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Classification Introduction

Introduction to Classification
In pattern recognition and classification problems, we are given two sets of points in
Rn, say {x1, . . . ,xM} and {y1, . . . ,yN}, and we wish to find a function f : Rn → R
(say, within a given family of functions), such that we have the following.

f(xi) > 0 , i = 1, . . . ,M , f(yi) < 0 , i = 1, . . . , N .

If these inequalities hold, we say that f (or specifically its 0-level set {x : f(x) = 0})
separates, classifies, or discriminates the two sets of points.

If only weak versions of the inequalities hold (i.e., ≥ and ≤, respectively), then
we refer to this as weak separation.
This classification problem (including the weak relaxation) need not be feasible.

{x1, . . . ,xM}

{y1, . . . ,yN}

{x : f(x) = 0}
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Classification Linear Discrimination

Linear Discrimination and Interpretations
In linear discrimination, we seek an affine function f(x) = aTx− b that classifies the points, i.e.,

aTxi − b > 0 , i = 1, . . . ,M , aTyi − b < 0 , i = 1, . . . , N .

Geometrically, we seek a hyperplane which separates the points. As the strict inequalities are
homogeneous in a and b, they are feasible if and only if the following nonstrict inequalities

aTxi − b ≥ 1 , i = 1, . . . , N , aTyi − b ≤ −1 , i = 1, . . . , N ,

are feasible in a ∈ Rn and b ∈ R. Note that such constraints are affine and, as such, convex.
Linear discrimination alternative interpretation:
The strong alternative of the set of strict inequalities is the existence of λ and µ such that

λ � 0 , µ � 0 , (λ,µ) 6= 0 ,
∑M

i=1 λixi =
∑N

i=1 µiyi , 1
Tλ = 1Tµ .

Here, λ ∈ RM and µ ∈ RN . Equivalently, this alternative can be expressed as follows.

λ � 0 , 1Tλ = 1 , µ � 0 , 1Tµ = 1 ,
∑M

i=1 λixi =
∑N

i=1 µiyi .

This means there is a point in the convex hull of both {x1, . . . ,xM} and {y1, . . . ,yN}. So, two
sets of points can be linearly discriminated if and only if their convex hulls do not intersect.

{x1, . . . ,xM}

{y1, . . . ,yN}

{x : f(x) = 0} {x1, . . . ,xM}

{y1, . . . ,yN}

{x : f(x) = 0}
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Classification Linear Discrimination

Robust Linear Discrimination
In robust linear discrimination, we seek to separate the two sets of points by the maximum
possible margin hyperplane (or, equivalently, the thickest slab). As the Euclidean distance
between the hyperplanes H1 =

{
z : aT z− b = 1

}
and H2 =

{
z : aT z− b = −1

}
is given by

dist(H1,H2) = 2/ ||a||2, the maximum margin hyperplane can be found by solving the problem,
minimize (1/2) ||a||2
subject to aTxi − b ≥ 1 , i = 1, . . . ,M

aTyi − b ≤ −1 , i = 1, . . . , N

,

which (after squaring the objective) becomes a QP in a ∈ Rn and b ∈ R.
Lagrange dual of maximum margin separation problem:

maximize 1Tλ+ 1Tµ

subject to 2
∣∣∣∣∣∣∑M

i=1 λixi −
∑N

i=1 µiyi

∣∣∣∣∣∣
2
≤ 1

1Tλ = 1Tµ , λ � 0 , µ � 0

.

From duality, the optimal value of the dual is the inverse of the maximum margin of separation.
Interpretation:

Change variables to θi = λi/1
Tλ, γi = µi/1

Tµ, and t = 1/
(
1Tλ+ 1Tµ

)
.

Invert the objective to minimize 1/
(
1Tλ+ 1Tµ

)
= t, yielding the following problem.

minimize t

subject to
∣∣∣∣∣∣∑M

i=1 θixi −
∑N

i=1 γiyi

∣∣∣∣∣∣
2
≤ t

θ � 0 , 1T θ = 1 , γ � 0 , 1Tγ = 1

.

