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Distance and Projection on a Set

The distance from a point xo € R" to a closed set C C R", with respect to the norm
|||, is defined as

dist(xo,C) £ inf{||x — xo|| : x €C} .
The projection of xo on C is any point z € C for which ||z — xo|| = dist(x0,C). The
notation P¢ : R™ — R" is used to denote any function for which P¢(xo) is a projection
of xg onto C, i.e., for all xo, we have
Pe(x0) € C, ||Pe(x0) — xo|| = dist(x0,C) <= Pc(x0) = argmin{||x — xo|| : x € C} .
Properties:
m If C is closed and convex, and ||-|| is strictly convex, then for any xo, there is a
unique projection Pe(xo) onto C.

m If, for every xo, there is a unique Euclidean projection of xo on C, then C is
closed and convex.

Example: Projection onto rank-k matrices
Suppose that we have

Xo e R™™, C={X eR™" :rank(X) <k} , ||| =], = spectral norm.

If Xo has an SVD given by Xo = Y"7_, o;u;v;, where r = rank(X,), and we have
01> >0, >0, thenY = Y% 5.u,vT is a projection of X, on C.
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Introduction
Projection Via Indicator and Support Functions

The problem of finding the distance from a point x, to a set C (along with its dual) can
be expressed compactly using the indicator function I and the support function Sc:

[c(x)A{ 0. xec , Se(x) £ supx”y.
©, x¢C yec
The primal problem of finding the distance between x¢ and C can then be expressed as
minimize  ||x — xol| minimize  ||y]|
subjectto I¢(x) <0 <= subjectto I¢(x) <0
X0 —X=Y
Note that the primal problem is convex if C is a closed convex set. The dual problem of
the second form of the primal is given by
maximize z” x¢ — Sec(z)
subjectto [|z||g <1

m If Cis a closed convex set (i.e., the primal is convex), then if z is dual optimal
with a positive objective value, then z7x, > zTx for all x € C, i.e., z defines a
separating hyperplane between x, and C.
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Projecting a Point on a Convex Set

If C is convex, then Pc(x0) and dist(xo,C) can be computed via convex optimization.
Representing C by a set of convex inequalities f;(x) < 0fori=1,...,m and affine

equalites Ax = b (A € RP*", b € RP), dist(xo,C) and Pc(xo) can be found by solving
minimize  ||x — xo| minimize  ||y||
subjectto  fi(x) <0,i=1,...,m PR subjectto  fi(x) <0,:i=1,.
Ax =D Ax=Db

co,m

Xg—X=Y
The dual problem of the second form of the primal is given by the following.

i=1

maximize p”xo + inf{z Nifi(x) + 7 (Ax —b) — ,LTX}
subjectto A >0
llullg <1

m The primal problem is feasible if and only if C is nonempty.

m When the primal is feasible, its optimal value is dist(xo, C), and any optimal point
is a projection of xo on C.
= The dual problem leads to insights regarding separation of x, and C.
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Projection Onto Convex Sets
Euclidean Projection Examples

Euclidean projection on a polyhedron:
The projection of x¢ on a polyhedron P = {x : Ax < b} can be computed by solving the QP
minimize  ||x — xo||3
subjectto Ax=<b
m For the hyperplane Cy,, = {x : aTx = b} and halfspace Cy,s = {x : aTx < b}, we have
(b—aTxo) X0 + (b — aTx0> a/ ||a|\§ , aTxg>b

Pe,, (x0) = x0 + 5
i [lall3 X0, aTxq <b

a, Pe,. (x0) = {

m For the box Cpox = {x : 1 < x < u} (where 1 < u), we have [P¢,  (x0)], =l for
[%0]p < ks [%o]y, for iy, < [xo]), < ug, and uy, for [xoly, > uy.
Euclidean projection on a proper cone:
The projection of xo onto a proper cone K can be obtained by solving the problem
minimize  ||x — xo||2
subjectto x>x O
The KKT conditions for this problem can be expressed in terms of a primal nonnegative and dual
nonpositive decomposition as follows.
X0 =X4+x_, X4 =0, x_ =40 0, xzx, =0.
m For K = R7, we have [P (xo)];, = max{[x¢], ,0}.
m For K =S and the Frobenius norm ||-|| ., we have Px(Xo) = >_7_; max{\;, 0} viv?,
where Xo = 37 ; A;v;v] is the eigenvalue decomposition of X € S™.

