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Probability Bounds Using Convex Optimization Markov and Chebyshev Inequality Generalization

Generalization of Markov and Chebyshev Inequalities
Convex optimization techniques can be used to generalize classical bounds on the probability of
a set. Two examples of this are the Markov inequality and the closely related Chebyshev
inequality. Recall that if x is any random variable on R, then the Markov and Chebyshev
inequalities respectively state that Pr{|x| ≥ a} ≤ E[|x|] /a and Pr{|x− µx| ≥ a} ≤ σ2

x/a for any
a > 0, where µx , E[x] is the mean of x and σ2

x , E
[
(x− µx)2

]
is the variance of x.

Generalization Assumptions:
x is a random variable on S ⊆ Rm and we would like to bound Pr{x ∈ C}, where C ⊆ S.
Our prior knowledge is that E[f0(x)] = E[1] = a0 = 1 and E[fi(x)] = ai for i = 1, . . . , n.

Generalization Approach:
Construct the linear combination f(z) =

∑n
i=0 vifi(z) and ensure that f(z) ≥ 1C(z) for

all z ∈ S, where 1C(z) is the indicator function of C (i.e., 1C(z) = 1 if z ∈ C and 0 if z 6∈ C).
If this holds, then Pr{x ∈ C} ≤ E[f(x)] = aTv.

Generalized Markov/Chebyshev Bound Problem:

minimize v0 + a1v1 + · · ·+ anvn
subject to f(z) =

∑n
i=0 vif(z) ≥ 1 for z ∈ C

f(z) =
∑n
i=0 vif(z) ≥ 0 for z ∈ S , z 6∈ C

.

Yields the best upper bound on Pr{x ∈ C} given the assumptions.
This problem is always convex as the constraints can be posed in terms of convex functions:

g1(v) = 1− inf
z∈C

f(z) ≤ 0 , g2(v) = − inf
z∈S\C

f(z) ≤ 0 .
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Probability Bounds Using Convex Optimization Chernoff Bound Generalization

Generalization of Chernoff Bound
Convex optimization can also be used to find an alternate bound on the probability of
a set which leads to a generalization of the Chernoff bound. Recall that if x is a
random variable on R, the Chernoff bound states the following.

Pr{x ≥ u} ≤ inf
λ≥0

{
E
[
eλ(x−u)

]}
⇐⇒ log Pr{x ≥ u} ≤ inf

λ≥0

{
−λu+ logE

[
eλx
]}

.

To generalize this, we assume as before that x is a random variable on S ⊆ Rm and
that we would like to bound Pr{x ∈ C}, where C ⊆ S. Then, for some λ ∈ Rm and
µ ∈ R, we consider a function f : Rm → R given by

f(z) = eλ
T z+µ ,

and choose λ and µ to ensure that f(z) ≥ 1C(z) for all z. This leads to the following
generalization of the Chernoff bound.

Generalized Chernoff Bound:

log Pr{x ∈ C} ≤ inf
λ

{
SC(−λ) + logE

[
eλ

T x
]}

.

SC(y) is the support function given by SC(y) = sup
{
yTw : w ∈ C

}
.

logE
[
eλ

T x
]

is the cumulant generating function of the distribution.

Evaluating this bound is, in general, a convex optimization problem.
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Probability Bounds Using Convex Optimization Signal Detection Example

Minimum Distance Detector Example
To illustrate the probability bounding capabilities possible with convex optimization, we
consider a symbol detection example from digital communications.

A symbol s ∈ Rn from the set {s1, . . . , sm} ⊆ Rn (called the signal constellation)
is transmitted over a noisy channel.

The received signal is x = s+ v, where v is a random variable with E[v] = 0n×1

and E
[
vvT

]
= σ2In.