The optimal value of this problem is the distance between the convex hulls of the sets of points.
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Classification Linear Discrimination

Approximate Linear Separation of Non-Separable Sets
The two sets of points {x1, . . . ,xM} and {y1, . . . ,yN} need not be separable by a hyperplane,
which occurs if their convex hulls intersect. In this case, we can relax the classification
requirements aTxi − b ≥ 1 for i = 1, . . . ,M and aTyi − b ≤ −1 for i = 1, . . . , N by introducing
nonnegative variables u ∈ RM and v ∈ RN and forming the approximate separation conditions,

aTxi − b ≥ 1− ui , i = 1, . . . ,M , aTyi − b ≤ − (1− vi) , i = 1, . . . , N .

These new conditions can always be made feasible by making u and v large enough. Our goal is
to find a, b, and sparse nonnegative u and v that satisfy these inequalities. As a heuristic for this,
we can minimize the sum of the components of u and v, which leads to the following problem.

minimize 1Tu+ 1Tv

subject to aTxi − b ≥ 1− ui , i = 1, . . . ,M

aTyi − b ≤ − (1− vi) , i = 1, . . . , N

u � 0 , v � 0

.

This problem is an LP in a ∈ Rn, b ∈ R, u ∈ RM , and v ∈ RN .

At an optimum, ui = max
{
0, 1− aTxi + b

}
and

vi = max
{
0, 1 + aTyi − b

}
.

It can be interpreted as a heuristic for minimizing the number of
misclassified points.
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Classification Linear Discrimination

Support Vector Machine
A support vector machine (SVM) (sometimes called a support vector classifier) represents a
trade-off between the width of the slab

{
z : −1 ≤ aT z− b ≤ 1

}
(given by 2/ ||a||2) and the

number of misclassified points. Specifically, an SVM combines robust linear discrimination with
the approximate linear separation heuristic described above.

Support Vector Machine (SVM) Problem:

minimize ||a||2 + γ
(
1Tu+ 1Tv

)
subject to aTxi − b ≥ 1− ui , i = 1, . . . ,M

aTyi − b ≤ − (1− vi) , i = 1, . . . , N

u � 0 , v � 0

.

Here, γ > 0 is the trade-off parameter between slab width and # of misclassified points.

The solution produces a point on the optimal trade-off curve between inverse of margin
2/ ||a||2 and classification error, measured by the total slack 1Tu+ 1Tv.

Same example data as in previous slide,
with γ = 0.1:
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Classification Linear Discrimination

Linear Discrimination and Logistic Modeling
Another approach to approximately classify the two sets of points when they cannot be linearly
separated is based on the logistic model. Specifically, we fit the sets of points to a logistic model.
Let z ∈ {0, 1} be a random variable with

Pr{z = 0} = 1/
(
1 + exp

(
aTu− b

))
,

Pr{z = 1} =
(
exp
(
aTu− b

))
/
(
1 + exp

(
aTu− b

))
,

where u ∈ Rn is the explanatory variable of the logistic model. Then, {x1, . . . ,xM} and
{y1, . . . ,yN} are the respective values of u for the M and N samples for which z = 0 and z = 1.
We can then determine a and b using ML estimation, by solving the convex optimization problem

minimize −`(a, b) ,

with variables a ∈ Rn and b ∈ R, where ` is the log-likelihood function

`(a, b) = −
M∑
i=1

log
(
1 + exp

(
aTxi − b

))
+

N∑
i=1

(
aTyi − b

)
−

N∑
i=1

log
(
1 + exp

(
aTyi − b

))
.

If the data points truly come from a logistic model, then the
affine classifier f(z) = (a?)T z− b? has the smallest
probability of misclassification among all affine classifiers.

The hyperplane aTu = b corresponds to the points where
Pr{z = 0} = Pr{z = 1} = 1/2, i.e, the two outcomes are
equally likely.
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Classification Nonlinear Discrimination

Introduction to Nonlinear Discrimination
In many cases, we can separate two sets of points {x1, . . . ,xM} and
{y1, . . . ,yN} by a nonlinear function f : Rn → R as follows.

f(xi) > 0 , i = 1, . . . ,M , f(yi) < 0 , i = 1, . . . , N .