Andre Tkacenko (JPL) EE/ACM 150 - Lecture 17 May 29, 2012 6/28



Separating a Point from a Convex Set

Suppose C is a closed convex set. Then, we have the following.
m If xo € C, then dist(xo,C) = 0 with an optimal point x.
m If xo & C, then dist(xo,C) > 0, and the optimal value of the distance problem is positive.
Furthermore, a dual optimal point provides a separating hyperplane between xy and C.

For the Euclidean norm, if Pz(xo) denotes the Euclidean projection of xg on C, where xo ¢ C,
then the hyperplane characterized by

(Pe(x0) —x0)" (x — (1/2) (x0 + Pe(x0))) =0,
strictly separates x¢ from C.

For a general norm ||-||, a separating hyperplane can be obtained via Lagrange duality. From the
dual problem, if X, i, v are dual feasible with a positive objective value, then we have

m
wTxo— plx+ Z)\ifi(x) +vT (Ax—b) >0, forall x,
=1
and so uTxo > uTx for x € C. Thus, u defines a strictly separating hyperplane in this case.
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Expressing the Distance Between Two Sets

The distance between two sets C and D, with respect to the norm ||-||, is defined as
dist(C,D) £ inf{||x —y||: x€C, y € D} .

Properties:

m The sets C and D do not intersect if dist(C, D) > 0.

m The sets C and D intersect if dist(C, D) = 0 and the infimum is attained.

m The distance between sets can be expressed as the distance between a point and a set.

dist(C, D) = dist(0,C — D) = dist(0,D — C) .

Distance and Separation Via Indicator and Support Functions:

The problem of finding the distance between sets can be posed in terms of indicator functions.
The dual of this problem can be expressed using support functions.

Primal: Dual:
minimize  ||x —y|| minimize  ||wl|| maximize —Sc(—z) — Sp(z)
subjectto  I¢(x) <0 <= subjectto Ic(x) <0 subjectto |lz]|g <1

Ip(y) <0 Ip(y) <0

X—y =W
If C and D are convex sets, then the primal problem is convex and (assuming strong duality
holds) the dual problem can be used to find a separating hyperplane. Specifically, if z is dual
feasible with a positive objective value, then Sp(z) < —S¢(—z), which means that

sup zTx < inf z7x.

xeD x€eC
In other words, z defines a hyperplane that strictly separates C and D.
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Distance Between Convex Sets
Computing the Distance Between Convex Sets

Suppose C and D are described by two sets of convex inequalities
C={x:fi(x)<0,i=1,....,m}, D={x:9:(x)<0,i=1,...,p}.

This can admit affine equalities by including two convex inequalities for each affine
equality. Then, we can find dist(C, D) by solving the convex optimization problem

minimize  ||x — y]|
subjectto  fi(x)<0,i=1,...,m
gi(y) SO, izl,...,p
Example: Euclidean distance between polyhedra
C={x:A1x=<b1}, D={x:A1x<bi}.
minimize  ||x —y||,
subjectto Aix <b; . /
AQX j bg

Squaring the objective, we obtain an equivalent QP.
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Separating Convex Sets