To estimate which symbol was sent, we use a minimum distance detector, which
operates as follows. The space Rn is partitioned into Voronoi regions Vk given by

Vk =
{
y ∈ Rn : ||y − sk||2 ≤ ||y − si||2 , i 6= k

}
, k = 1, . . . ,m ,

=
{
y ∈ Rn : 2 (si − sk)

T y ≤ ||si||22 − ||sk||
2
2 , i 6= k

}
, k = 1, . . . ,m .

If x ∈ Vk, we estimate the transmitted symbol as ŝ = sk.

If symbol s` was transmitted, then the probability of correct detection is
Pr{s` + v ∈ V`}.
When the noise v is Gaussian, then minimum distance decoding is the same as
maximum likelihood (ML) decoding.
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Probability Bounds Using Convex Optimization Signal Detection Example

Minimum Distance Detector Example (Continued)
Example: (m = 7, n = 2)
Chebyshev bounds: (assuming E[v] = 0 and E

[
vvT

]
= σ2I)

Left: Constellation,
Voronoi regions, and
Chebyshev lower bound
based ellipses for
σ = 1.

Right: Chebyshev lower
bounds on the
probability of correct
detection as a function
of σ.
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Chernoff bounds: (assuming the noise is Gaussian)

Chernoff lower bound (solid line) and Monte
Carlo simulation (dashed line) for the
probability of correct detection of s1.
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Experiment Design Introduction

Introduction to Experiment Design
Suppose we want to estimate a vector x ∈ Rn given m measurments of the form

yi = aTi x+ wi , i = 1, . . . ,m .

Here, we assume that the measurement errors wi are i.i.d. with distribution N (0, 1).
The ML estimate is the least-squares (LS) solution

x̂ =

(
m∑
i=1

aia
T
i

)−1 m∑
i=1

yiai .

The error e = x̂− x has zero mean and covariance matrix

E = E
[
eeT

]
=

(
m∑
i=1

aia
T
i

)−1

.

The α-confidence level ellipsoid for x is given by

E =
{
z : (z− x̂)T E−1 (z− x̂) ≤ β

}
,

where β is a constant that depends on α, m, and n.
Experiment Design: In experiment design, we choose ai ∈ {v1, . . . ,vp} (a set of
possible test vectors) to make E ‘small’ in some sense.
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Experiment Design Introduction

Experiment Design Problem and its Relaxation
Let mk for k = 1, . . . , p denote the number of experiments ai equal to vk. Then, we have
m1 + · · ·+mp = m, and also

E =
(∑m

i=1 aia
T
i

)−1
=
(∑p

k=1mkvkv
T
k

)−1
.

From this, we get the following formulation of the experiment design problem.

Vector/Matrix Optimization Formulation of the Experiment Design Problem:

minimize (with respect to Sn+) E =
(∑p

k=1mkvkv
T
k

)−1

subject to mk ≥ 0 , m1 + · · ·+mp = m

mk ∈ Z

.

This is an NP-complete combinatorial problem due to the integer constraint mk ∈ Z.

When m� p, then if λk , mk/m denotes the fraction of experiments equal to vk, we can
approximately treat λk as a continuous real variable. This yields the following convex relaxation.

Relaxed Experiment Design Problem:

minimize (with respect to Sn+) E = (1/m)
(∑p

k=1 λkvkv
T
k

)−1

subject to λ � 0 , 1Tλ = 1
.

We can obtain a suboptimal solution to the original problem by setting mk = round(mλk).
There are multiple ways to scalarize the problem, which lead to different optimal designs.
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Experiment Design Scalarization Approaches

Determinant (D)-Optimal Design
In determinant or D-optimal design, the scalarization used for the relaxed experiment design
problem is such that the (logarithm of the) determinant of E is minimized.

D-Optimal Design Problem: (Primal)

minimize log det
(∑p

k=1 λkvkv
T
k

)−1

subject to λ � 0 , 1Tλ = 1
.

Interpretation: This minimizes the volume of the confidence ellipsoids.

D-Optimal Design Problem: (Dual)

maximize log detW + n logn

subject to vTkWvk ≤ 1 , k = 1, . . . , p
.

