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Introduction Basic Terminology

Brief Overview of General Optimization Problems

General Optimization Problem

minimize f0(x)

subject to fk(x) ≤ 0 , k = 1, . . . ,m

h`(x) = 0 , ` = 1, . . . , p

.

x ∈ Rn − optimization variable
f0(x) : Rn → R − objective (or cost) function
fk(x) : Rn → R − k-th inequality constraint function
h`(x) : Rn → R − `-th equality constraint function

An optimal solution x? is one for which the value of f0 is smallest
among all vectors that satisfy the constraints.
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Introduction Basic Terminology

Brief Overview of Convex Optimization Problems

Convex Optimization Problem

minimize f0(x)

subject to fk(x) ≤ 0 , k = 1, . . . ,m

Ax = b

.

f0(x) , {fk(x)} are convex functions.
A ∈ Rp×n,b ∈ Rp define the affine equality constraint vector
function h(x) = Ax− b.

Convex function: A function g : Rn → R is convex if dom {g} is a
convex set and if, for all x,y ∈ dom {g} and θ with 0 ≤ θ ≤ 1, we have

g(θx+ (1− θ)y) ≤ θg(x) + (1− θ)g(y) .
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Introduction Course Motivation

Why Study Convex Optimization?

Many interesting and important problems in signal processing,
communications, statistics, machine learning, medical imaging,
and finance can be posed as such.
It represents a generalization of several least-squares results you
may already be aware of.
Polynomial-time (P) algorithms exist to globally solve such
problems numerically.

Computation time of interior-point methods roughly proportional to
max

{
n3, n2m,F

}
, where F denotes the cost of evaluating {fk(x)}

as well as their first and second derivatives.
We are guaranteed to have a certificate of optimality or infeasibility.

Convex optimization techniques can be used to provide good
heuristic suboptimal solutions and/or bounds to nonconvex
problems believed to be non-deterministic polynomial-time (NP)
complete or hard.
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Introduction Course Motivation

Commentary on Computational Complexity
Pertaining to the unsolved problem in computer science of whether P = NP or P 6= NP

A decision problem C is NP-complete if:
1 C ∈ NP,
2 Every problem in NP is reducible to C in polynomial time.

Any problem which satisfies condition 2 is called NP-hard.

All convex optimization problems we consider have P complexity.
Convex optimization techniques can be used to provide heuristic
bounds (and often suboptimal solutions) to NP-hard problems.
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Introduction Course Motivation

Brief History of Contributions to the Field

Contribution! Date!

Dantzig introduces simplex algorithm for solving linear programming (LP) 
problems!

1947!

Wiener develops Wiener filter which is statistically optimal in a minimum 
mean square error (MMSE) sense!

1949!

Early work on interior-point methods documented in landmark book by 
Fiacco and McCormick!

1968!

Shor develops the ellipsoid method and Khachiyan uses it to show 
polynomial-time solvability of LPs!

1972, 1979!

Karmarkar develops polynomial-time interior-point method for solving LPs! 1984!

Mehrotra develops predictor-corrector algorithm for solving LPs, forming 
the basis of primal-dual interior-point methods!

1989, 1992!

Nesterov and Nemirovski develop polynomial-time interior-point methods 
for solving nonlinear convex optimization problems !

1994!

Grant, Boyd, and Ye introduce cvx, a freely available MATLAB-based 

software modeling system for disciplined convex programming (DCP)!
2006!
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Scope of Course

What This Course Is...

One of the goals is to expose the applicability of convex
optimization techniques to a wide variety of different fields.
Another objective is to introduce the “tricks of the trade” to apply to
several design problems in order to:

express them in standard convex forms (when possible),
use convex optimization techniques to provide suitable heuristics
(when impossible).

In addition, one key element is to familiarize the students with
readily available software packages for convex optimization (most
notably cvx for MATLAB).
Finally, yet another aim is to dispel the fear of non-least-squares
optimization (i.e., to possibly make you `2-converts).
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Scope of Course

What This Course Isn’t...

Unlike a traditional course solely on convex optimization, we will
try not to dwell too much on theory.
In addition, we will cover neither algorithmic nor implementation
aspects of interior-point methods used to solve convex
optimization problems.
Finally, we will not cover some of the more modern subjects such
as:

subgradient methods used to solve nondifferentiable convex
problems as well as large scale problems,
decentralized and distributed methods for solving convex
optimization problems.
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Overview of Course Topics

Course Syllabus
General overview of lecture topics

Lecture #! Topic! Date! Notes!

1! Introduction! 4/3!

2! Linear algebra review! 4/5! HW #1 out!

3! Singular value decomposition (SVD), Moore-Penrose pseudoinverse! 4/10!

4! Special vector/matrix operators, the Schur complement! 4/12! HW #1 due, HW #2 out!

5! Matrix calculus concepts (real/complex matrix differentiation)! 4/17!

6! Convex sets, generalized inequalities! 4/19! HW #2 due, HW #3 out!

7! Convex functions, quasiconvex functions, log-concave/convex functions! 4/24!

8! Introduction to convex optimization problems: LPs, QPs, QCQPs, & SOCPs! 4/26! HW #3 due, HW #4 out!

9! Introduction to convex optimization problems: GPs & SDPs! 5/1!

10! Vector optimization problems, Pareto optimal points, scalarization! 5/3! HW #4 due, HW #5 out!

11! Duality: Lagrange dual function/problem, weak & strong duality, geometric interpretations! 5/8!