The dual of the problem of finding the distance between convex sets has an

interesting interpretation in terms of separating hyperplanes. Starting from the
equivalent form of the primal problem

minimize  ||w||

subjectto  fi(x) <0,i=1,...,m
gi(y)<0,i=1,....,p ’
X—y=WwW

we obtain the dual problem

m P
maximize iﬂf{z Nifi(x) + sz} + igf{Z#igi (y) — ZTy}
=1

=1
subjectto |z|[g <1, A =0, p =0
If X and p are dual feasible with a positive objective value (i.e., dist(C, D) > 0), then
m p
DoNfix) +2 x4 Y pgily) -2y >0,
i=1 =1

for all x and y. In particular, for x € C and y € D, we have z”x > z”y, and s0 z
defines a hyperplane that strictly separates C and D.
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Gram Matrix and Realizability
Configurations and the Gram Matrix

Consider a set of vectors ay, ..., a, € R™ with known Euclidean lengths
h=llailly, ..., ln=llan|ly .
We refer to this set as a configurationin general and as a basis when they are linearly independent.
The lengths, distances, correlation coefficients, and angles between vectors of the configuration
can be expressed in terms of the Gram matrix G € R™*™ given by
G2ATA A2[a - an].
m Length: (of a;)
L2 lally = (Gi)'V?, Gia =17, i=1,...,n.
m Distance: (between a; and a;)

1/2 _ l12+l?_d22,j

dij 2 llai —ajll, = (IF +17 —2Gi ;)" , Gij = 5

Li,j=1,...,n.
m Correlation coefficient: (between a; and a;)

i aja; G
1, — -
o aallg Naglly Ly

m Angle: (between a; and a;)

» Gig =liljpig, 4,5 =1,...,n.

0;,; = arccos p; ; = arccos(Gy,j/ (lil;)) , Gij = liljcosbyj, i,j=1,...,n.
These quantities are invariant under orthogonal transformations. Namely, if Q € R"*" is
orthogonal, then the configuration Qay, ..., Qa, has the same Gram matrix as the original one.
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Gram Matrix and Realizability
Realizability of the Gram Matrix

Euclidean distance problems can be posed in terms of the Gram matrix G = ATA.

m From linear algebra, a matrix G € S™ is the Gram matrix of a configuration
{ai,...,an} (e, G=ATAwithA=[a; --- a, ])ifandonlyif G = 0.

m When G > 0, we can construct a configuration with Gram matrix G by taking
A = G'/2, using an eigenvalue decomposition of G.

= When G > 0, a configuration can be obtained via the Cholesky decomposition
G = LL”, where L is a lower triangular matrix, by taking A = L”.

m All configurations with Gram matrix G can be constructed by orthogonal
transformation, given any one solution A. Namely, if ATA =G is any solution,
then A = QA for some orthogonal matrix Q.

A set of lengths, distances, correlation coefficients, and/or angles is said to be
realizable, i.e., those of some configuration, if and only if we have

G507 Gi,i:li, izl,...,n

In other words, G is realizable for a set of length, distance, correlation coefficient,
and/or angle constraints if and only if the above condition is satisfied. This realizability
constraint can be used to pose several geometric problems as convex optimization
problems, with G € S™ as the optimization variable.
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Common Constraints and Objectives
Configuration Constraints

m Angle constraints: A lower and upper bound on an angle, a < 0; ; < 3, is
equivalent to the affine inequality constraints

liljcosa > Gy 5 > liljcos 5.
m Distance constraints: A lower and upper bound on a distance,
dmin < di,; < dmax, IS €quivalent to the affine inequality constraints
dinin ST +15 — 2G5 < diax -
= Singular value constraints: The singular values o1 > -+ > o, of A are the
square roots of the eigenvalues \; > --- > A, of G. Thus, o7 is a convex

function of G, whereas o2 is a concave function of G. So, the following
constraints are convex.

U%(G) S 01211ax> UEL(G) Z o'rznin .
m Condition number constraints: The condition number s £ o1 /0, of A is a
quasiconvex function of G. Hence, the following constraint is convex.
K(G) < Kmax -

Instead of this, we can minimize x(G) over all configurations satisfying other
convex geometric constraints, by quasiconvex optimization.
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Euclidean Distance and Angle Problems Common Constraints and Objectives

Dual Basis and Volume Objectives

Dual Basis:
When G = 0, the vectors ay, ..., a, form a basis for R™. The associated dual basis b1, ...,b,
is one that satisfies b7 a; = &, ;, where &; ; is the Kronecker delta function.

