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Projection Onto Sets Introduction

Distance and Projection on a Set
The distance from a point x0 ∈ Rn to a closed set C ⊆ Rn, with respect to the norm
||·||, is defined as

dist(x0, C) , inf{||x− x0|| : x ∈ C} .
The projection of x0 on C is any point z ∈ C for which ||z− x0|| = dist(x0, C). The
notation PC : Rn → Rn is used to denote any function for which PC(x0) is a projection
of x0 onto C, i.e., for all x0, we have

PC(x0) ∈ C , ||PC(x0)− x0|| = dist(x0, C)⇐⇒ PC(x0) = argmin{||x− x0|| : x ∈ C} .
Properties:

If C is closed and convex, and ||·|| is strictly convex, then for any x0, there is a
unique projection PC(x0) onto C.
If, for every x0, there is a unique Euclidean projection of x0 on C, then C is
closed and convex.

Example: Projection onto rank-k matrices
Suppose that we have

X0 ∈ Rm×n , C =
{
X ∈ Rm×n : rank(X) ≤ k

}
, ||·|| = ||·||2 = spectral norm .

If X0 has an SVD given by X0 =
∑r

i=1 σiuiv
T
i , where r = rank(X0), and we have

σ1 ≥ · · · ≥ σr > 0, then Y =
∑min{k,r}

i=1 σiuiv
T
i is a projection of X0 on C.
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Projection Onto Sets Introduction

Projection Via Indicator and Support Functions
The problem of finding the distance from a point x0 to a set C (along with its dual) can
be expressed compactly using the indicator function IC and the support function SC :

IC(x) ,

{
0 , x ∈ C
∞ , x 6∈ C

, SC(x) , sup
y∈C

xTy .

The primal problem of finding the distance between x0 and C can then be expressed as

minimize ||x− x0||
subject to IC(x) ≤ 0 ⇐⇒

minimize ||y||
subject to IC(x) ≤ 0

x0 − x = y

.

Note that the primal problem is convex if C is a closed convex set. The dual problem of
the second form of the primal is given by

maximize zTx0 − SC(z)
subject to ||z||� ≤ 1

.

If C is a closed convex set (i.e., the primal is convex), then if z is dual optimal
with a positive objective value, then zTx0 > zTx for all x ∈ C, i.e., z defines a
separating hyperplane between x0 and C.
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Projection Onto Sets Projection Onto Convex Sets

Projecting a Point on a Convex Set
If C is convex, then PC(x0) and dist(x0, C) can be computed via convex optimization.
Representing C by a set of convex inequalities fi(x) ≤ 0 for i = 1, . . . ,m and affine
equalities Ax = b (A ∈ Rp×n,b ∈ Rp), dist(x0, C) and PC(x0) can be found by solving

minimize ||x− x0||
subject to fi(x) ≤ 0 , i = 1, . . . ,m

Ax = b
⇐⇒

minimize ||y||
subject to fi(x) ≤ 0 , i = 1, . . . ,m

Ax = b

x0 − x = y

.

The dual problem of the second form of the primal is given by the following.

maximize µTx0 + inf
x

{
m∑
i=1

λifi(x) + νT (Ax− b)− µTx

}
subject to λ � 0

||µ||� ≤ 1

.

The primal problem is feasible if and only if C is nonempty.
When the primal is feasible, its optimal value is dist(x0, C), and any optimal point
is a projection of x0 on C.
The dual problem leads to insights regarding separation of x0 and C.
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Projection Onto Sets Projection Onto Convex Sets

Euclidean Projection Examples
Euclidean projection on a polyhedron:
The projection of x0 on a polyhedron P , {x : Ax � b} can be computed by solving the QP

minimize ||x− x0||22
subject to Ax � b

.

