EE/ACM 150 - Applications of Convex Optimization in Signal Processing and Communications Lecture 16

Andre Tkacenko

Signal Processing Research Group Jet Propulsion Laboratory

May 24, 2012

Probability Bounds Using Convex Optimization

- Markov and Chebyshev Inequality Generalization
- Chernoff Bound Generalization
- Signal Detection Example

2 Experiment Design

- Introduction
- Scalarization Approaches
- Extensions

Generalization of Markov and Chebyshev Inequalities

Convex optimization techniques can be used to generalize classical bounds on the probability of a set. Two examples of this are the *Markov inequality* and the closely related *Chebyshev inequality*. Recall that if x is any random variable on \mathbb{R} , then the Markov and Chebyshev inequalities respectively state that $\Pr\{|x| \ge a\} \le E[|x|]/a$ and $\Pr\{|x - \mu_x| \ge a\} \le \sigma_x^2/a$ for any a > 0, where $\mu_x \triangleq E[x]$ is the mean of x and $\sigma_x^2 \triangleq E[(x - \mu_x)^2]$ is the variance of x.

Generalization Assumptions:

- \mathbf{x} is a random variable on $S \subseteq \mathbb{R}^m$ and we would like to bound $\Pr{\{\mathbf{x} \in C\}}$, where $C \subseteq S$.
- Our prior knowledge is that $E[f_0(\mathbf{x})] = E[1] = a_0 = 1$ and $E[f_i(\mathbf{x})] = a_i$ for i = 1, ..., n.

Generalization Approach:

- Construct the linear combination $f(\mathbf{z}) = \sum_{i=0}^{n} v_i f_i(\mathbf{z})$ and ensure that $f(\mathbf{z}) \ge \mathbf{1}_{\mathcal{C}}(\mathbf{z})$ for all $\mathbf{z} \in \mathcal{S}$, where $\mathbf{1}_{\mathcal{C}}(\mathbf{z})$ is the *indicator function* of \mathcal{C} (i.e., $\mathbf{1}_{\mathcal{C}}(\mathbf{z}) = 1$ if $\mathbf{z} \in \mathcal{C}$ and 0 if $z \notin \mathcal{C}$).
- If this holds, then $\Pr{\{\mathbf{x} \in C\} \le E[f(\mathbf{x})] = \mathbf{a}^T \mathbf{v}}$.

Generalized Markov/Chebyshev Bound Problem:

minimize	$v_0 + a_1 v_1 + \dots + a_n v_n$
subject to	$f(\mathbf{z}) = \sum_{i=0}^{n} v_i f(\mathbf{z}) \ge 1$ for $\mathbf{z} \in \mathcal{C}$
	$f(\mathbf{z}) = \sum_{i=0}^{n} v_i f(\mathbf{z}) \ge 0$ for $\mathbf{z} \in S$, $\mathbf{z} \notin C$

- Yields the best upper bound on $Pr{x \in C}$ given the assumptions.
- This problem is always convex as the constraints can be posed in terms of convex functions:

$$g_1(\mathbf{v}) = 1 - \inf_{\mathbf{z} \in \mathcal{C}} f(\mathbf{z}) \le 0, \ g_2(\mathbf{v}) = - \inf_{\mathbf{z} \in \mathcal{S} \setminus \mathcal{C}} f(\mathbf{z}) \le 0.$$

Generalization of Chernoff Bound

Convex optimization can also be used to find an alternate bound on the probability of a set which leads to a generalization of the *Chernoff bound*. Recall that if x is a random variable on \mathbb{R} , the Chernoff bound states the following.

$$\Pr\{\mathbf{x} \ge u\} \le \inf_{\lambda \ge 0} \left\{ E\left[e^{\lambda(\mathbf{x}-u)}\right] \right\} \Longleftrightarrow \log \Pr\{\mathbf{x} \ge u\} \le \inf_{\lambda \ge 0} \left\{ -\lambda u + \log E\left[e^{\lambda \mathbf{x}}\right] \right\}.$$