= The dual basis vectors by, ..., b, are simply the rows of A—!. As such, the Gram matrix
associated with the dual basis is G~1.

m The squared lengths of the dual basis vectors are given by
||sz§ = eZTG_lei 5 7= 1, e,

and are convex functions of G. So, they can be minimized or upper bound constrained.
Also, 37, ||b;||3 = tr(G 1), is a measure of a well conditioned basis and is convex in G.
Volume Under Linear Transformation:

The volume of a set C C R™ under a linear transformation A (i.e., Ciy 2 {Au:u € C})is
1/2
vol(Ciy) = vol(C) (det(ATA>) /2 vol(C) (det G)/2 .
m Example: Ellipsoid (€ £ {Au : [|u]|, < 1})
n/2
™

r(z+1)"
= Example: Simplex (S £ {Au: u € conv{0,e1,...,en}})

VOI(E) = Yub (det G)1/2 ) Yub =

vol(S) = vup (det G)l/2 , Yus = 1/n!.
= The volume of the warped set Cy; can be maximized by equivalently maximizing log det G.
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Angle/Distance Only Problems
Bounding Correlations for Angle Only Problems

For problems which only involve angles (or equivalently correlation coefficients), many
constraints on the Gram matrix G can be simplified as they will not depend on the
actual lengths of the vectors of the configuration. This follows from the fact that

G = diag(1l) Cdiag(l) ,
where 1 is the vector of lengths given by
1=[hL - I }T’
and C is the correlation matrix given by
Cij=pij=cosbij,i,7=1,...,n.

m If G > 0foranyl > 0,then G = 0 for all 1 - 0, which occurs if and only if C > 0.

m Asetofangles 6;; € [0,7] fori,j =1,...,nis realizable if and only if C > 0,
which is an LMl in p; ; fori,5 =1,...,n.

= As an example, given lower and upper bounds on some angles, we can find the
minimum and maximum possible value of some other angle, over all
configurations, by solving two SDPs.
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Angle/Distance Only Problems
Euclidean Distance Problems

In a Euclidean distance problem, the only concern is the set of distances between vectors d; ;.

Distances are invariant under orthogonal transformations, i.e., the configuration A = QA
has the same distances as the original one A, for any orthogonal matrix Q.

Distances are invariant under translation, i.e., the configuration A = A — b17 has the
same distances as the original one A, for any b € R". If b is the centroid given by

1 n
b= EZ;a,- = (1/n) A1,
=

then we have A1 = 0. Hence, without loss of generality, we can assume that A1 = 0, i.e.,
A is orthogonal to 1 and lies solely in 1-+.

Defining z € R™ as z; = I7,and D € S™ by D; ; = d? ; (with D; ; = 0), the condition

G > 0 for some set of lengths is equivalent to

G= (z1T+1zTfD)/QtOforsomezto.

A matrix D € S™ with nonnegative elements and zero diagonal that satisfies the above
relation is called a Euclidean distance matrix.
Assuming A1 = 0, we can show that G > 0 if and only if the following conditions on D hold:

Di,iZOa i=1,...,n, D’L,] 20,4j=1,...,n,
(I— (1/n)11T) D (I— (1/n)11T) <0.

Therefore, any Euclidean distance problem that is convex in the squared distances can be
expressed as convex problem with variable D € S™.
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Minimum Volume Covering Ellipsoid
The Lowner-John Ellipsoid

Let C € R™ be some bounded set with nonempty interior. Suppose we wish to find the
minimum volume ellipsoid that covers C, which is called the Léwner-John ellipsoid. To
characterize this ellipsoid, it will be convenient to use the following parametrization:

E={v:||[Av+b]|, <1},

where we can assume without loss of generality that A € S} ;. Then, the
Léwner-John ellipsoid &; can be found by solving the following problem.