Linearly parameterized family of functions:

One way to do this is to choose a linearly parametrized family of
functions

f(z) = θT f(z) ,

where θ ∈ Rk is a parameter vector and
f(z) , (f1(z) , . . . , fk(z)) : Rn → Rk is a vector of basis functions.

With this linearly parametrized construction, the above inequalities can
be solved in the exactly the same way as in linear discrimination.

Specifically, as f is homogeneous in θ, we solve a set of affine
inequalities in θ:

θT f(xi) ≥ 1 , i = 1, . . . ,M , θT f(yi) ≤ −1 , i = 1, . . . , N .
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Classification Nonlinear Discrimination

Quadratic Discrimination
Suppose that f(z) = zTPz+ qT z+ r, where the parameters to be chosen are P ∈ Sn, q ∈ Rn,
and r ∈ R. Here, we must satisfy the affine inequalities

xT
i Pxi + qTxi + r ≥ 1 , i = 1, . . . ,M , yT

i Pyi + qTyi + r ≤ −1 , i = 1, . . . , N .

We can also pose additional constraints. For example, we can require P ≺ 0, which means that
the separating surface is ellipsoidal. In other words, we seek an ellipsoid containing all the points
{x1, . . . ,xM}, but none of the points {y1, . . . ,yN}. This quadratic discrimination problem can
then be solved as an SDP feasibility problem:

find P,q, r

subject to xT
i Pxi + qTxi + r ≥ 1 , i = 1, . . . ,M

yT
i Pyi + qTyi + r ≤ −1 , i = 1, . . . , N

P � −I

,

with variables P ∈ Sn, q ∈ Rn, and r ∈ R. (Here, we use homogeneity in P, q, and r to express
the constraint P ≺ 0 as P � −I.)
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Classification Nonlinear Discrimination

Polynomial Discrimination
Consider the set of polynomials on Rn with degree less than or equal to d:

f(z) =
∑

i1+···+in≤d

ai1,...,idz
i1
1 · · · z

in
n .

Note that this can be expressed as f(z) = θT f(z), where θ is a vector of all the coefficients
ai1,...,id and f(z) consists of all monomials up to the given degree of d.

By solving the discrimination feasibility problem

find θ

subject to θT f(xi) ≥ 1 , i = 1, . . . ,M

θT f(yi) ≤ −1 , i = 1, . . . , N

,

we check, geometrically, whether the two sets can be separated by an algebraic surface.
As the degree is a quasiconvex function of the coefficients, we can find the minimum
degree polynomial on Rn that separates two sets of points via quasiconvex programming.

No cubic polynomial can separate the points (left), whereas a quartic polynomial can do so (right).
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Placement and Location Introduction

Introduction to Placement and Location Problems
We are given N points with coordinates xi ∈ Rk, where k = 2 or k = 3.
Some of the locations xi are given, while the other positions xi are variables.
For each pair of points, we associate a cost function fi,j(xi,xj).

Placement Problem:

minimize
∑

(i,j)∈A

fi,j(xi,xj) .

Here, A is the set of all links in the graph described by the N points or nodes.

Alternatively, the objective can be expressed as a sum over all arcs (i, j) if we
set fi,j = 0 when links i and j are not connected.

The variables are the positions of the free points.

Interpretations:
The points may represent plants or warehouses; fi,j could be the transportation
cost between facilities i and j.
The points may represent cells on an integrated circuit (IC); fi,j could then
represent the wirelength.
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Placement and Location Linear Facility Location Problems

Linear Facility Location Problems
The simplest version of the placement problem occurs when the cost function fi,j is a
linear function of the distance between nodes i and j. In other words, we have

fi,j(xi,xj) = wi,j ||xi − xj || ,
where wi,j ≥ 0 is a weight parameter. By proper choice of the weights wi,j , the
placement problem objective can be expressed in the following two ways.∑

(i,j)∈A wi,j ||xi − xj || =
∑

i<j wi,j ||xi − xj || .

For this choice of cost function, the placement problem is always convex.
Examples: One free point (u, v) ∈ R2 with fixed points (u1, v1) , . . . , (uK , vK).

