EE/ACM 150 - Applications of Convex Optimization in Signal Processing and Communications
 Lecture 16

Andre Tkacenko

Signal Processing Research Group
Jet Propulsion Laboratory
May 24, 2012

Caltech

Outline

1 Probability Bounds Using Convex Optimization

- Markov and Chebyshev Inequality Generalization
- Chernoff Bound Generalization
- Signal Detection Example

2 Experiment Design

- Introduction
- Scalarization Approaches
- Extensions

Generalization of Markov and Chebyshev Inequalities

Convex optimization techniques can be used to generalize classical bounds on the probability of a set. Two examples of this are the Markov inequality and the closely related Chebyshev inequality. Recall that if x is any random variable on \mathbb{R}, then the Markov and Chebyshev inequalities respectively state that $\operatorname{Pr}\{|\mathrm{x}| \geq a\} \leq E[|\mathrm{x}|] / a$ and $\operatorname{Pr}\left\{\left|\mathrm{x}-\mu_{\mathrm{x}}\right| \geq a\right\} \leq \sigma_{\mathrm{x}}^{2} / a$ for any $a>0$, where $\mu_{\mathrm{x}} \triangleq E[\mathrm{x}]$ is the mean of x and $\sigma_{\mathrm{x}}^{2} \triangleq E\left[\left(\mathrm{x}-\mu_{\mathrm{x}}\right)^{2}\right]$ is the variance of x .

Generalization Assumptions:

■ \mathbf{x} is a random variable on $\mathcal{S} \subseteq \mathbb{R}^{m}$ and we would like to bound $\operatorname{Pr}\{\mathbf{x} \in \mathcal{C}\}$, where $\mathcal{C} \subseteq \mathcal{S}$.
■ Our prior knowledge is that $E\left[f_{0}(\mathbf{x})\right]=E[1]=a_{0}=1$ and $E\left[f_{i}(\mathbf{x})\right]=a_{i}$ for $i=1, \ldots, n$.

Generalization Approach:

- Construct the linear combination $f(\mathbf{z})=\sum_{i=0}^{n} v_{i} f_{i}(\mathbf{z})$ and ensure that $f(\mathbf{z}) \geq \mathbf{1}_{\mathcal{C}}(\mathbf{z})$ for all $\mathbf{z} \in \mathcal{S}$, where $\mathbf{1}_{\mathcal{C}}(\mathbf{z})$ is the indicator function of \mathcal{C} (i.e., $\mathbf{1}_{\mathcal{C}}(\mathbf{z})=1$ if $\mathbf{z} \in \mathcal{C}$ and 0 if $z \notin \mathcal{C}$).
- If this holds, then $\operatorname{Pr}\{\mathbf{x} \in \mathcal{C}\} \leq E[f(\mathbf{x})]=\mathbf{a}^{T} \mathbf{v}$.

Generalized Markov/Chebyshev Bound Problem:

$$
\begin{array}{ll}
\text { minimize } & v_{0}+a_{1} v_{1}+\cdots+a_{n} v_{n} \\
\text { subject to } & f(\mathbf{z})=\sum_{i=0}^{n} v_{i} f(\mathbf{z}) \geq 1 \text { for } \mathbf{z} \in \mathcal{C} \\
& f(\mathbf{z})=\sum_{i=0}^{n} v_{i} f(\mathbf{z}) \geq 0 \text { for } \mathbf{z} \in \mathcal{S}, \mathbf{z} \notin \mathcal{C}
\end{array}
$$

- Yields the best upper bound on $\operatorname{Pr}\{\mathbf{x} \in \mathcal{C}\}$ given the assumptions.
- This problem is always convex as the constraints can be posed in terms of convex functions:

$$
g_{1}(\mathbf{v})=1-\inf _{\mathbf{z} \in \mathcal{C}} f(\mathbf{z}) \leq 0, g_{2}(\mathbf{v})=-\inf _{\mathbf{z} \in \mathcal{S} \backslash \mathcal{C}} f(\mathbf{z}) \leq 0 .
$$

Generalization of Chernoff Bound

Convex optimization can also be used to find an alternate bound on the probability of a set which leads to a generalization of the Chernoff bound. Recall that if x is a random variable on \mathbb{R}, the Chernoff bound states the following.