Minimum Volume Covering Ellipsoid Problem

minimize  logdet A"

subjectto sup||[Av + b, <1 °
vecl

with variables A € S™ and b € R", and there is an implicit constraint that A >~ 0.

m This is a convex optimization problem as the objective and constraint functions
are both convex in A and b.

m Evaluating the constraint function involves solving a convex maximization
problem and is only tractable in certain special cases.
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Examples

Minimum volume ellipsoid covering a finite set:

Suppose C = {x1,...,%xm}. The Léwner-John ellipsoid can be found by solving the problem:
minimize  logdet A~}
subjectto ||[Ax; +b||, <1,i=1,...,m

= Norm constraint ||Ax; + b||, < 1 equivalent to convex quadratic one ||Ax; + b||3 < 1.
m As an ellipsoid covers any set C if and only if it covers its convex hull, this problem yields

the Léwner-John ellipsoid for the polyhedron P = conv{x1,...,xm}.
Minimum volume ellipsoid covering a union of ellipsoids:
Suppose C = %, &, where &1, ..., En, are ellipsoids of the following form.

& = {x:xTAix-‘eriTx—kci §0} , AeSEy,i=1,...,m.
The Léwner-John ellipsoid can be found by solving the following convex problem.
minimize  logdet A~"
subjectto 71 >0, ..., 7 >0
A2_rA; b-rb; O
(b-7b:)  —1-me BT | 20,i=1...m

0 b —A?

with variables A2 € S*, b = Ab € R",and r; € Rfori =1,...,m.
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Extremal Volume Ellipsoids Minimum Volume Covering Ellipsoid

Efficiency of Lowner-John Ellipsoidal Approximation

Let &; be the Léwner-John ellipsoid of a convex set C C R™, which is bounded with
nonempty interior, and whose center is xo. Then, it can be shown that the

Léwner-John ellipsoid, shrunk by a factor of n, lies inside C. Namely, we have
Xo + (l/n) (Slj — Xo) CcCC glj .

Example: Polyhedron in R? /

Further Extensions: /

m If C is symmetric, then the factor of n can be improved to \/n. Namely, we have

xo + (1/v/n) (&5 —x0) CC C &;.

m This allows us to approximate any norm by a quadratic norm. In other words, if
||-|| is any norm, C £ {x : [|x|| < 1} is its unit ball, and &; = {x : x"Ax < 1}
(where A € ST ) is the Léwner-John ellipsoid of C, then we have

1/2
21l < llzll < V7 lall , where [lzll 2 (2" Az) " .
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Maximum Volume Inscribed Ellipsoid
The Maximum Volume Inscribed Ellipsoid

Let C C R™ be a convex set that is bounded with nonempty interior. To find the ellipsoid of
maximum volume that lies inside C, we will use the parametrization

£={Bu+d:|jul, <1},

where we can assume without loss of generality that B € S7 , . Then, the maximum volume
inscribed ellipsoid &,,,vie Can be obtained by solving the following convex optimization problem.

Maximum Volume Inscribed Ellipsoid Problem

maximize logdet B

subject to sup Il¢(Bu+d)<0 >
[[afl;<1

with variables B € S™ and d € R", and there is an implicit constraint that B > 0.

Efficiency of Ellipsoidal Inner Approximations:
m The ellipsoid &,vie, €Xpanded by a factor of n about xg, the center of C, lies inside C. Thus,
Emvie € C C x0 + 1 (Emvie — X0) -
m If C is symmetric, the factor improves to \/n. Hence, Envie € C C x0 + /7 (Emvie — X0)-

Example: Polyhedron in R?
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Meimurm Volume Inscribed Ellpsold
Examples

Maximum volume ellipsoid in a polyhedron:
Suppose C = {x:alx <b;, i =1,...,m}. Then, we have

sup Ic(Bu+d) <0< ||Ba||, +ald <b; <b;,i=1,...,m.
[lull,<1

The maximum volume ellipsoid inscribed in C can then be found by solving the convex problem
minimize  logdet B~}
subjectto ||Baj|l, +afd <b;,i=1,...,m
Maximum volume ellipsoid in an intersection of ellipsoids:
Suppose C = %, &;, where &1, ..., En, are ellipsoids of the following form.
€ = {x:xTAx+2bIx+c; <0}, Aj€SL, i=1,..,m,