`1-norm: When wi,j = 1 for all i, j, the objective is∑K
i=1 (|u− ui|+ |v − vi|) .

An optimal point is any median of the fixed points. That is, u and v can be taken
to be any median of the points {u1, . . . , uK} and {v1, . . . , vK}, respectively.
Euclidean norm: When wi,j = 1 for all i, j, the objective is∑K

i=1

(
(u− ui)

2 + (v − vi)
2)1/2 .

The point (u, v) that minimizes this is called the geometric median or the
Fermat-Weber point of the given fixed points.
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Placement and Location Placement Constraints

Types of Placement Constraints
There are several interesting constraints that can be included in the
placement problem which preserve convexity.

We can require some positions xi to lie in a specified convex set, e.g., a
particular line, interval, square, or ellipsoid.

The relative position of one point with respect to one or more other
points can be constrained. For example, we can limit the distance
between a pair of points.

We can impose relative position constraints, e.g., that one point must lie
to the left of another point.

Several bounding box constraints can be included. The bounding box of
a group of points is the smallest rectangle that contains the points. For
example, we can constrain the points x1, . . . ,xp to lie in a bounding box
with perimeter not exceeding Pmax by adding the constraints

u � xi � v , i = 1, . . . , p , 21T (v − u) ≤ Pmax ,

where u ∈ Rk and v ∈ Rk are additional variables.
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Placement and Location Nonlinear Facility Location Problems

Nonlinear Facility Location Problems
A generalization of the linear facility location problem occurs when we take the cost function to be

fi,j(xi,xj) = wi,jh(||xi − xj ||) ,
where wi,j ≥ 0 is a weight parameter and h is a nondecreasing (on R+) and convex function. In
this case, we call the associated problem a nonlinear placement or facility location problem.
Examples:

Quadratic placement problem: When the Euclidean norm is used with h(z) = z2, we
obtain the quadratic placement problem. As an example, when there is one free point x
and fixed points x1, . . . ,xK , and wi,j = 1 for all i, j, the placement problem becomes

minimize ||x− x1||22 + · · ·+ ||x− xK ||22 .

This has the optimal solution x? = (x1 + · · ·+ xK) /K, which is the average or centroid
of the fixed points.
Power function: (with power p ≥ 1)

h(z) = zp .

Deadzone-linear function: (with deadzone width 2γ)

h(z) =

{
0 , |z| ≤ γ
|z − γ| , |z| > γ

.

Quadratic-linear function: (with quadratic width 2γ)

h(z) =

{
z2 , |z| ≤ γ
2γ |z| − γ2 , |z| > γ

.
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Placement and Location Nonlinear Facility Location Problems

Comparison Between Linear and Nonlinear Placement
Example: Minimize

∑
(i,j)∈A h

(
||xi − xj ||2

)
, with 6 free points (red dots), 8 fixed points (blue

squares), and 27 links (black dotted lines).

Optimal placement for h(z) = z, h(z) = z2, and h(z) = z4 (from left to right, respectively).

−1 −0.5 0 0.5 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

 

 

−1 −0.5 0 0.5 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

 

 

−1 −0.5 0 0.5 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

 

 

Histograms of respective connection lengths ||xi − xj ||2 for h(z) = z, h(z) = z2, and h(z) = z4.
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Placement and Location Location Problems with Path Constraints

Path Constraints

A p-link path along the points x1, . . . ,xN is described by a sequence of
nodes, i0, . . . , ip ∈ {1, . . . , N}. The length of the path is given by

||xi1 − xi0 ||+ ||xi2 − xi1 ||+ · · ·+
∣∣∣∣xip − xip−1

∣∣∣∣ .
The path length is a convex function of x1, . . . ,xN .
As a result of the convexity of the path length, imposing an upper
bound on the length of a path is a convex constraint.
Several interesting placement problems involve path constraints,
or have an objective based on path lengths.
One typical example is the minimax delay placement problem, in
which the objective is based on a maximum path length over a set
of paths.
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Placement and Location Location Problems with Path Constraints

Minimax Delay Placement Problem
To introduce the minimax delay placement problem, we first describe the topology
characterizing the problem.

