EE/ACM 150 - Applications of Convex Optimization in Signal Processing and Communications Lecture 2

Andre Tkacenko

Signal Processing Research Group Jet Propulsion Laboratory

April 5, 2012

Caltech

Outline

1 Linear Algebra / Matrix Analysis Notation \& Definitions

2 Basic Vector Space Results

3 Overview of Matrix Analysis Concepts

4 Special Types of Matrices

5 Inner Products \& Norms

Terminology List

- Common fields and sets

\mathbb{R}	- field of real scalars
\mathbb{C}	- field of complex scalars
\mathbb{F}	- general field (will be either \mathbb{R} or \mathbb{C} here)
$\mathbb{R}^{n \times n}, \mathbb{C}^{n}, \mathbb{F}^{n}$	- set of $n \times 1$ vectors over \mathbb{R}, \mathbb{C}, or \mathbb{F}, respectively
$\mathbb{C}^{m \times n}, \mathbb{F}^{m \times n}$	- set of $m \times n$ matrices over \mathbb{R}, \mathbb{C}, or \mathbb{F}, respectively

- Special vector/matrix sets

Terminology List (Continued)

- Vector space quantities

$$
\begin{aligned}
\operatorname{dim}(\mathcal{V}) & - \text { dimension of vector space } \mathcal{V} \\
\mathcal{R}(\mathbf{A}) & - \text { range space of matrix } \mathbf{A} \\
\mathcal{N}(\mathbf{A}) & - \text { null space of matrix } \mathbf{A} \\
\operatorname{rank}(\mathbf{A}) & - \text { rank of matrix } \mathbf{A} \text { (i.e., } \operatorname{dim}(\mathcal{R}(\mathbf{A}))) \\
\text { nullity }(\mathbf{A}) & - \text { nullity of matrix } \mathbf{A} \text { (i.e., } \operatorname{dim}(\mathcal{N}(\mathbf{A})))
\end{aligned}
$$

- Common matrix operators and quantities
* - complex conjugate operator (i.e., \mathbf{a}^{*} or \mathbf{A}^{*})
T - transpose operator (i.e., \mathbf{a}^{T} or \mathbf{A}^{T})
$\dagger-$ complex conjugate transpose operator (i.e., \mathbf{a}^{\dagger} or \mathbf{A}^{\dagger})
$\operatorname{det}(\mathbf{A}) \quad-\quad$ determinant of square matrix \mathbf{A}
$\mathbf{A}^{-1} \quad-\quad$ inverse of square matrix \mathbf{A} (if it exists)
$\operatorname{diag}(\mathbf{A}) \quad-\quad$ column vector formed from diagonal components of matrix \mathbf{A}
$\operatorname{diag}(\mathbf{a}) \quad$ - diagonal matrix formed from components of vector a
$\operatorname{tr}(\mathbf{A}) \quad-\quad$ trace of matrix \mathbf{A} (i.e., the sum of diagonal components)

Terminology List (Continued)

■ Inner product / norm quantities
$\langle\mathbf{x}, \mathbf{y}\rangle \quad$ - inner product of \mathbf{x} and \mathbf{y} (\mathbf{x} and \mathbf{y} can be either vectors or matrices)
$\|\mathbf{a}\|,\|\mathbf{A}\| \quad-\quad$ norm of vector a or matrix \mathbf{A}, respectively
$\|\mathbf{a}\|_{p}-\ell_{p}$-norm of vector \mathbf{a}
$\|\mathbf{A}\|_{\mathrm{a}, \mathrm{b}}-$ operator norm of \mathbf{A} induced by vector norms $\|\cdot\|_{\mathrm{a}}$ and $\|\cdot\|_{\mathrm{b}}$
$\|\mathbf{A}\|_{F} \quad-\quad$ Frobenius norm of matrix \mathbf{A}
$\|\mathbf{z}\|_{\circledast} \quad-\quad$ dual norm of \mathbf{z} associated with $\|\mathbf{z}\|$ (\mathbf{z} can be either a vector or a matrix)