For the hyperplane Chp =
{
x : aTx = b

}
and halfspace Chs =

{
x : aTx ≤ b

}
, we have

PChp (x0) = x0 +

(
b− aTx0

)
||a||22

a , PChs
(x0) =

{
x0 +

(
b− aTx0

)
a/ ||a||22 , aTx0 > b

x0 , aTx0 ≤ b
.

For the box Cbox = {x : l � x � u} (where l ≺ u), we have
[
PCbox

(x0)
]
k

= lk for
[x0]k ≤ lk, [x0]k for lk ≤ [x0]k ≤ uk, and uk for [x0]k ≥ uk.

Euclidean projection on a proper cone:
The projection of x0 onto a proper cone K can be obtained by solving the problem

minimize ||x− x0||22
subject to x �K 0

.

The KKT conditions for this problem can be expressed in terms of a primal nonnegative and dual
nonpositive decomposition as follows.

x0 = x+ + x− , x+ �K 0 , x− �K� 0 , xT
+x− = 0 .

For K = Rn
+, we have [PK(x0)]k = max

{
[x0]k , 0

}
.

For K = Sn+ and the Frobenius norm ||·||F , we have PK(X0) =
∑n

i=1 max{λi, 0}viv
T
i ,

where X0 =
∑n

i=1 λiviv
T
i is the eigenvalue decomposition of X0 ∈ Sn.
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Projection Onto Sets Projection Onto Convex Sets

Separating a Point from a Convex Set
Suppose C is a closed convex set. Then, we have the following.

If x0 ∈ C, then dist(x0, C) = 0 with an optimal point x0.
If x0 6∈ C, then dist(x0, C) > 0, and the optimal value of the distance problem is positive.
Furthermore, a dual optimal point provides a separating hyperplane between x0 and C.

For the Euclidean norm, if PC(x0) denotes the Euclidean projection of x0 on C, where x0 6∈ C,
then the hyperplane characterized by

(PC(x0)− x0)T (x− (1/2) (x0 + PC(x0))) = 0 ,

strictly separates x0 from C.

C
PC(x0)

x0

For a general norm ||·||, a separating hyperplane can be obtained via Lagrange duality. From the
dual problem, if λ,µ,ν are dual feasible with a positive objective value, then we have

µTx0 − µTx +
m∑
i=1

λifi(x) + νT (Ax− b) > 0 , for all x ,

and so µTx0 > µTx for x ∈ C. Thus, µ defines a strictly separating hyperplane in this case.
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Distance Between Sets Introduction

Expressing the Distance Between Two Sets
The distance between two sets C and D, with respect to the norm ||·||, is defined as

dist(C,D) , inf{||x− y|| : x ∈ C , y ∈ D} .
Properties:

The sets C and D do not intersect if dist(C,D) > 0.
The sets C and D intersect if dist(C,D) = 0 and the infimum is attained.
The distance between sets can be expressed as the distance between a point and a set.

dist(C,D) = dist(0, C − D) = dist(0,D − C) .

Distance and Separation Via Indicator and Support Functions:
The problem of finding the distance between sets can be posed in terms of indicator functions.
The dual of this problem can be expressed using support functions.

Primal:
minimize ||x− y||
subject to IC(x) ≤ 0

ID(y) ≤ 0
⇐⇒

minimize ||w||
subject to IC(x) ≤ 0

ID(y) ≤ 0
x− y = w

Dual:
maximize −SC(−z)− SD(z)
subject to ||z||� ≤ 1 .

If C and D are convex sets, then the primal problem is convex and (assuming strong duality
holds) the dual problem can be used to find a separating hyperplane. Specifically, if z is dual
feasible with a positive objective value, then SD(z) < −SC(−z), which means that

sup
x∈D

zTx < inf
x∈C

zTx .

In other words, z defines a hyperplane that strictly separates C and D.
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Distance Between Sets Distance Between Convex Sets

Computing the Distance Between Convex Sets

Suppose C and D are described by two sets of convex inequalities

C = {x : fi(x) ≤ 0 , i = 1, . . . ,m} , D = {x : gi(x) ≤ 0 , i = 1, . . . , p} .