We consider a directed, acyclic graph with nodes 1, . . . , N , and arcs or links
represented by a set A of ordered pairs: (i, j) ∈ A if and only if an arc points
from i to j.
Node i is a source node if no arc A points to it; it is a sink node or destination
node if no arc in A leaves from it.
The arcs model a kind of flow, say of goods or information, in a network with
nodes at positions x1, . . . ,xN . The flow starts at a source node, moves along a
path from node to node, and ends up at a sink or destination node.
We use the distance between successive nodes to model propagation time, or
shipment time, of goods between nodes; the total delay or propagation time of a
path is then proportional to the sum of the distances between successive nodes.
Some node locations are fixed, while others are free. The goal is to choose the
free node locations to minimize the maximum total delay, for any path from a
source node to a sink node. This leads to a convex problem, since the objective

Tmax , max
{
||xi1 − xi0 ||+ · · ·+

∣∣∣∣xip − xip−1

∣∣∣∣ : i0, . . . , ip is a source-sink path
}
,

is a convex function of the locations x1, . . . ,xN .
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Placement and Location Location Problems with Path Constraints

Minimax Delay Placement Problem (Continued)
While the minimax delay placement problem is convex, the number of source-sink paths is
exponential in the number of nodes or arcs, which can become quite large.
However, the problem can be reformulated to avoid enumerating all sink-source paths.
To show this, let τk denote the maximum total delay of any path from node k to a sink
node. Suppose node k has outgoing arcs to nodes j1, . . . , jp. Then, based on a simple
dynamic programming argument, we can show that

τk = max
{
||xj1 − xk||+ τj1 , . . . ,

∣∣∣∣xjp − xk

∣∣∣∣+ τjp
}
.

The above equation gives a recursion for finding the maximum delay from any node.
Specifically, we start at the sink nodes, and work backward until we reach all source nodes.
The number of arithmetic operations required for this is approximately the number of links.
With this recursion, the minimax delay placement problem can be expressed as

minimize max{τk : k is a source node}
subject to τk = 0 , k is a sink node

τk = max{||xj − xk||+ τj : there is an arc from k to j}
.

This form of the problem, however, is not convex.
By replacing the equality constraints with inequalities, we obtain an equivalent form of the
problem that is convex. Introducing new variables T1, . . . , TN as upper bounds on
τ1, . . . , τN , the minimax delay placement problem can be expressed as the convex problem,

minimize max{Tk : k is a source node}
subject to Tk = 0 , k is a sink node

Tk ≥ max{||xj − xk||+ Tj : there is an arc from k to j}
.

Andre Tkacenko (JPL) EE/ACM 150 - Lecture 18 May 31, 2012 19 / 26



Floor Planning Introduction

Introduction to Floor Planning
A floor planning problem is an extension of a placement problem in the following ways:

The objects to be placed are rectangles or boxes aligned with the axes (as
opposed to points), and must not overlap.
Each rectangle or box to be placed can be reconfigured, within some limits.

Typically, the objective is to minimize the size (e.g., area, volume, or perimeter) of the
bounding box, i.e., the smallest box containing the boxes to be configured and placed.

The non-overlap constraints make the general floor planning problem a
complicated combinatorial optimization problem or rectangular packing problem.
However, if the relative positioning of the boxes is specified, then several types of
floor planning problems can be formulated as convex optimization problems.

Ci

wi

hi

W

H
(xi, yi)
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Floor Planning Introduction

Introduction to Floor Planning (Continued)
We will focus on the two-dimensional case of floor planning here.
Assumptions and required constraints:

We have N cells or modules C1, . . . , CN that are to be configured and placed in a
rectangle with width W and height H, and lower left corner at the origin (0, 0).
The geometry and position of the i-th cell is specified by its width wi and height
hi, and the coordinates (xi, yi) of its lower left corner.
The variables of the problem are xi, yi, hi, wi for i = 1, . . . , N , and the width W
and height H of the bounding rectangle.
We require the cells to lie inside the bounding rectangle, i.e.,

xi ≥ 0 , yi ≥ 0 , xi + wi ≤W , yi + hi ≤ H , i = 1, . . . , N .