■ Useful vectors \& matrices and miscellaneous terminology

$$
\begin{aligned}
\mathbf{1} & - \text { column vector of all ones } \\
\mathbf{0}_{m \times n} & -m \times n \text { matrix of zeros } \\
\mathbf{I}_{n} & -n \times n \text { identity matrix } \\
{[\mathbf{a}]_{k} } & -k \text {-th element of vector a } \\
{[\mathbf{A}]_{k, \ell} } & -(k, \ell) \text {-th element of matrix } \mathbf{A}
\end{aligned}
$$

Linear Dependence and Independence

A set of n vectors $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}\right\}$ from a vector space \mathcal{V} is said to be linearly dependent if and only if there are n scalars $a_{1}, a_{2}, \ldots, a_{n}$ not all zero such that

$$
\sum_{k=1}^{n} a_{k} \mathbf{v}_{k}=\mathbf{0}
$$

In other words, there is at least one vector, say \mathbf{v}_{ℓ}, which depends linearly on the other vectors, i.e.,

$$
\mathbf{v}_{\ell}=-\frac{1}{a_{\ell}} \sum_{\substack{k=1 \\ k \neq \ell}}^{n} a_{k} \mathbf{v}_{k}
$$

The vectors $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}$ are said to be linearly independent if they are not linearly dependent. Equivalently, the set $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}\right\}$ is linearly independent when

$$
\sum_{k=1}^{n} a_{k} \mathbf{v}_{k}=\mathbf{0}
$$

if and only if $a_{1}=a_{2}=\cdots=a_{n}=0$.

Span, Basis, \& Dimension

Let $S \triangleq\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right\}$ denote a subset of vectors from a vector space \mathcal{V} defined over \mathbb{F}. The span of S (denoted $\operatorname{span}(S)$) is the set of all linear combinations of elements in S, i.e.,

$$
\operatorname{span}(S) \triangleq\left\{c_{1} \mathbf{v}_{1}+\cdots+c_{n} \mathbf{v}_{n}: c_{1}, \ldots, c_{n} \in \mathbb{F}\right\}
$$

If S is a linearly independent set of vectors which spans \mathcal{V} (meaning $\operatorname{span}(S)=\mathcal{V})$, then S is said to be a basis for \mathcal{V}.

Any vector $\mathbf{w} \in \mathcal{V}$ can be represented in terms of a basis S in one and only one way. As such, a basis effectively defines a "coordinate system" for \mathcal{V}.

A vector space \mathcal{V} can be characterized by several different bases (bases are nonunique). However, all bases for a given vector space will have the same number of elements. This common number is call the dimension of the vector space \mathcal{V} and is denoted $\operatorname{dim}(\mathcal{V})$.

Range \& Null Space, Rank \& Nullity

Let $\mathbf{A} \in \mathbb{F}^{m \times n}$. Then, the range space $\mathcal{R}(\mathbf{A})$ and null space $\mathcal{N}(\mathbf{A})$ are defined as follows.

$$
\begin{aligned}
\mathcal{R}(\mathbf{A}) & \left.\triangleq \mathbf{y}=\mathbf{A} \mathbf{x}: \mathbf{x} \in \mathbb{F}^{n}\right\} \\
\mathcal{N}(\mathbf{A}) & \left.\triangleq \mathbf{x} \in \mathbb{F}^{n}: \mathbf{A} \mathbf{x}=\mathbf{0}\right\}
\end{aligned}
$$

The rank and nullity of \mathbf{A} are the dimensions of the range and null spaces, respectively, i.e.,

$$
\begin{aligned}
\operatorname{rank}(\mathbf{A}) & \triangleq \operatorname{dim}(\mathcal{R}(\mathbf{A})) \\
\operatorname{nullity}(\mathbf{A}) & \triangleq \operatorname{dim}(\mathcal{N}(\mathbf{A}))
\end{aligned}
$$

Equality of row and column ranks:

$$
\operatorname{rank}(\mathbf{A})=\operatorname{rank}\left(\mathbf{A}^{T}\right)
$$