This can admit affine equalities by including two convex inequalities for each affine
equality. Then, we can find dist(C,D) by solving the convex optimization problem

minimize ||x− y||
subject to fi(x) ≤ 0 , i = 1, . . . ,m

gi(y) ≤ 0 , i = 1, . . . , p

.

Example: Euclidean distance between polyhedra

C = {x : A1x � b1} , D = {x : A1x � b1} .
minimize ||x− y||2
subject to A1x � b1

A2x � b2

.

C

D

Squaring the objective, we obtain an equivalent QP.
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Distance Between Sets Distance Between Convex Sets

Separating Convex Sets
The dual of the problem of finding the distance between convex sets has an
interesting interpretation in terms of separating hyperplanes. Starting from the
equivalent form of the primal problem

minimize ||w||
subject to fi(x) ≤ 0 , i = 1, . . . ,m

gi(y) ≤ 0 , i = 1, . . . , p

x− y = w

,

we obtain the dual problem

maximize inf
x

{
m∑
i=1

λifi(x) + zTx

}
+ inf

y

{
p∑

i=1

µigi(y)− zTy

}
subject to ||z||� ≤ 1 , λ � 0 , µ � 0

.

If λ and µ are dual feasible with a positive objective value (i.e., dist(C,D) > 0), then
m∑
i=1

λifi(x) + zTx+

p∑
i=1

µigi(y)− zTy > 0 ,

for all x and y. In particular, for x ∈ C and y ∈ D, we have zTx > zTy, and so z
defines a hyperplane that strictly separates C and D.
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Euclidean Distance and Angle Problems Gram Matrix and Realizability

Configurations and the Gram Matrix
Consider a set of vectors a1, . . . ,an ∈ Rn with known Euclidean lengths

l1 = ||a1||2 , . . . , ln = ||an||2 .

We refer to this set as a configuration in general and as a basis when they are linearly independent.
The lengths, distances, correlation coefficients, and angles between vectors of the configuration
can be expressed in terms of the Gram matrix G ∈ Rn×n given by

G , ATA , A ,
[

a1 · · · an
]
.

Length: (of ai)
li , ||ai||2 = (Gi,i)

1/2 , Gi,i = l2i , i = 1, . . . , n .

Distance: (between ai and aj )

di,j , ||ai − aj ||2 =
(
l2i + l2j − 2Gi,j

)1/2
, Gi,j =

l2i + l2j − d2i,j
2

, i, j = 1, . . . , n .

Correlation coefficient: (between ai and aj )

ρi,j ,
aT
i aj

||ai||2 ||aj ||2
=
Gi,j

lilj
, Gi,j = liljρi,j , i, j = 1, . . . , n .

Angle: (between ai and aj )

θi,j , arccos ρi,j = arccos(Gi,j/ (lilj)) , Gi,j = lilj cos θi,j , i, j = 1, . . . , n .

These quantities are invariant under orthogonal transformations. Namely, if Q ∈ Rn×n is
orthogonal, then the configuration Qa1, . . . ,Qan has the same Gram matrix as the original one.
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Euclidean Distance and Angle Problems Gram Matrix and Realizability

Realizability of the Gram Matrix
Euclidean distance problems can be posed in terms of the Gram matrix G = ATA.

From linear algebra, a matrix G ∈ Sn is the Gram matrix of a configuration
{a1, . . . ,an} (i.e., G = ATA with A =

[
a1 · · · an

]
) if and only if G � 0.

When G � 0, we can construct a configuration with Gram matrix G by taking
A = G1/2, using an eigenvalue decomposition of G.

When G � 0, a configuration can be obtained via the Cholesky decomposition
G = LLT , where L is a lower triangular matrix, by taking A = LT .

All configurations with Gram matrix G can be constructed by orthogonal
transformation, given any one solution A. Namely, if ÃT Ã = G is any solution,
then Ã = QA for some orthogonal matrix Q.