$$
\operatorname{Pr}\{\mathrm{x} \geq u\} \leq \inf _{\lambda \geq 0}\left\{E\left[e^{\lambda(\mathrm{x}-u)}\right]\right\} \Longleftrightarrow \log \operatorname{Pr}\{\mathrm{x} \geq u\} \leq \inf _{\lambda \geq 0}\left\{-\lambda u+\log E\left[e^{\lambda \mathrm{x}}\right]\right\} .
$$

To generalize this, we assume as before that x is a random variable on $\mathcal{S} \subseteq \mathbb{R}^{m}$ and that we would like to bound $\operatorname{Pr}\{\mathbf{x} \in \mathcal{C}\}$, where $\mathcal{C} \subseteq \mathcal{S}$. Then, for some $\boldsymbol{\lambda} \in \mathbb{R}^{m}$ and $\mu \in \mathbb{R}$, we consider a function $f: \mathbb{R}^{m} \rightarrow \mathbb{R}$ given by

$$
f(\mathbf{z})=e^{\boldsymbol{\lambda}^{T} \mathbf{z}+\mu},
$$

and choose $\boldsymbol{\lambda}$ and μ to ensure that $f(\mathbf{z}) \geq \mathbf{1}_{\mathcal{C}}(\mathbf{z})$ for all \mathbf{z}. This leads to the following generalization of the Chernoff bound.

Generalized Chernoff Bound:

$$
\log \operatorname{Pr}\{\mathbf{x} \in \mathcal{C}\} \leq \inf _{\boldsymbol{\lambda}}\left\{S_{\mathcal{C}}(-\boldsymbol{\lambda})+\log E\left[e^{\boldsymbol{\lambda}^{T} \mathbf{x}}\right]\right\} .
$$

■ $S_{\mathcal{C}}(\mathbf{y})$ is the support function given by $S_{\mathcal{C}}(\mathbf{y})=\sup \left\{\mathbf{y}^{T} \mathbf{w}: \mathbf{w} \in \mathcal{C}\right\}$.

- $\log E\left[e^{\boldsymbol{\lambda}^{T} \mathbf{x}}\right]$ is the cumulant generating function of the distribution.
- Evaluating this bound is, in general, a convex optimization problem.

Minimum Distance Detector Example

To illustrate the probability bounding capabilities possible with convex optimization, we consider a symbol detection example from digital communications.

- A symbol $\mathbf{s} \in \mathbb{R}^{n}$ from the set $\left\{\mathbf{s}_{1}, \ldots, \mathbf{s}_{m}\right\} \subseteq \mathbb{R}^{n}$ (called the signal constellation) is transmitted over a noisy channel.
- The received signal is $\mathbf{x}=\mathbf{s}+\mathbf{v}$, where \mathbf{v} is a random variable with $E[\mathbf{v}]=\mathbf{0}_{n \times 1}$ and $E\left[\mathbf{v v}^{T}\right]=\sigma^{2} \mathbf{I}_{n}$.
- To estimate which symbol was sent, we use a minimum distance detector, which operates as follows. The space \mathbb{R}^{n} is partitioned into Voronoi regions \mathcal{V}_{k} given by

$$
\begin{aligned}
\mathcal{V}_{k} & =\left\{\mathbf{y} \in \mathbb{R}^{n}:\left\|\mathbf{y}-\mathbf{s}_{k}\right\|_{2} \leq\left\|\mathbf{y}-\mathbf{s}_{i}\right\|_{2}, i \neq k\right\}, k=1, \ldots, m \\
& =\left\{\mathbf{y} \in \mathbb{R}^{n}: 2\left(\mathbf{s}_{i}-\mathbf{s}_{k}\right)^{T} \mathbf{y} \leq\left\|\mathbf{s}_{i}\right\|_{2}^{2}-\left\|\mathbf{s}_{k}\right\|_{2}^{2}, i \neq k\right\}, k=1, \ldots, m
\end{aligned}
$$

If $\mathbf{x} \in \mathcal{V}_{k}$, we estimate the transmitted symbol as $\widehat{\mathbf{s}}=\mathbf{s}_{k}$.

- If symbol s_{ℓ} was transmitted, then the probability of correct detection is $\operatorname{Pr}\left\{\mathbf{s}_{\ell}+\mathbf{v} \in \mathcal{V}_{\ell}\right\}$.
- When the noise \mathbf{v} is Gaussian, then minimum distance decoding is the same as maximum likelihood (ML) decoding.