The maximum volume inscribed ellipsoid can be found by solving the following convex problem.
minimize  logdet B!
‘ “Xi—ci+bTA b, 0 (d+A;1bi)T
subject to 0 M1 B =0,i=1,....,m
d+A; b, B At
with variables B € S, d € R", and A € R™.

Andre Tkacenko (JPL) EE/ACM 150 - Lecture 17 May 29, 2012 21/28



Affine Invariance of Extremal Volume Ellipsoids
Affine Invariance of Extremal Volume Ellipsoids

Affine Invariance Property of Extremal Volume Ellipsoids:

Let C,D C R™ each be a bounded set with nonempty interior, where D is additionally convex.
Also, let T € R™*™ be any nonsingular matrix. Then, we have the following.

m |f &; is the Léwner-John ellipsoid of C, then the Léwner-John ellipsoid of TC is T&j;.

B If Envie is the maximum volume inscribed ellipsoid of D, then the maximum volume
inscribed ellipsoid of TD is TEnvie-

Proof of Affine Invariance:

= Let &€ be any ellipsoid that covers C (or is inscribed in D). Then the ellipsoid TE covers TC
(oris inscribed in TD).

m Conversely, every ellipsoid that covers TC (or is inscribed in TD) is of the form T&, where
£ is an ellipsoid that covers C (or is inscribed in D).

= Therefore, the relation £ = T€ gives a one-to-one correspondence between ellipsoids
covering TC (or inscribed in TD) and ellipsoids covering C (or inscribed in D).

um Moreover, the volumes of the corresponding ellipsoids are related by the ratio |det T|.

= Hence, if £ has minimum volume among ellipsoids covering C, then TE has minimum
volume among ellipsoids covering TC. Similarly, if £ has maximum volume among
ellipsoids inscribed in D, then TE has maximum volume among ellipsoids inscribed in TD.
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Depth and the Chebyshev Center

Let C C R"™ be a bounded set with nonempty interior, and x € C. The depth of x is
depth(x,C) £ dist(x,R"\ C) .
Intuitively, the depth gives the radius of the largest ball (for the specific norm), centered
at x, that lies in C. A Chebyshev center of C is any point of maximum depth in C:
Xcheb (C) = argmax depth(x, C) = argmax dist(x, R" \ C) .

Chebyshev Center of a Convex Set:
When C is convex, the depth is a concave function for x € C, so computing the
Chebyshev center is a convex optimization problem. More specifically, suppose C is
defined by a set of convex inequalities:
C={x:fi(x) <0, ..., fm(x) <0} .
Then, a Chebyshev center can be found by solving the following problem.
maximize R a ,
subjectto gy(x,R) <0, i=1,...,m * WNereG(R) = sup filx+ Ru).
m Each function g; is convex, since it is the pointwise supremum of a family of
convex functions of x and R.
m Evaluating g; entails solving a convex maximization problem, which may be hard.
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Centering Problems Chebyshev Center

Examples
Chebyshev center of a polyhedron:
Suppose C = {x:alx <b;, i =1,...,m}. Then, we have
gi(x,R) = sup al (x+ Ru) =alx+ R|laillg — bi
[lul|<1

if R > 0. Hence, the Chebyshev center can be found by solving the LP \

maximize R

subjectto  aj x + Rllaj|lg <b;, i=1,...,m

R>0

Euclidean Chebyshev center of intersection of ellipsoids:
Suppose C is an intersection of m ellipsoids, defined by quadratic inequalities,
C={x:xTAx+2bIx+c; <0, i=1,...,m} , where A, € ST .
The Chebyshev centering problem can be shown to be the following.
maximize R
~Xi—ci+b[A'b; 0 (x+ Ai_lbi)T
0 AT RI =0,i=1,...,m ’
x+A;'b; RI Al
which is an SDP with variables R € R, A € R™, and x € R™.
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Centering Problems Maximum Volume Ellipsoid Center

Maximum Volume Ellipsoid Center

m Recall that the Chebyshev center x.ne, Of a set C C R" is the center of the
largest ball that lies in C.