A set of lengths, distances, correlation coefficients, and/or angles is said to be
realizable, i.e., those of some configuration, if and only if we have

G � 0 , Gi,i = li , i = 1, . . . , n .

In other words, G is realizable for a set of length, distance, correlation coefficient,
and/or angle constraints if and only if the above condition is satisfied. This realizability
constraint can be used to pose several geometric problems as convex optimization
problems, with G ∈ Sn as the optimization variable.
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Euclidean Distance and Angle Problems Common Constraints and Objectives

Configuration Constraints

Angle constraints: A lower and upper bound on an angle, α ≤ θi,j ≤ β, is
equivalent to the affine inequality constraints

lilj cosα ≥ Gi,j ≥ lilj cosβ .

Distance constraints: A lower and upper bound on a distance,
dmin ≤ di,j ≤ dmax, is equivalent to the affine inequality constraints

d2min ≤ l2i + l2j − 2Gi,j ≤ d2max .

Singular value constraints: The singular values σ1 ≥ · · · ≥ σn of A are the
square roots of the eigenvalues λ1 ≥ · · · ≥ λn of G. Thus, σ2

1 is a convex
function of G, whereas σ2

n is a concave function of G. So, the following
constraints are convex.

σ2
1(G) ≤ σ2

max , σ
2
n(G) ≥ σ2

min .

Condition number constraints: The condition number κ , σ1/σn of A is a
quasiconvex function of G. Hence, the following constraint is convex.

κ(G) ≤ κmax .

Instead of this, we can minimize κ(G) over all configurations satisfying other
convex geometric constraints, by quasiconvex optimization.
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Euclidean Distance and Angle Problems Common Constraints and Objectives

Dual Basis and Volume Objectives
Dual Basis:
When G � 0, the vectors a1, . . . ,an form a basis for Rn. The associated dual basis b1, . . . ,bn

is one that satisfies bT
i aj = δi,j , where δi,j is the Kronecker delta function.

The dual basis vectors b1, . . . ,bn are simply the rows of A−1. As such, the Gram matrix
associated with the dual basis is G−1.
The squared lengths of the dual basis vectors are given by

||bi||22 = eTi G−1ei , i = 1, . . . , n ,

and are convex functions of G. So, they can be minimized or upper bound constrained.
Also,

∑n
i=1 ||bi||22 = tr

(
G−1

)
, is a measure of a well conditioned basis and is convex in G.

Volume Under Linear Transformation:
The volume of a set C ⊆ Rn under a linear transformation A (i.e., Clt , {Au : u ∈ C}) is

vol(Clt) = vol(C)
(

det
(
ATA

))1/2
= vol(C) (detG)1/2 .

Example: Ellipsoid (E ,
{
Au : ||u||2 ≤ 1

}
)

vol(E) = γub (detG)1/2 , γub =
πn/2

Γ
(
n
2

+ 1
) .

Example: Simplex (S , {Au : u ∈ conv{0, e1, . . . , en}})

vol(S) = γub (detG)1/2 , γus = 1/n! .

The volume of the warped set Clt can be maximized by equivalently maximizing log detG.
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Euclidean Distance and Angle Problems Angle/Distance Only Problems

Bounding Correlations for Angle Only Problems
For problems which only involve angles (or equivalently correlation coefficients), many
constraints on the Gram matrix G can be simplified as they will not depend on the
actual lengths of the vectors of the configuration. This follows from the fact that

G = diag(l)Cdiag(l) ,

where l is the vector of lengths given by

l =
[
l1 · · · ln

]T
,

and C is the correlation matrix given by

Ci,j = ρi,j = cos θi,j , i, j = 1, . . . , n .

If G � 0 for any l � 0, then G � 0 for all l � 0, which occurs if and only if C � 0.

A set of angles θi,j ∈ [0, π] for i, j = 1, . . . , n is realizable if and only if C � 0,
which is an LMI in ρi,j for i, j = 1, . . . , n.

