constellation)
is transmitted over a noisy channel.

m The received signal is x = s + v, where v is a random variable with E[v] = 0,,x1
and E[VVT} = o°1,.
m To estimate which symbol was sent, we use a minimum distance detector, which
operates as follows. The space R" is partitioned into Voronoi regions V. given by
Vk = {yeRn||yisk||2§”yis7f||27l7ék}7kzl?7ma

= {verm 260"y <l - llsull} i £ kY k=1, ,m.

If x € V&, we estimate the transmitted symbol as s = s;.

= If symbol s, was transmitted, then the probability of correct detection is
Pr{s;+v € V¢}.

m When the noise v is Gaussian, then minimum distance decoding is the same as
maximum likelihood (ML) decoding.
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Probability Bounds Using Convex Optimization Signal Detection Example

Minimum Distance Detector Example (Continued)

Example: (m =7, n = 2)

Chebyshev bounds: (assuming E[v] = 0 and E[vvT] = ¢2I)

m Left: Constellation,
Voronoi regions, and
Chebyshev lower bound
based ellipses for
o=1.

m Right: Chebyshev lower
bounds on the
probability of correct
detection as a function
of o.

probability of correct detection

Chernoff bounds: (assuming the noise is Gaussian)

m Chernoff lower bound (solid line) and Monte
Carlo simulation (dashed line) for the
probability of correct detection of s; .

if— Chernoff lower bound
- - - Monte Carlo simulation

probability of correct detection
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il
Introduction to Experiment Design

Suppose we want to estimate a vector x € R™ given m measurments of the form
yi:aZTx—l—wi, t=1,...,m.
Here, we assume that the measurement errors w; are i.i.d. with distribution A/(0, 1).
m The ML estimate is the least-squares (LS) solution

m -1 m

o T

X = a;a; Yyid .
=1 =1

m The error e = X — x has zero mean and covariance matrix

m —1
E = E[eeT] = (Z aiaiT) .
=1
m The a-confidence level ellipsoid for x is given by
&= { z: (z — X) _l(z—ﬁ)gﬂ},

where [ is a constant that depends on «, m, and n.

Experiment Design: In experiment design, we choose a; € {v1,...,v,} (a set of
possible test vectors) to make E ‘small’ in some sense.
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i il
Experiment Design Problem and its Relaxation

Let my for k = 1,..., p denote the number of experiments a; equal to vi. Then, we have
m1 + ---+mp = m, and also

E=(21, ai‘"z‘TY1 = (k=1 mkvkvg)A

From this, we get the following formulation of the experiment design problem.

Vector/Matrix Optimization Formulation of the Experiment Design Problem:

minimize (with respectto %) E = (30_ myvivE)
subject to mE >0, mi+---+mp=m
my € Z
m This is an NP-complete combinatorial problem due to the integer constraint m;, € Z.
When m >> p, then if A\, £ m;,/m denotes the fraction of experiments equal to v, we can
approximately treat \; as a continuous real variable. This yields the following convex relaxation.
Relaxed Experiment Design Problem:

k=1
subject to A=0,1"x=1

= We can obtain a suboptimal solution to the original problem by setting my = round(mAg).
= There are multiple ways to scalarize the problem, which lead to different optimal designs.
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Determinant (D)-Optimal Design

In determinant or D-optimal design, the scalarization used for the relaxed experiment design
problem is such that the (logarithm of the) determinant of E is minimized.

D-Optimal Design Problem: (Primal)
minimize  logdet (3% _, )\kvkvg)_l
subjectto A =0, 17A=1
Interpretation: This minimizes the volume of the confidence ellipsoids.

D-Optimal Design Problem: (Dual)

maximize logdet W + nlogn
subjectto viWvy <1,k=1,...,p

Interpretation: {x : xTW*x < 1} is the minimum volume ellipsoid centered at the origin, that
includes all test vectors vy.

Complementary Slackness:

For primal optimal A* and dual optimal W*, we have
A (1—V£W*vk) =0,k=1,...,p.
The optimal experiment only uses vectors v, on the boundary of the ellipsoid defined by W*.
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Eigenvalue (E)-Optimal Design

In eigenvalue or E-optimal design, the scalarization used for the relaxed experiment design
problem is such that the maximum eigenvalue of E is minimized.

E-Optimal Design Problem: (Primal)

maximize ¢

minimize H(Zizl /\kvkvg)ilH

2 <« subjectto L ARVEVE =11
subjectto A =0, 17Ax=1

k=1
A=0,17x=1

Interpretation: This minimizes the diameter of the confidence ellipsoids.

E-Optimal Design Problem: (Dual)

maximize tr'W
subjectto VviWv, <1,k=1,...,p .
W >0

Complementary Slackness:

For primal optimal A* and dual optimal W*, we have
2% (1—v,{w*vk) =0,k=1,...,p.
The optimal experiment only uses vectors v;, on the boundary of the ellipsoid defined by W*.
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Average (A)-Optimal Design

In average or A-optimal design, the scalarization used for the relaxed experiment design problem
is such that the trace of E is minimized.

A-Optimal Design Problem: (Primal)

maximize 1Tu
e (Sonn?) e | S @ ],

i 7

subjectto A =0, 1TA=1 A=0,1"A=1

A-Optimal Design Problem: (Dual)

2
maximize (tr W1/2)
subjectto viWvy <1,k=1,...,p
There is an implicit constraint that W € S} here.

Complementary Slackness:

For primal optimal A* and dual optimal W*, we have
Xt (1—v,{w*vk) 0, e il g

The optimal experiment only uses vectors v, on the boundary of the ellipsoid defined by W*.
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Scalarization Approaches
Experiment Design Example
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Top left: D-optimal design A* and W*.

Top right: E-optimal design A* and W*.

Bottom left: A-optimal design A* and W*.

Bottom right: Shape of 90% confidence ellipsoids for D-optimal, E-optimal, and A-optimal,

and uniform designs.
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Extensions
Extensions to Experiment Design Problem

Resource limits:

m Associate a cost ¢, for experiment v;.. This could represent the economic cost or
time required to carry out vi.

m The total cost is then
mic1 + - +mpcp = met X,

m Can add a limit on the total cost with the affine inequality constraint me” A < B,
where B is a budget.

Multiple measurements per experiment: v, € R"*%  with
Vi = [ Ug,1 - Uk ] s

where i, is the number of scalar measurements obtained when experiment vy, is
carried out.

m Can model discounts or time savings associated with performing groups of
measurements simultaneously.

m For example, if the cost of making measurements v; and v, together is less than
the sum of making them separately, we take v; to be

vs=[vi w2 ],
and assign costs c¢1, ¢z, and c3 such that ¢3 < ¢1 + ca.
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