12! Duality: KKT conditions, perturbation and sensitivity analysis, problems with generalized inequalities! 5/10! HW #5 due, HW #6 out!

13! Approximation and fitting problems with regularization! 5/15!

14! Robust approximation, function fitting and interpolation problems! 5/17! HW #6 due, HW #7 out!

15! Statistical estimation: parametric/nonparametric estimation, optimal detector design! 5/22!

16! Statistical estimation: probability bounds, experiment design! 5/24! HW #7 due, HW #8 out!

17! Geometric problems: Euclidean distance problems, extremal volume ellipsoids, centering problems! 5/29!

18! Geometric problems: classification, placement and location, floor planning! 5/31! HW #8 due!

19! Conclusion (bonus lecture, focus to be determined (TBD))! 6/5! optional lecture!
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Course Operational Details

Administrative Details

Lecture Time & Location: Tue. & Thu. 1-2:30 PM, 080 Moore

Course Website URL:
http://www.systems.caltech.edu/dsp/ee150 acospc/

Course E-Mail: ee150.acospc@gmail.com

Teaching Assistants:

Chih-Hao (John) Liu
chliu@caltech.edu

Piya Pal
piyapal@caltech.edu

Office Hours & Locations:

Andre Tkacenko
Mon. & Wed. 3-4 PM
110 Moore

Chih-Hao (John) Liu
Mon. & Wed. 2-3 PM
110 Moore

Piya Pal
Mon. & Wed. 6-7 PM
110 Moore
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Course Operational Details

Course Texts & Supplemental Material

All resources for the class are available online and completely free!
Texts:

Convex Optimization by Stephen Boyd and Lieven Vandenberghe
The Matrix Cookbook by Kaare Brandt Petersen and Michael
Syskind Pedersen

Supplemental Material:
MATLAB Software Package:
cvx (download link and users’ guide) by Michael Grant, Stephen
Boyd, and Yinyu Ye
Exercises:
Additional Exercises for Convex Optimization by Stephen Boyd
and Lieven Vandenberghe
Extra Resources:
Complete problems and solutions, as well as other material, for
Convex Optimization Theory by Dimitri P. Bertsekas
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Course Operational Details

Grading Policies
Grading for the class will be based entirely on weekly homeworks. There will be no
exams. Barring extenuating circumstances, there will be 8 homework sets. Nominally,
each homework set will have one no collaboration type (NCT) problem, which will
carry more weight than other limited collaboration type (LCT) problems. Notionally,
each homework set will be 70 points, comprised as follows:

Homework Set Problem Problem Type Points
1 LCT 10
2 LCT 10
3 LCT 10
4 LCT 10

*5 NCT 30

Grades will be assigned according to the following (rounded) percentage ranges.

Grade Percentage
A−, A, A+ 90-92, 93-96, 97-100
B−, B, B+ 80-82, 83-86, 87-89
C−, C, C+ 70-72, 73-76, 77-79
D−, D, D+ 60-62, 63-66, 67-69

F 0-59
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Example Application of Convex Optimization

Patch Illumination Example
Suppose we have m lamps illuminating n small, flat patches as shown.

lamp power pℓ

illumination Ik

rk,ℓθk,ℓ

The intensity of the illumination at the k-th patch Ik depends linearly on the lamp
powers {p`}.

Ik =
m∑
`=1

ak,`p` , ak,` = r−2
k,` max {cos θk,`, 0} .

The goal is to make each intensity as close to a desired value Ides as possible (in
some sense), subject to a maximum power constraint pmax for the lamps.

Problem:

minimize max
k=1,...,n

|log Ik − log Ides|

subject to 0 ≤ p` ≤ pmax , ` = 1, . . . ,m
.
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Example Application of Convex Optimization

Patch Illumination Example (Continued)

The above problem can be shown to be equivalent to the following one.

Equivalent Problem:

minimize f0(p) , max
k=1,...,n

g(Ik/Ides)

subject to 0 ≤ p` ≤ pmax , ` = 1, . . . ,m
.

Here, g(u) , e|log u| = max {1/u, u}.
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It can be shown that f0(p) is convex since the maximum of convex functions is convex.
Hence, the equivalent problem is a convex optimization type which can be numerically
solved exactly using an interior-point method (with complexity similar to least-squares).
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Example Application of Convex Optimization

Additional Constraints
Convex or nonconvex

Suppose we add either of the following constraints to the patch
illumination problem:

1 no more than half of the total power is in any m0 lamps,
2 no more than half of the lamps are on (i.e., p` > 0).

Questions: How does each complicate the problem? Can each
constraint be expressed in convex form or not?

Answers: With (1), the constraint can be expressed in convex form
and so the problem is still easy to solve. However with (2), this is not
possible and the resulting problem turns out to be very hard to solve.

Moral: To the untrained eye, very simple problems can appear quite
similar to very difficult ones.
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Concluding Remarks

General Aims of the Course

Overall, the general goals of this class are the following:
to introduce you to the mathematical tools (linear algebra, matrix
calculus, etc.) used to analyze and characterize convex
optimization problems,
to recognize/formulate problems (such as the one considered in
the illumination example) as convex optimization problems
(whenever possible),
to advocate and justify the use of convex optimization techniques
as heuristics for nonconvex problems,
to acquaint you with powerful software used to numerically solve
convex optimization problems,
to cover a variety of applications in signal processing and
communications in which convex optimization arises.
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