Minimum Distance Detector Example (Continued)

Example: ($m=7, n=2$)
Chebyshev bounds: (assuming $E[\mathbf{v}]=\mathbf{0}$ and $\left.E\left[\mathbf{v v}^{T}\right]=\sigma^{2} \mathbf{I}\right)$

- Left: Constellation, Voronoi regions, and Chebyshev lower bound based ellipses for $\sigma=1$.
- Right: Chebyshev lower bounds on the probability of correct detection as a function of σ.

Chernoff bounds: (assuming the noise is Gaussian)

- Chernoff lower bound (solid line) and Monte Carlo simulation (dashed line) for the probability of correct detection of \mathbf{s}_{1}.

Introduction to Experiment Design

Suppose we want to estimate a vector $\mathbf{x} \in \mathbb{R}^{n}$ given m measurments of the form

$$
y_{i}=\mathbf{a}_{i}^{T} \mathbf{x}+w_{i}, i=1, \ldots, m
$$

Here, we assume that the measurement errors w_{i} are i.i.d. with distribution $\mathcal{N}(0,1)$.

- The ML estimate is the least-squares (LS) solution

$$
\widehat{\mathbf{x}}=\left(\sum_{i=1}^{m} \mathbf{a}_{i} \mathbf{a}_{i}^{T}\right)^{-1} \sum_{i=1}^{m} y_{i} \mathbf{a}_{i} .
$$

- The error $\mathbf{e}=\widehat{\mathrm{x}}-\mathrm{x}$ has zero mean and covariance matrix

$$
\mathbf{E}=E\left[\mathbf{e e}^{T}\right]=\left(\sum_{i=1}^{m} \mathbf{a}_{i} \mathbf{a}_{i}^{T}\right)^{-1} .
$$

- The α-confidence level ellipsoid for \mathbf{x} is given by

$$
\mathcal{E}=\left\{\mathbf{z}:(\mathbf{z}-\widehat{\mathbf{x}})^{T} \mathbf{E}^{-1}(\mathbf{z}-\widehat{\mathbf{x}}) \leq \beta\right\},
$$

where β is a constant that depends on α, m, and n.
Experiment Design: In experiment design, we choose $\mathbf{a}_{i} \in\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}\right\}$ (a set of possible test vectors) to make \mathbf{E} 'small' in some sense.

Experiment Design Problem and its Relaxation

Let m_{k} for $k=1, \ldots, p$ denote the number of experiments \mathbf{a}_{i} equal to \mathbf{v}_{k}. Then, we have $m_{1}+\cdots+m_{p}=m$, and also

$$
\mathbf{E}=\left(\sum_{i=1}^{m} \mathbf{a}_{i} \mathbf{a}_{i}^{T}\right)^{-1}=\left(\sum_{k=1}^{p} m_{k} \mathbf{v}_{k} \mathbf{v}_{k}^{T}\right)^{-1}
$$

From this, we get the following formulation of the experiment design problem.

Vector/Matrix Optimization Formulation of the Experiment Design Problem:

$$
\begin{array}{ll}
\text { minimize (with respect to } \left.\mathbb{S}_{+}^{n}\right) & \mathbf{E}=\left(\sum_{k=1}^{p} m_{k} \mathbf{v}_{k} \mathbf{v}_{k}^{T}\right)^{-1} \\
\text { subject to } & m_{k} \geq 0, m_{1}+\cdots+m_{p}=m \\
& m_{k} \in \mathbb{Z}
\end{array}
$$

■ This is an NP-complete combinatorial problem due to the integer constraint $m_{k} \in \mathbb{Z}$.
When $m \gg p$, then if $\lambda_{k} \triangleq m_{k} / m$ denotes the fraction of experiments equal to \mathbf{v}_{k}, we can approximately treat λ_{k} as a continuous real variable. This yields the following convex relaxation.