Interpretation:
{
x : xTW?x ≤ 1

}
is the minimum volume ellipsoid centered at the origin, that

includes all test vectors vk.

Complementary Slackness:

For primal optimal λ? and dual optimal W?, we have

λ?k

(
1− vTkW

?vk

)
= 0 , k = 1, . . . , p .

The optimal experiment only uses vectors vk on the boundary of the ellipsoid defined by W?.
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Experiment Design Scalarization Approaches

Eigenvalue (E)-Optimal Design
In eigenvalue or E-optimal design, the scalarization used for the relaxed experiment design
problem is such that the maximum eigenvalue of E is minimized.

E-Optimal Design Problem: (Primal)

minimize
∣∣∣∣∣∣(∑p

k=1 λkvkv
T
k

)−1
∣∣∣∣∣∣
2

subject to λ � 0 , 1Tλ = 1
⇐⇒

maximize t

subject to
∑p
k=1 λkvkv

T
k � tI

λ � 0 , 1Tλ = 1

.

Interpretation: This minimizes the diameter of the confidence ellipsoids.

E-Optimal Design Problem: (Dual)

maximize trW

subject to vTkWvk ≤ 1 , k = 1, . . . , p

W � 0

.

Complementary Slackness:

For primal optimal λ? and dual optimal W?, we have

λ?k

(
1− vTkW

?vk

)
= 0 , k = 1, . . . , p .

The optimal experiment only uses vectors vk on the boundary of the ellipsoid defined by W?.
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Experiment Design Scalarization Approaches

Average (A)-Optimal Design
In average or A-optimal design, the scalarization used for the relaxed experiment design problem
is such that the trace of E is minimized.

A-Optimal Design Problem: (Primal)

minimize tr

(
p∑
k=1

λkvkv
T
k

)−1

subject to λ � 0 , 1Tλ = 1

⇐⇒

maximize 1Tu

subject to
[ ∑p

k=1 λkvkv
T
k ei

eTi ui

]
� 0 ∀ i

λ � 0 , 1Tλ = 1

.

A-Optimal Design Problem: (Dual)

maximize
(
trW1/2

)2
subject to vTkWvk ≤ 1 , k = 1, . . . , p

.

There is an implicit constraint that W ∈ Sn+ here.

Complementary Slackness:

For primal optimal λ? and dual optimal W?, we have

λ?k

(
1− vTkW

?vk

)
= 0 , k = 1, . . . , p .

The optimal experiment only uses vectors vk on the boundary of the ellipsoid defined by W?.
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Experiment Design Scalarization Approaches

Experiment Design Example
x ∈ R2, p = 20
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Top left: D-optimal design λ? and W?.
Top right: E-optimal design λ? and W?.
Bottom left: A-optimal design λ? and W?.
Bottom right: Shape of 90% confidence ellipsoids for D-optimal, E-optimal, and A-optimal,
and uniform designs.

Andre Tkacenko (JPL) EE/ACM 150 - Lecture 16 May 24, 2012 12 / 13



Experiment Design Extensions

Extensions to Experiment Design Problem
Resource limits:

Associate a cost ck for experiment vk. This could represent the economic cost or
time required to carry out vk.
The total cost is then

m1c1 + · · ·+mpcp = mcTλ .

Can add a limit on the total cost with the affine inequality constraint mcTλ ≤ B,
where B is a budget.

Multiple measurements per experiment: vk ∈ Rn×ik , with

vk =
[
uk,1 · · · uk,ik

]
,

where ik is the number of scalar measurements obtained when experiment vk is
carried out.

Can model discounts or time savings associated with performing groups of
measurements simultaneously.
For example, if the cost of making measurements v1 and v2 together is less than
the sum of making them separately, we take v3 to be

v3 =
[
v1 v2

]
,

and assign costs c1, c2, and c3 such that c3 < c1 + c2.
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