To generalize this, we assume as before that \mathbf{x} is a random variable on $S \subseteq \mathbb{R}^m$ and that we would like to bound $\Pr{\{\mathbf{x} \in C\}}$, where $C \subseteq S$. Then, for some $\lambda \in \mathbb{R}^m$ and $\mu \in \mathbb{R}$, we consider a function $f : \mathbb{R}^m \to \mathbb{R}$ given by

$$f(\mathbf{z}) = e^{\boldsymbol{\lambda}^T \mathbf{z} + \mu} \,,$$

and choose λ and μ to ensure that $f(\mathbf{z}) \geq \mathbf{1}_{\mathcal{C}}(\mathbf{z})$ for all \mathbf{z} . This leads to the following generalization of the Chernoff bound.

Generalized Chernoff Bound:

$$\log \Pr\{\mathbf{x} \in \mathcal{C}\} \leq \inf_{\boldsymbol{\lambda}} \left\{ S_{\mathcal{C}}(-\boldsymbol{\lambda}) + \log E\left[e^{\boldsymbol{\lambda}^T \mathbf{x}}\right] \right\} \,.$$

• $S_{\mathcal{C}}(\mathbf{y})$ is the support function given by $S_{\mathcal{C}}(\mathbf{y}) = \sup \{\mathbf{y}^T \mathbf{w} : \mathbf{w} \in \mathcal{C}\}.$

■ $\log E\left[e^{\lambda^T \mathbf{x}}\right]$ is the *cumulant generating function* of the distribution.

Evaluating this bound is, in general, a convex optimization problem.

Andre Tkacenko (JPL)

EE/ACM 150 - Lecture 16

Minimum Distance Detector Example

To illustrate the probability bounding capabilities possible with convex optimization, we consider a symbol detection example from digital communications.

- A symbol $s \in \mathbb{R}^n$ from the set $\{s_1, \ldots, s_m\} \subseteq \mathbb{R}^n$ (called the *signal constellation*) is transmitted over a noisy channel.
- The received signal is $\mathbf{x} = \mathbf{s} + \mathbf{v}$, where \mathbf{v} is a random variable with $E[\mathbf{v}] = \mathbf{0}_{n \times 1}$ and $E[\mathbf{v}\mathbf{v}^T] = \sigma^2 \mathbf{I}_n$.
- To estimate which symbol was sent, we use a *minimum distance detector*, which operates as follows. The space ℝⁿ is partitioned into *Voronoi regions* V_k given by

$$\begin{aligned} \mathcal{V}_{k} &= \left\{ \mathbf{y} \in \mathbb{R}^{n} : ||\mathbf{y} - \mathbf{s}_{k}||_{2} \leq ||\mathbf{y} - \mathbf{s}_{i}||_{2} , i \neq k \right\}, \ k = 1, \dots, m, \\ &= \left\{ \mathbf{y} \in \mathbb{R}^{n} : 2 \left(\mathbf{s}_{i} - \mathbf{s}_{k} \right)^{T} \mathbf{y} \leq ||\mathbf{s}_{i}||_{2}^{2} - ||\mathbf{s}_{k}||_{2}^{2} , i \neq k \right\}, \ k = 1, \dots, m. \end{aligned}$$

If $\mathbf{x} \in \mathcal{V}_k$, we estimate the transmitted symbol as $\widehat{\mathbf{s}} = \mathbf{s}_k$.

- If symbol s_{ℓ} was transmitted, then the probability of correct detection is $\Pr{\{s_{\ell} + v \in \mathcal{V}_{\ell}\}}$.
- When the noise v is Gaussian, then minimum distance decoding is the same as maximum likelihood (ML) decoding.

Andre Tkacenko (JPL)

EE/ACM 150 - Lecture 16

Minimum Distance Detector Example (Continued)

Example: (m = 7, n = 2)

Chebyshev bounds: (assuming $E[\mathbf{v}] = \mathbf{0}$ and $E[\mathbf{v}\mathbf{v}^T] = \sigma^2 \mathbf{I}$)

- Left: Constellation, Voronoi regions, and Chebyshev lower bound based ellipses for $\sigma = 1$.
- Right: Chebyshev lower bounds on the probability of correct detection as a function of *σ*.