As an example, given lower and upper bounds on some angles, we can find the
minimum and maximum possible value of some other angle, over all
configurations, by solving two SDPs.
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Euclidean Distance and Angle Problems Angle/Distance Only Problems

Euclidean Distance Problems
In a Euclidean distance problem, the only concern is the set of distances between vectors di,j .

Distances are invariant under orthogonal transformations, i.e., the configuration Ã = QA
has the same distances as the original one A, for any orthogonal matrix Q.
Distances are invariant under translation, i.e., the configuration Ã = A− b1T has the
same distances as the original one A, for any b ∈ Rn. If b is the centroid given by

b =
1

n

n∑
i=1

ai = (1/n)A1 ,

then we have Ã1 = 0. Hence, without loss of generality, we can assume that A1 = 0, i.e.,
A is orthogonal to 1 and lies solely in 1⊥.
Defining z ∈ Rn as zi = l2i , and D ∈ Sn by Di,j = d2i,j (with Di,i = 0), the condition
G � 0 for some set of lengths is equivalent to

G =
(
z1T + 1zT −D

)
/2 � 0 for some z � 0 .

A matrix D ∈ Sn with nonnegative elements and zero diagonal that satisfies the above
relation is called a Euclidean distance matrix.
Assuming A1 = 0, we can show that G � 0 if and only if the following conditions on D hold:

Di,i = 0 , i = 1, . . . , n , Di,j ≥ 0 , i, j = 1, . . . , n ,(
I− (1/n)11T

)
D
(
I− (1/n)11T

)
� 0 .

Therefore, any Euclidean distance problem that is convex in the squared distances can be
expressed as convex problem with variable D ∈ Sn.
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Extremal Volume Ellipsoids Minimum Volume Covering Ellipsoid

The Löwner-John Ellipsoid
Let C ∈ Rn be some bounded set with nonempty interior. Suppose we wish to find the
minimum volume ellipsoid that covers C, which is called the Löwner-John ellipsoid. To
characterize this ellipsoid, it will be convenient to use the following parametrization:

E =
{
v : ||Av + b||2 ≤ 1

}
,

where we can assume without loss of generality that A ∈ Sn
++. Then, the

Löwner-John ellipsoid Elj can be found by solving the following problem.

Minimum Volume Covering Ellipsoid Problem

minimize log detA−1

subject to sup
v∈C
||Av + b||2 ≤ 1 ,

with variables A ∈ Sn and b ∈ Rn, and there is an implicit constraint that A � 0.

This is a convex optimization problem as the objective and constraint functions
are both convex in A and b.

Evaluating the constraint function involves solving a convex maximization
problem and is only tractable in certain special cases.
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Extremal Volume Ellipsoids Minimum Volume Covering Ellipsoid

Examples
Minimum volume ellipsoid covering a finite set:
Suppose C = {x1, . . . ,xm}. The Löwner-John ellipsoid can be found by solving the problem:

minimize log detA−1

subject to ||Axi + b||2 ≤ 1 , i = 1, . . . ,m
.

Norm constraint ||Axi + b||2 ≤ 1 equivalent to convex quadratic one ||Axi + b||22 ≤ 1.
As an ellipsoid covers any set C if and only if it covers its convex hull, this problem yields
the Löwner-John ellipsoid for the polyhedron P = conv{x1, . . . ,xm}.

Minimum volume ellipsoid covering a union of ellipsoids:
Suppose C =

⋃m
i=1 Ei, where E1, . . . , Em are ellipsoids of the following form.

Ei =
{
x : xTAix + 2bT

i x + ci ≤ 0
}
, Ai ∈ Sn++ , i = 1, . . . ,m .