We also require that the cells do not overlap, expect possibly on their boundaries:

int(Ci ∩ Cj) = ∅ for i 6= j .

(A minimum clearance can be included as well.) This holds if and only if, for i 6= j,

Ci is left of Cj , or Ci is right of Cj , or Ci is below Cj , or Ci is above Cj .

These geometric conditions correspond to the following inequalities, for i 6= j.

xi + wi ≤ xj , or xj + wj ≤ xi , or yi + hi ≤ yj , or yj + hj ≤ yi .
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Floor Planning Relative Positioning Constraints

Relative Positioning Constraints
To specify relative positioning constraints, we define relations L and B on pairs of nodes which
specify whether cells are to the left of or below each other, respectively.

We have that Ci is to the left of Cj if (i, j) ∈ L, and similarly Ci is below Cj if (i, j) ∈ B.
This yields the following constraints for i, j = 1, . . . , N .

xi + wi ≤ xj for (i, j) ∈ L , yi + hi ≤ yj for (i, j) ∈ B .
We require that for each (i, j) with i 6= j, one of the following must hold:

(i, j) ∈ L , (j, i) ∈ L , (i, j) ∈ B , (j, i) ∈ B .
In addition, (i, i) 6∈ L and (i, i) 6∈ B. This leads to a set of N (N − 1) /2 affine inequalities.
The relations L and B are anti-symmetric (i.e., (i, j) ∈ L ⇒ (j, i) 6∈ L) and transitive (i.e.,
(i, j) ∈ L , (j, k) ∈ L ⇒ (i, k) ∈ L). Transitivity leads to removing redundant constraints.
A minimal set of relative positioning constraints can be described using two directed
acyclic graphs H (for horizontal) and V (for vertical). We have (i, j) ∈ L (similarly
(i, j) ∈ B) if and only if there is a directed path in H (similarly V) from i to j.
To ensure a relative positioning constraint for every pair of cells, we require that for every
pair, there must be a directed path from one cell to the other in one of the graphs.
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V
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Floor Planning Relative Positioning Constraints

Relative Positioning Constraints (Continued)
We only need to impose the inequalities corresponding to the edges of the graphs H and
V; the others follow from transitivity.
So, for relative positioning, we need only enforce the following set of inequalities.

xi + wi ≤ xj for (i, j) ∈ H , yi + hi ≤ yj for (i, j) ∈ V .
In a similar way, the 4N bounding box inequalities,

xi ≥ 0 , yi ≥ 0 , xi + wi ≤W , yi + hi ≤ H , i = 1, . . . , N ,

can be reduced to a minimal equivalent set.
For example, the constraint xi ≥ 0 need only be imposed on the left-most cells. Similarly,
the inequalities xi + wi ≥W need only be enforced for the right-most cells. Analogous
results hold for the vertical bounding box inequalities.
This leads to the following minimal equivalent set of bounding box inequalities.

xi ≥ 0 for i L minimal, xi + wi ≤W for i L maximal,

yi ≥ 0 for i B minimal, yi + hi ≤ H for i B maximal.

For the example above, a minimal set of horizontal relative positioning inequalities is given by

x1 ≥ 0 , x2 ≥ 0 , x4 ≥ 0 , x5 + w5 ≤W , x1 + w1 ≤ x3 ,
x2 + w2 ≤ x3 , x3 + w3 ≤ x5 , x4 + w4 ≤ x5 .

Similarly, a minimal set of vertical relative positioning inequalities is given by

y2 ≥ 0 , y3 ≥ 0 , y5 ≥ 0 , y4 + h4 ≤ H , y5 + h5 ≤ H ,
y2 + h2 ≤ y1 , y1 + h1 ≤ y4 , y3 + h3 ≤ y4 .
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Floor Planning Convex Constraints
For all floor planning problems considered here, we will take the objective to be the perimeter of
the bounding box, i.e., 2 (W +H), which is a linear function of the variables. A list of several
convex constraints that can be added to the floor planning problem in addition to the convex
relative positioning and bounding box constraints is as follows.