$\begin{array}{c} \bullet \mathbf{s}_{3} \\ \bullet \mathbf{s}_{4} \\ \bullet \mathbf{s}_{5} \\ \bullet \mathbf{s}_{5} \\ \bullet \mathbf{s}_{6} \\ \bullet \mathbf{s}_{5} \\ \bullet \mathbf{s}_{6} \\ \bullet \mathbf{s}_{6}$

Chernoff lower bound (solid line) and Monte Carlo simulation (dashed line) for the probability of correct detection of s₁.

Introduction to Experiment Design

Suppose we want to estimate a vector $\mathbf{x} \in \mathbb{R}^n$ given m measurments of the form

$$y_i = \mathbf{a}_i^T \mathbf{x} + w_i, \ i = 1, \dots, m$$

Here, we assume that the measurement errors w_i are i.i.d. with distribution $\mathcal{N}(0,1)$.

The ML estimate is the least-squares (LS) solution

$$\widehat{\mathbf{x}} = \left(\sum_{i=1}^m \mathbf{a}_i \mathbf{a}_i^T
ight)^{-1} \sum_{i=1}^m y_i \mathbf{a}_i \, .$$

The error $\mathbf{e} = \hat{\mathbf{x}} - \mathbf{x}$ has zero mean and covariance matrix

$$\mathbf{E} = E\left[\mathbf{e}\mathbf{e}^{T}\right] = \left(\sum_{i=1}^{m} \mathbf{a}_{i} \mathbf{a}_{i}^{T}\right)^{-1}$$

The α -confidence level ellipsoid for x is given by

$$\mathcal{E} = \left\{ \mathbf{z} : \left(\mathbf{z} - \widehat{\mathbf{x}} \right)^T \mathbf{E}^{-1} \left(\mathbf{z} - \widehat{\mathbf{x}} \right) \le \beta \right\} \,,$$

where β is a constant that depends on α , *m*, and *n*.

Experiment Design: In *experiment design*, we choose $\mathbf{a}_i \in {\mathbf{v}_1, \ldots, \mathbf{v}_n}$ (a set of possible test vectors) to make E 'small' in some sense.

Andre Tkacenko (JPL)

EE/ACM 150 - Lecture 16

Experiment Design Problem and its Relaxation

Let m_k for k = 1, ..., p denote the number of experiments \mathbf{a}_i equal to \mathbf{v}_k . Then, we have $m_1 + \cdots + m_p = m$, and also

$$\mathbf{E} = \left(\sum_{i=1}^{m} \mathbf{a}_i \mathbf{a}_i^T\right)^{-1} = \left(\sum_{k=1}^{p} m_k \mathbf{v}_k \mathbf{v}_k^T\right)^{-1}$$

From this, we get the following formulation of the experiment design problem.

Vector/Matrix Optimization Formulation of the Experiment Design Problem:

minimize (with respect to \mathbb{S}^n_+) $\mathbf{E} = \left(\sum_{k=1}^p m_k \mathbf{v}_k \mathbf{v}_k^T\right)^{-1}$ subject to $m_k \ge 0, m_1 + \dots + m_p = m$. $m_k \in \mathbb{Z}$

This is an NP-complete combinatorial problem due to the integer constraint $m_k \in \mathbb{Z}$.

When $m \gg p$, then if $\lambda_k \triangleq m_k/m$ denotes the fraction of experiments equal to \mathbf{v}_k , we can approximately treat λ_k as a continuous real variable. This yields the following convex relaxation.

Relaxed Experiment Design Problem:

minimize (with respect to \mathbb{S}^n_+) $\mathbf{E} = (1/m) \left(\sum_{k=1}^p \lambda_k \mathbf{v}_k \mathbf{v}_k^T \right)^{-1}$ subject to $\boldsymbol{\lambda} \succeq \mathbf{0}, \ \mathbf{1}^T \boldsymbol{\lambda} = 1$

We can obtain a suboptimal solution to the original problem by setting $m_k = \text{round}(m\lambda_k)$.