Rank-nullity theorem:

$$
\operatorname{rank}(\mathbf{A})+\operatorname{nullity}(\mathbf{A})=n
$$

Systems of Linear Equations

Let $\mathbf{A} \in \mathbb{F}^{m \times n}, \mathbf{x} \in \mathbb{F}^{n}$, and $\mathbf{b} \in \mathbb{F}^{m}$. Consider the following system of linear equations which we would like to solve for x .

$$
\mathbf{A x}=\mathbf{b}
$$

This system can behave in any one of three possible ways:
1 It can have a single unique solution. ($\mathbf{b} \in \mathcal{R}(\mathbf{A}), \operatorname{nullity}(\mathbf{A})=0)$
2 It can have infinitely many solutions. ($\mathbf{b} \in \mathcal{R}(\mathbf{A})$, nullity $(\mathbf{A})>0)$
3 It can have no solution. ($\mathbf{b} \notin \mathcal{R}(\mathbf{A})$)
If a solution exists (i.e., $\mathbf{b} \in \mathcal{R}(\mathbf{A})$), then the set of solutions can be characterized as follows. Let \mathbf{p} be a particular solution to $\mathbf{A x}=\mathbf{b}$, i.e., $\mathbf{A p}=\mathbf{b}$. Then, the solution set is given by

$$
\{\mathbf{p}+\mathbf{v}: \mathbf{A v}=\mathbf{0}\}
$$

that is, the solution set is a translation of the solution set of the homogeneous system $\mathbf{A x}=\mathbf{0}$.

Matrix Arithmetic Operations

- Addition and scalar multiplication:

If $\alpha, \beta \in \mathbb{F}, \mathbf{A} \in \mathbb{F}^{m \times n}$, and $\mathbf{B} \in \mathbb{F}^{m \times n}$, then $\mathbf{C} \triangleq \alpha \mathbf{A}+\beta \mathbf{B}$ is such that $\mathbf{C} \in \mathbb{F}^{m \times n}$ with $[\mathbf{C}]_{k, \ell}=\alpha[\mathbf{A}]_{k, \ell}+\beta[\mathbf{B}]_{k, \ell}$.

- Matrix multiplication:

If $\mathbf{A} \in \mathbb{F}^{m \times n}$ and $\mathbf{B} \in \mathbb{F}^{n \times p}$, then $\mathbf{C} \triangleq \mathbf{A B}$ is such that $\mathbf{C} \in \mathbb{F}^{m \times p}$ with

$$
[\mathbf{C}]_{k, \ell}=\sum_{i=1}^{n}[\mathbf{A}]_{k, i}[\mathbf{B}]_{i, \ell}, 1 \leq k \leq m, 1 \leq \ell \leq p
$$

- Block matrix multiplication:

If $\mathbf{A} \in \mathbb{F}^{m_{1} \times n_{1}}, \mathbf{B} \in \mathbb{F}^{m_{1} \times n_{2}}, \mathbf{C} \in \mathbb{F}^{m_{2} \times n_{1}}, \mathbf{D} \in \mathbb{F}^{m_{2} \times n_{2}}, \mathbf{E} \in \mathbb{F}^{n_{1} \times p_{1}}$, $\mathbf{F} \in \mathbb{F}^{n_{1} \times p_{2}}, \mathbf{G} \in \mathbb{F}^{n_{2} \times p_{1}}$, and $\mathbf{H} \in \mathbb{F}^{n_{2} \times p_{2}}$, then we have

$$
\left[\begin{array}{ll}
\mathbf{A} & \mathbf{B} \\
\mathbf{C} & \mathbf{D}
\end{array}\right]\left[\begin{array}{cc}
\mathbf{E} & \mathbf{F} \\
\mathbf{G} & \mathbf{H}
\end{array}\right]=\left[\begin{array}{cc}
\mathbf{A E}+\mathbf{B G} & \mathbf{A F}+\mathbf{B H} \\
\mathbf{C E}+\mathbf{D G} & \mathbf{C F}+\mathbf{D H}
\end{array}\right]
$$