Minimum spacing: (ρhi,j ≥ 0, ρvi,j ≥ 0)

xi + wi + ρhi,j ≤ xj for (i, j) ∈ H , and/or yi + hi + ρvi,j ≤ yj for (i, j) ∈ V .

Minimum cell area: (Ai ≥ 0)

wihi ≥ Ai ⇐⇒ wi ≥ Ai/hi ⇐⇒ (wihi)
1/2 ≥ A1/2

i ⇐⇒ logwi + log hi ≥ logAi .

Aspect ratio constraints: (ui ≥ li ≥ 0)

li ≤ wi/hi ≤ ui .

1

2

3

4

5

1

2

3

4

5
1

2

3

4

5
1

2

3

4

5

Examples using above ordering constraints, with the same minimum required spacing of ρ = 1,
and the same aspect ratio constraint 1/5 ≤ wi/hi ≤ 5, but different minimum required cell areas
Ai. Here, the values of Ai are chosen such that

∑5
i=1 Ai is the same for each case.
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Floor Planning Convex Constraints (Continued)
Alignment constraints: We can impose that a cell is aligned with another cell or the
boundary box in a certain way. All such conditions are affine equality constraints.
Symmetry constraints: We can require pairs of cells to be symmetric about a vertical or
horizontal axis, that can be fixed or floating. This leads to affine equality constraints.
Similarity constraints: We can impose the width and/or height of cell i to be a scale factor,
say a, of cell j, by imposing the linear equality constraints wi = awj and/or hi = ahj .
Containment constraints: We can require that a particular cell contains a given point or lies
inside a given polyhedron, by imposing affine inequality constraints.
Distance constraints: Several convex distance constraints can be imposed. For example,
to limit the distance between the centers of cells i and j, we use the convex inequality

||(xi + wi/2, yi + hi/2)− (xj + wj/2, yj + hj/2)|| ≤ Di,j .

We can also require dist(Ci, Cj) ≤ Di,j , by introducing four new variables ui, vi, uj , vj ,
and imposing the affine inequalities

xi ≤ ui ≤ xi + wi , yi ≤ vi ≤ yi + hi ,

along with the convex inequality
||(ui, vi)− (uj , vj)|| ≤ Di,j .

`∞-norm: We have dist(Ci, Cj) ≤ Di,j if and only if xj − (xi + wi) ≤ Di,j ,
yj − (yi + hi) ≤ Di,j , and yi − (yj + hj) ≤ Di,j .
`1-norm or `2-norm: We have dist(Ci, Cj) ≤ Di,j if and only if yj − (yi + hi) ≤ dv ,
yi − (yj + hj) ≤ dv , dv ≥ 0, and xj − (xi + wi) + dv ≤ Di,j for the `1-norm or
(xj − (xi + wi))

2 + d2v ≤ D2
i,j for the `2-norm.
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Floor Planning Via Geometric Programming
The floor planning problem can also be formulated as a GP in the variables
xi, yi, wi, hi,W,H.

Relative positioning and bounding box constraints:
The relative positioning constraints can be expressed in the posynomial form,

xix
−1
j + wix

−1
j ≤ 1 for (i, j) ∈ H , yiy

−1
j + hiy

−1
j ≤ 1 for (i, j) ∈ V .

The bounding box constraints have the following posynomial form.
xiW

−1 + wiW
−1 ≤ 1 for i L maximal , yiH−1 + hiH

−1 ≤ 1 for i B maximal .
Note that here, the constraints that xi ≥ 0 for i L minimal and yi ≥ 0 for i B
minimal are implicit as a result of the domain of the GP problem formulation.

Nuances of GP formulation of floor planning problem:
We can minimize the bounding box area WH, since it is a posynomial.
We can exactly specify the area of any cell, since wihi = Ai is a monomial
equality constraint.
Alignment, symmetry, and distance constraints cannot be handled with the GP
formulation.
Similarity can be handled with the GP formulation, where the scaling ratio can
either be given or unspecified (in which case it can be treated as another variable).
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