There are multiple ways to scalarize the problem, which lead to different optimal designs.

Determinant (D)-Optimal Design

In *determinant* or *D*-optimal design, the scalarization used for the relaxed experiment design problem is such that the (logarithm of the) determinant of \mathbf{E} is minimized.

D-Optimal Design Problem: (Primal)

minimize
$$\log \det \left(\sum_{k=1}^{p} \lambda_k \mathbf{v}_k \mathbf{v}_k^T \right)^{-1}$$

subject to $\boldsymbol{\lambda} \succeq \mathbf{0}, \ \mathbf{1}^T \boldsymbol{\lambda} = 1$

Interpretation: This minimizes the volume of the confidence ellipsoids.

D-Optimal Design Problem: (Dual)

 $\begin{array}{ll} \mbox{maximize} & \log \det \mathbf{W} + n \log n \\ \mbox{subject to} & \mathbf{v}_k^T \mathbf{W} \mathbf{v}_k \leq 1 \,, \, k = 1, \dots, p \end{array} .$

Interpretation: $\{\mathbf{x} : \mathbf{x}^T \mathbf{W}^* \mathbf{x} \leq 1\}$ is the minimum volume ellipsoid centered at the origin, that includes all test vectors \mathbf{v}_k .

Complementary Slackness:

For primal optimal λ^{\star} and dual optimal \mathbf{W}^{\star} , we have

$$\lambda_k^{\star} \left(1 - \mathbf{v}_k^T \mathbf{W}^{\star} \mathbf{v}_k \right) = 0, \ k = 1, \dots, p.$$

The optimal experiment only uses vectors \mathbf{v}_k on the boundary of the ellipsoid defined by \mathbf{W}^{\star} .

Eigenvalue (E)-Optimal Design

In *eigenvalue* or *E*-optimal design, the scalarization used for the relaxed experiment design problem is such that the maximum eigenvalue of \mathbf{E} is minimized.

E-Optimal Design Problem: (Primal)

 $\begin{array}{ll} \text{minimize} & \left\| \left(\sum_{k=1}^{p} \lambda_k \mathbf{v}_k \mathbf{v}_k^T \right)^{-1} \right\|_2 & \underset{\text{subject to}}{\longrightarrow} & \text{subject to} & \left\| \sum_{k=1}^{p} \lambda_k \mathbf{v}_k \mathbf{v}_k^T \succeq t \mathbf{I} \right\|_2 \\ \text{subject to} & \boldsymbol{\lambda} \succeq \mathbf{0}, \ \mathbf{1}^T \boldsymbol{\lambda} = 1 & \boldsymbol{\lambda} \succeq \mathbf{0}, \ \mathbf{1}^T \boldsymbol{\lambda} = 1 \end{array}$

Interpretation: This minimizes the diameter of the confidence ellipsoids.

E-Optimal Design Problem: (Dual)

$$\begin{array}{ll} \text{maximize} & \operatorname{tr} \mathbf{W} \\ \text{subject to} & \mathbf{v}_k^T \mathbf{W} \mathbf{v}_k \leq 1 \,, \; k = 1, \dots, p & . \\ & \mathbf{W} \succeq \mathbf{0} \end{array}$$

Complementary Slackness:

For primal optimal λ^{\star} and dual optimal \mathbf{W}^{\star} , we have

$$\lambda_k^{\star} \left(1 - \mathbf{v}_k^T \mathbf{W}^{\star} \mathbf{v}_k \right) = 0, \ k = 1, \dots, p.$$

The optimal experiment only uses vectors \mathbf{v}_k on the boundary of the ellipsoid defined by \mathbf{W}^* .

Average (A)-Optimal Design

In *average* or A-optimal design, the scalarization used for the relaxed experiment design problem is such that the trace of \mathbf{E} is minimized.