The Löwner-John ellipsoid can be found by solving the following convex problem.

minimize log detA−1

subject to τ1 ≥ 0 , . . . , τm ≥ 0
A2 − τiAi b̃− τibi 0(
b̃− τibi

)T
−1− τici b̃T

0 b̃ −A2

 � 0 , i = 1, . . . ,m

,

with variables A2 ∈ Sn, b̃ = Ab ∈ Rn, and τi ∈ R for i = 1, . . . ,m.
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Extremal Volume Ellipsoids Minimum Volume Covering Ellipsoid

Efficiency of Löwner-John Ellipsoidal Approximation
Let Elj be the Löwner-John ellipsoid of a convex set C ⊆ Rn, which is bounded with
nonempty interior, and whose center is x0. Then, it can be shown that the
Löwner-John ellipsoid, shrunk by a factor of n, lies inside C. Namely, we have

x0 + (1/n) (Elj − x0) ⊆ C ⊆ Elj .

Example: Polyhedron in R2

Further Extensions:
If C is symmetric, then the factor of n can be improved to

√
n. Namely, we have

x0 +
(
1/
√
n
)
(Elj − x0) ⊆ C ⊆ Elj .

This allows us to approximate any norm by a quadratic norm. In other words, if
||·|| is any norm, C , {x : ||x|| ≤ 1} is its unit ball, and Elj =

{
x : xTAx ≤ 1

}
(where A ∈ Sn

++) is the Löwner-John ellipsoid of C, then we have

||z||lj ≤ ||z|| ≤
√
n ||z||lj , where ||z||lj ,

(
zTAz

)1/2
.
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Extremal Volume Ellipsoids Maximum Volume Inscribed Ellipsoid

The Maximum Volume Inscribed Ellipsoid
Let C ⊆ Rn be a convex set that is bounded with nonempty interior. To find the ellipsoid of
maximum volume that lies inside C, we will use the parametrization

E =
{
Bu + d : ||u||2 ≤ 1

}
,

where we can assume without loss of generality that B ∈ Sn++. Then, the maximum volume
inscribed ellipsoid Emvie can be obtained by solving the following convex optimization problem.

Maximum Volume Inscribed Ellipsoid Problem

maximize log detB

subject to sup
||u||2≤1

IC(Bu + d) ≤ 0 ,

with variables B ∈ Sn and d ∈ Rn, and there is an implicit constraint that B � 0.

Efficiency of Ellipsoidal Inner Approximations:
The ellipsoid Emvie, expanded by a factor of n about x0, the center of C, lies inside C. Thus,

Emvie ⊆ C ⊆ x0 + n (Emvie − x0) .

If C is symmetric, the factor improves to
√
n. Hence, Emvie ⊆ C ⊆ x0 +

√
n (Emvie − x0).

Example: Polyhedron in R2
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Extremal Volume Ellipsoids Maximum Volume Inscribed Ellipsoid

Examples
Maximum volume ellipsoid in a polyhedron:
Suppose C =

{
x : aT

i x ≤ bi , i = 1, . . . ,m
}

. Then, we have

sup
||u||2≤1

IC(Bu + d) ≤ 0⇐⇒ ||Bai||2 + aT
i d ≤ bi ≤ bi , i = 1, . . . ,m .

The maximum volume ellipsoid inscribed in C can then be found by solving the convex problem

minimize log detB−1

subject to ||Bai||2 + aT
i d ≤ bi , i = 1, . . . ,m

.

Maximum volume ellipsoid in an intersection of ellipsoids:
Suppose C =

⋂m
i=1 Ei, where E1, . . . , Em are ellipsoids of the following form.

Ei =
{
x : xTAix + 2bT

i x + ci ≤ 0
}
, Ai ∈ Sn++ , i = 1, . . . ,m .