= As an extension of this idea, we define the maximum volume ellipsoid center of
C, denoted xmve, as the center of the maximum volume ellipsoid that lies in C.

m We can compute xmve by finding the maximum volume inscribed ellipsoid for C.
To do this, we first solve the optimization problem

maximize logdet B
subjectto  sup I¢(Bu-+d) <0 >

[lullz<1

with variables B € S™ and d € R", and an implicit constraint that B > 0. Then

we simply set xmve = d”*.

A
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Analytic Center of a Set of Inequalities

The analytic center x, of a set of convex inequalities and affine equalities,
fix)<0,i=1,...,m, Fx=g,
is defined as an optimal point for the convex optimization problem

minimize  — i log(—fi(x))
=1 ,

subjectto Fx=g

with variable x € R™ and implicit constraints f;(x) < 0 for i = 1, ..., m. The objective of this
problem is called the logarithmic barrier associated with the set of inequalities.
m The analytic center x,. is the point that maximizes the product (or equivalently the
geometric mean) of the slacks — f;(x), subject to Fx = g and f;(x) < 0.
m This center is not a function of the feasible set C = {x : fi(x) <0 Vi, Fx = g}:
two sets of inequalities can describe the same set, but have different analytic centers.
m The analytic center x,. is independent of affine changes of coordinates.
m This center is also invariant under positive scalings of the inequality functions and
reparametrization of the equality constraints. In other words, if a1, . .., am > 0, and F and
g are such that Fx = g if and only if Fx = g, then the analytic center of

azfz(x)gor t=1,...,m, ﬁx:gv
is the same as the analytic center of
fix)<0,i=1,....,m, Fx=g.

Andre Tkacenko (JPL) EE/ACM 150 - Lecture 17 May 29, 2012 26/28



Ellipsoids from Analytic Center of Linear Inequalities

The analytic center x.. of a set of linear inequalities
a?xgbi, i=1,...,m,

is the solution of the unconstrained minimization problem
m
minimize  $(x) £ — Zlog(bi - aiTx) ,
=1

with implicit constraint b; — aI'x > 0, i = 1,...,m. It can be shown that the analytic center here
defines an inscribed and a covering ellipsoid, in terms of H £ V2¢(xac). Namely, we have

Sinner CPC Eouter )

where
P = {x:a?xgbi,izl,...,m},
Emer = {x1 (x = xac) T H (x = xac) < 1} ,
Eouter = {xz (x — Xac) T H (x — Xac) < m (m — 1)} .

Here, H is the Hessian of ¢(x) at xac, given by

m
1
H=) diaal ,di=—7—,i=1,...,m.
i=1

b; — aITxac
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Centering Problems Analytic Center

Analytic Center of a Linear Matrix Inequality

The definition of an analytic center can be extended to sets described by generalized
inequalities with respect to a cone K, if we define a generalized logarithm for K.

Generalized Logarithm for a Proper Cone:

Let K C R? is a proper cone. We say ¢ : R? — R is a generalized logarithm for I if

m The function v is concave, closed, twice continuously differentiable,
dom ) = int K, and V24 (y) < 0 for y € int K.

m There is a constant 6 > 0 (the degree of ¥) such that for all y >x 0 and all s > 0,
Y(sy) = ¢(y) +Ologs.

In other words, i) behaves like a logarithm along any ray in the cone XK.

For example, to find the analytic center of the LMI

$1A1+1‘nAn jB7

we can take 1(X) = log det X as a generalized logarithm for S with degree p, and
solve the problem

minimize —logdet(B —z1A1 — - —z,A,) .
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