A-Optimal Design Problem: (Primal)

$$\begin{array}{ll} \text{minimize} & \operatorname{tr} \left(\sum_{k=1}^{p} \lambda_k \mathbf{v}_k \mathbf{v}_k^T \right)^{-1} & \underset{\text{subject to}}{\operatorname{maximize}} & \mathbf{1}^T \mathbf{u} \\ & \underset{\text{subject to}}{\overset{p}{\underset{k=1}{\sum}} \lambda_k \mathbf{v}_k \mathbf{v}_k^T & \mathbf{e}_i \\ & \mathbf{e}_i^T & u_i \end{array} \right] \succeq \mathbf{0} \ \forall \ i \\ & \underset{\text{subject to}}{\overset{p}{\underset{k=1}{\sum}} \lambda_k \mathbf{v}_k \mathbf{v}_k^T & \mathbf{e}_i \\ & \mathbf{e}_i^T & u_i \end{array} \right] \succeq \mathbf{0} \ \forall \ i \\ & \underset{\text{subject to}}{\overset{p}{\underset{k=1}{\sum}} \lambda_k \mathbf{v}_k \mathbf{v}_k \mathbf{v}_k^T & \mathbf{e}_i \\ & \underset{\text{subject to}}{\overset{p}{\underset{k=1}{\sum}} \lambda_k \mathbf{v}_k \mathbf{$$

A-Optimal Design Problem: (Dual)

maximize
$$\left(\operatorname{tr} \mathbf{W}^{1/2}\right)^2$$

subject to $\mathbf{v}_k^T \mathbf{W} \mathbf{v}_k \leq 1, \ k = 1, \dots, p$

There is an implicit constraint that $\mathbf{W} \in \mathbb{S}^n_+$ here.

Complementary Slackness:

For primal optimal λ^{\star} and dual optimal \mathbf{W}^{\star} , we have

$$\lambda_k^{\star} \left(1 - \mathbf{v}_k^T \mathbf{W}^{\star} \mathbf{v}_k \right) = 0, \ k = 1, \dots, p.$$

The optimal experiment only uses vectors \mathbf{v}_k on the boundary of the ellipsoid defined by \mathbf{W}^* .

Experiment Design Example $\mathbf{x} \in \mathbb{R}^2, p = 20$

- Top left: *D*-optimal design λ^* and \mathbf{W}^* .
- Top right: *E*-optimal design λ^* and \mathbf{W}^* .
- Bottom left: A-optimal design λ^* and \mathbf{W}^* .
- Bottom right: Shape of 90% confidence ellipsoids for *D*-optimal, *E*-optimal, and *A*-optimal, and uniform designs.

Extensions to Experiment Design Problem

Resource limits:

- Associate a cost ck for experiment vk. This could represent the economic cost or time required to carry out vk.
- The total cost is then

$$m_1c_1+\cdots+m_pc_p=m\mathbf{c}^T\boldsymbol{\lambda}$$
.

Can add a limit on the total cost with the affine inequality constraint $m\mathbf{c}^T \boldsymbol{\lambda} \leq B$, where *B* is a budget.

Multiple measurements per experiment: $\mathbf{v}_k \in \mathbb{R}^{n imes i_k}$, with

$$\mathbf{v}_k = \left[\begin{array}{ccc} \mathbf{u}_{k,1} & \cdots & \mathbf{u}_{k,i_k} \end{array} \right] \,,$$

where i_k is the number of scalar measurements obtained when experiment \mathbf{v}_k is carried out.

- Can model discounts or time savings associated with performing groups of measurements simultaneously.
- For example, if the cost of making measurements v_1 and v_2 together is less than the sum of making them separately, we take v_3 to be

$$\mathbf{v}_3 = \left[\begin{array}{cc} \mathbf{v}_1 & \mathbf{v}_2 \end{array} \right] \,,$$

and assign costs c_1 , c_2 , and c_3 such that $c_3 < c_1 + c_2$.