The maximum volume inscribed ellipsoid can be found by solving the following convex problem.

minimize log detB−1

subject to

 −λi − ci + bT
i A−1

i bi 0
(
d + A−1

i bi

)T
0 λiI B

d + A−1
i bi B A−1

i

 � 0 , i = 1, . . . ,m
,

with variables B ∈ Sn, d ∈ Rn, and λ ∈ Rm.
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Extremal Volume Ellipsoids Affine Invariance of Extremal Volume Ellipsoids

Affine Invariance of Extremal Volume Ellipsoids

Affine Invariance Property of Extremal Volume Ellipsoids:

Let C,D ⊆ Rn each be a bounded set with nonempty interior, where D is additionally convex.
Also, let T ∈ Rn×n be any nonsingular matrix. Then, we have the following.

If Elj is the Löwner-John ellipsoid of C, then the Löwner-John ellipsoid of TC is TElj.
If Emvie is the maximum volume inscribed ellipsoid of D, then the maximum volume
inscribed ellipsoid of TD is TEmvie.

Proof of Affine Invariance:

Let E be any ellipsoid that covers C (or is inscribed in D). Then the ellipsoid TE covers TC
(or is inscribed in TD).

Conversely, every ellipsoid that covers TC (or is inscribed in TD) is of the form TE , where
E is an ellipsoid that covers C (or is inscribed in D).

Therefore, the relation Ẽ = TE gives a one-to-one correspondence between ellipsoids
covering TC (or inscribed in TD) and ellipsoids covering C (or inscribed in D).

Moreover, the volumes of the corresponding ellipsoids are related by the ratio |detT|.
Hence, if E has minimum volume among ellipsoids covering C, then TE has minimum
volume among ellipsoids covering TC. Similarly, if E has maximum volume among
ellipsoids inscribed in D, then TE has maximum volume among ellipsoids inscribed in TD.
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Depth and the Chebyshev Center
Let C ⊆ Rn be a bounded set with nonempty interior, and x ∈ C. The depth of x is

depth(x, C) , dist(x,Rn \ C) .
Intuitively, the depth gives the radius of the largest ball (for the specific norm), centered
at x, that lies in C. A Chebyshev center of C is any point of maximum depth in C:

xcheb(C) = argmax
x

depth(x, C) = argmax
x

dist(x,Rn \ C) .

Chebyshev Center of a Convex Set:
When C is convex, the depth is a concave function for x ∈ C, so computing the
Chebyshev center is a convex optimization problem. More specifically, suppose C is
defined by a set of convex inequalities:

C = {x : f1(x) ≤ 0 , . . . , fm(x) ≤ 0} .
Then, a Chebyshev center can be found by solving the following problem.

maximize R
subject to gi(x, R) ≤ 0 , i = 1, . . . ,m

, where gi(x, R) , sup
||u||≤1

fi(x+Ru) .

Each function gi is convex, since it is the pointwise supremum of a family of
convex functions of x and R.
Evaluating gi entails solving a convex maximization problem, which may be hard.
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Examples
Chebyshev center of a polyhedron:
Suppose C =

{
x : aT

i x ≤ bi , i = 1, . . . ,m
}

. Then, we have

gi(x, R) = sup
||u||≤1

aT
i (x +Ru) = aT

i x +R ||ai||� − bi ,

if R ≥ 0. Hence, the Chebyshev center can be found by solving the LP

maximize R

subject to aT
i x +R ||ai||� ≤ bi , i = 1, . . . ,m

R ≥ 0

.
xcheb

Euclidean Chebyshev center of intersection of ellipsoids:
Suppose C is an intersection of m ellipsoids, defined by quadratic inequalities,

C =
{
x : xTAix + 2bT

i x + ci ≤ 0 , i = 1, . . . ,m
}
, where Ai ∈ Sn++ .