Relaxed Experiment Design Problem:

$$
\begin{array}{ll}
\text { minimize (with respect to } \mathbb{S}_{+}^{n} \text {) } & \mathbf{E}=(1 / m)\left(\sum_{k=1}^{p} \lambda_{k} \mathbf{v}_{k} \mathbf{v}_{k}^{T}\right)^{-1} \\
\text { subject to } & \boldsymbol{\lambda} \succeq \mathbf{0}, \mathbf{1}^{T} \boldsymbol{\lambda}=1
\end{array}
$$

- We can obtain a suboptimal solution to the original problem by setting $m_{k}=\operatorname{round}\left(m \lambda_{k}\right)$.
- There are multiple ways to scalarize the problem, which lead to different optimal designs.

Determinant (D)-Optimal Design

In determinant or D-optimal design, the scalarization used for the relaxed experiment design problem is such that the (logarithm of the) determinant of \mathbf{E} is minimized.

D-Optimal Design Problem: (Primal)

$$
\begin{array}{ll}
\text { minimize } & \log \operatorname{det}\left(\sum_{k=1}^{p} \lambda_{k} \mathbf{v}_{k} \mathbf{v}_{k}^{T}\right)^{-1} \\
\text { subject to } & \boldsymbol{\lambda} \succeq \mathbf{0}, \mathbf{1}^{T} \boldsymbol{\lambda}=1
\end{array}
$$

Interpretation: This minimizes the volume of the confidence ellipsoids.

D-Optimal Design Problem: (Dual)

$$
\begin{array}{ll}
\operatorname{maximize} & \log \operatorname{det} \mathbf{W}+n \log n \\
\text { subject to } & \mathbf{v}_{k}^{T} \mathbf{W} \mathbf{v}_{k} \leq 1, k=1, \ldots, p
\end{array}
$$

Interpretation: $\left\{\mathbf{x}: \mathbf{x}^{T} \mathbf{W}^{\star} \mathbf{x} \leq 1\right\}$ is the minimum volume ellipsoid centered at the origin, that includes all test vectors \mathbf{v}_{k}.

Complementary Slackness:

For primal optimal $\boldsymbol{\lambda}^{\star}$ and dual optimal \mathbf{W}^{\star}, we have

$$
\lambda_{k}^{\star}\left(1-\mathbf{v}_{k}^{T} \mathbf{W}^{\star} \mathbf{v}_{k}\right)=0, k=1, \ldots, p
$$

The optimal experiment only uses vectors \mathbf{v}_{k} on the boundary of the ellipsoid defined by \mathbf{W}^{\star}.

Eigenvalue (E)-Optimal Design

In eigenvalue or E-optimal design, the scalarization used for the relaxed experiment design problem is such that the maximum eigenvalue of \mathbf{E} is minimized.

E-Optimal Design Problem: (Primal)

$$
\begin{array}{llll}
\text { minimize } & \left\|\left(\sum_{k=1}^{p} \lambda_{k} \mathbf{v}_{k} \mathbf{v}_{k}^{T}\right)^{-1}\right\|_{2} \Longleftrightarrow & \text { maximize } & t \\
\text { subject to } & \boldsymbol{\lambda} \succeq \mathbf{0}, \mathbf{1}^{T} \boldsymbol{\lambda}=1 & \text { subject to } & \sum_{k=1}^{p} \lambda_{k} \mathbf{v}_{k} \mathbf{v}_{k}^{T} \succeq \\
& \boldsymbol{\lambda} \succeq \mathbf{0}, \mathbf{1}^{T} \boldsymbol{\lambda}=1
\end{array}
$$

Interpretation: This minimizes the diameter of the confidence ellipsoids.

E-Optimal Design Problem: (Dual)

$$
\begin{array}{ll}
\operatorname{maximize} & \operatorname{tr} \mathbf{W} \\
\text { subject to } & \mathbf{v}_{k}^{T} \mathbf{W} \mathbf{v}_{k} \leq 1, k=1, \ldots, p . \\
& \mathbf{W} \succeq \mathbf{0}
\end{array}
$$

Complementary Slackness:

For primal optimal $\boldsymbol{\lambda}^{\star}$ and dual optimal \mathbf{W}^{\star}, we have

$$
\lambda_{k}^{\star}\left(1-\mathbf{v}_{k}^{T} \mathbf{W}^{\star} \mathbf{v}_{k}\right)=0, k=1, \ldots, p
$$

The optimal experiment only uses vectors \mathbf{v}_{k} on the boundary of the ellipsoid defined by \mathbf{W}^{\star}.