The Chebyshev centering problem can be shown to be the following.

maximize R

subject to

 −λi − ci + bT
i A−1

i bi 0
(
x + A−1

i bi

)T
0 λiI RI

x + A−1
i bi RI A−1

i

 � 0 , i = 1, . . . ,m
,

which is an SDP with variables R ∈ R, λ ∈ Rm, and x ∈ Rn.
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Maximum Volume Ellipsoid Center

Recall that the Chebyshev center xcheb of a set C ⊆ Rn is the center of the
largest ball that lies in C.
As an extension of this idea, we define the maximum volume ellipsoid center of
C, denoted xmve, as the center of the maximum volume ellipsoid that lies in C.
We can compute xmve by finding the maximum volume inscribed ellipsoid for C.
To do this, we first solve the optimization problem

maximize log detB

subject to sup
||u||2≤1

IC(Bu+ d) ≤ 0 ,

with variables B ∈ Sn and d ∈ Rn, and an implicit constraint that B � 0. Then
we simply set xmve = d?.

xmve
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Analytic Center of a Set of Inequalities
The analytic center xac of a set of convex inequalities and affine equalities,

fi(x) ≤ 0 , i = 1, . . . ,m , Fx = g ,

is defined as an optimal point for the convex optimization problem

minimize −
m∑
i=1

log(−fi(x))

subject to Fx = g

,

with variable x ∈ Rn and implicit constraints fi(x) < 0 for i = 1, . . . ,m. The objective of this
problem is called the logarithmic barrier associated with the set of inequalities.

The analytic center xac is the point that maximizes the product (or equivalently the
geometric mean) of the slacks −fi(x), subject to Fx = g and fi(x) < 0.
This center is not a function of the feasible set C = {x : fi(x) < 0 ∀ i , Fx = g}:
two sets of inequalities can describe the same set, but have different analytic centers.
The analytic center xac is independent of affine changes of coordinates.
This center is also invariant under positive scalings of the inequality functions and
reparametrization of the equality constraints. In other words, if α1, . . . , αm > 0, and F̃ and
g̃ are such that F̃x = g̃ if and only if Fx = g, then the analytic center of

αifi(x) ≤ 0 , i = 1, . . . ,m , F̃x = g̃ ,

is the same as the analytic center of
fi(x) ≤ 0 , i = 1, . . . ,m , Fx = g .
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Ellipsoids from Analytic Center of Linear Inequalities
The analytic center xac of a set of linear inequalities

aT
i x ≤ bi , i = 1, . . . ,m ,

is the solution of the unconstrained minimization problem

minimize φ(x) , −
m∑
i=1

log
(
bi − aT

i x
)

,

with implicit constraint bi − aT
i x > 0, i = 1, . . . ,m. It can be shown that the analytic center here

defines an inscribed and a covering ellipsoid, in terms of H , ∇2φ(xac). Namely, we have

Einner ⊆ P ⊆ Eouter ,

where

P =
{
x : aT

i x ≤ bi , i = 1, . . . ,m
}
,

Einner =
{
x : (x− xac)T H (x− xac) ≤ 1

}
,

Eouter =
{
x : (x− xac)T H (x− xac) ≤ m (m− 1)

}
.

Here, H is the Hessian of φ(x) at xac, given by

H =
m∑
i=1

d2i aia
T
i , di =

1

bi − aT
i xac

, i = 1, . . . ,m .

xac
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Analytic Center of a Linear Matrix Inequality
The definition of an analytic center can be extended to sets described by generalized
inequalities with respect to a cone K, if we define a generalized logarithm for K.

Generalized Logarithm for a Proper Cone:

Let K ⊆ Rq is a proper cone. We say ψ : Rq → R is a generalized logarithm for K if

The function ψ is concave, closed, twice continuously differentiable,
domψ = intK, and ∇2ψ(y) ≺ 0 for y ∈ intK.

There is a constant θ > 0 (the degree of ψ) such that for all y �K 0 and all s > 0,

ψ(sy) = ψ(y) + θ log s .

In other words, ψ behaves like a logarithm along any ray in the cone K.

For example, to find the analytic center of the LMI

x1A1 + · · ·xnAn � B ,

we can take ψ(X) = log detX as a generalized logarithm for Sp
+ with degree p, and

solve the problem

minimize − log det(B− x1A1 − · · · − xnAn) .
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