Average (A)-Optimal Design

In average or A-optimal design, the scalarization used for the relaxed experiment design problem is such that the trace of \mathbf{E} is minimized.

A-Optimal Design Problem: (Primal)

minimize $\operatorname{tr}\left(\sum_{k=1}^{p} \lambda_{k} \mathbf{v}_{k} \mathbf{v}_{k}^{T}\right)^{-1}$
\Longleftrightarrow subject to

$$
\begin{aligned}
& \mathbf{1}^{T} \mathbf{u} \\
& {\left[\begin{array}{c}
\sum_{k=1}^{p} \lambda_{k} \mathbf{v}_{k} \mathbf{v}_{k}^{T} \\
\mathbf{e}_{i}^{T}
\end{array}\right.} \\
& \boldsymbol{\lambda} \succeq \mathbf{0}, \mathbf{1}^{T} \boldsymbol{\lambda}=1
\end{aligned}
$$

$$
\left[\begin{array}{cc}
\sum_{k=1}^{p} \lambda_{k} \mathbf{v}_{k} \mathbf{v}_{k}^{T} & \mathbf{e}_{i} \\
\mathbf{e}_{i}^{T} & u_{i}
\end{array}\right] \succeq \mathbf{0} \forall i
$$

A-Optimal Design Problem: (Dual)

$$
\begin{array}{ll}
\operatorname{maximize} & \left(\operatorname{tr} \mathbf{W}^{1 / 2}\right)^{2} \\
\text { subject to } & \mathbf{v}_{k}^{T} \mathbf{W} \mathbf{v}_{k} \leq 1, k=1, \ldots, p
\end{array}
$$

There is an implicit constraint that $\mathbf{W} \in \mathbb{S}_{+}^{n}$ here.

Complementary Slackness:

For primal optimal $\boldsymbol{\lambda}^{\star}$ and dual optimal \mathbf{W}^{\star}, we have

$$
\lambda_{k}^{\star}\left(1-\mathbf{v}_{k}^{T} \mathbf{W}^{\star} \mathbf{v}_{k}\right)=0, k=1, \ldots, p
$$

The optimal experiment only uses vectors \mathbf{v}_{k} on the boundary of the ellipsoid defined by \mathbf{W}^{\star}.

Experiment Design Example

$\mathrm{x} \in \mathbb{R}^{2}, p=20$

- Top left: D-optimal design $\boldsymbol{\lambda}^{\star}$ and \mathbf{W}^{\star}.
- Top right: E-optimal design $\boldsymbol{\lambda}^{\star}$ and \mathbf{W}^{\star}.
- Bottom left: A-optimal design $\boldsymbol{\lambda}^{\star}$ and \mathbf{W}^{\star}.

■ Bottom right: Shape of 90% confidence ellipsoids for D-optimal, E-optimal, and A-optimal, and uniform designs.

Extensions to Experiment Design Problem

Resource limits:

\square Associate a cost c_{k} for experiment \mathbf{v}_{k}. This could represent the economic cost or time required to carry out \mathbf{v}_{k}.

- The total cost is then

$$
m_{1} c_{1}+\cdots+m_{p} c_{p}=m \mathbf{c}^{T} \boldsymbol{\lambda}
$$

■ Can add a limit on the total cost with the affine inequality constraint $m \mathbf{c}^{T} \boldsymbol{\lambda} \leq B$, where B is a budget.
Multiple measurements per experiment: $\mathbf{v}_{k} \in \mathbb{R}^{n \times i_{k}}$, with

$$
\mathbf{v}_{k}=\left[\begin{array}{lll}
\mathbf{u}_{k, 1} & \cdots & \mathbf{u}_{k, i_{k}}
\end{array}\right]
$$

where i_{k} is the number of scalar measurements obtained when experiment \mathbf{v}_{k} is carried out.

- Can model discounts or time savings associated with performing groups of measurements simultaneously.
■ For example, if the cost of making measurements \mathbf{v}_{1} and \mathbf{v}_{2} together is less than the sum of making them separately, we take v_{3} to be

$$
\mathbf{v}_{3}=\left[\begin{array}{ll}
\mathbf{v}_{1} & \mathbf{v}_{2}
\end{array}\right],
$$

and assign costs c_{1}, c_{2}, and c_{3} such that $c_{3}<c_{1}+c_{2}$.