Determinant of a Square Matrix

The determinant of an $n \times n$ square matrix \mathbf{A}, $\operatorname{denoted} \operatorname{det}(\mathbf{A})$, is a scalar quantity used to help construct the inverse of \mathbf{A} (if it exists), calculate the eigenvalues of \mathbf{A}, and determine the volume of the parallelepiped spanned by the columns of \mathbf{A} (via its absolute value).
It can be determined recursively as

$$
\operatorname{det}(\mathbf{A})=\sum_{k=1}^{n}(-1)^{k+\ell}[\mathbf{A}]_{k, \ell} M_{k, \ell}=\sum_{k=1}^{n}(-1)^{k+\ell}[\mathbf{A}]_{\ell, k} M_{\ell, k},
$$

where ℓ is a fixed integer in $1 \leq \ell \leq n$ and $M_{k, \ell}$ is the minor of $[\mathbf{A}]_{k, \ell}$, which is the determinant of the $(n-1) \times(n-1)$ submatrix formed by deleting the k-th row and m-th column of \mathbf{A}. (The determinant of a scalar is the scalar itself.)

Properties:

- If \mathbf{A} and \mathbf{B} are $n \times n$ and $\mathbf{C} \triangleq \mathbf{A B}$, then $\operatorname{det}(\mathbf{C})=\operatorname{det}(\mathbf{A}) \operatorname{det}(\mathbf{B})$.
- If $\mathbf{A}, \mathbf{B}, \mathbf{C}$, and \mathbf{D} are $m \times m, m \times n, n \times m$, and $n \times n$, respectively, then

$$
\operatorname{det}\left(\left[\begin{array}{cc}
\mathbf{A} & \mathbf{0}_{m \times n} \\
\mathbf{C} & \mathbf{D}
\end{array}\right]\right)=\operatorname{det}\left(\left[\begin{array}{cc}
\mathbf{A} & \mathbf{B} \\
\mathbf{0}_{n \times m} & \mathbf{D}
\end{array}\right]\right)=\operatorname{det}(\mathbf{A}) \operatorname{det}(\mathbf{D}) .
$$

- If \mathbf{A} is an $n \times n$ triangular matrix (either upper or lower), then

$$
\operatorname{det}(\mathbf{A})=\prod_{k=1}^{n}[\mathbf{A}]_{k, \ell}
$$

Matrix Inverse

The inverse of an $n \times n$ square matrix \mathbf{A}, denoted \mathbf{A}^{-1}, is one for which

$$
\mathbf{A A}^{-1}=\mathbf{A}^{-1} \mathbf{A}=\mathbf{I}_{n}
$$

If such a matrix exists, \mathbf{A} is said to be invertible. Otherwise, \mathbf{A} is said to be singular. It can be shown that \mathbf{A} is invertible if and only if $\operatorname{det}(\mathbf{A}) \neq 0$. In this case,

$$
\left[\mathbf{A}^{-1}\right]_{k, \ell}=\frac{1}{\operatorname{det}(\mathbf{A})}(-1)^{\ell+k} M_{\ell, k}, 1 \leq k \leq n, 1 \leq \ell \leq n
$$

where $M_{\ell, k}$ is the minor of $[\mathbf{A}]_{\ell, k}$. The quantity $C_{\ell, k} \triangleq(-1)^{\ell+k} M_{\ell, k}$ is the cofactor of $[\mathbf{A}]_{\ell, k}$.

Matrix Inversion Lemma:

If $\mathbf{A}, \mathbf{B}, \mathbf{C}$, and \mathbf{D} are $m \times m, m \times n, n \times m$, and $n \times n$, respectively, and \mathbf{A} and \mathbf{D} are nonsingular, then

$$
\left(\mathbf{A}-\mathbf{B D}^{-1} \mathbf{C}\right)^{-1}=\mathbf{A}^{-1}+\mathbf{A}^{-1} \mathbf{B}\left(\mathbf{D}-\mathbf{C A}^{-1} \mathbf{B}\right)^{-1} \mathbf{C A}^{-1}
$$

This lemma can be proved by considering the inverse of the block matrix \mathbf{M} given by

$$
\mathbf{M} \triangleq\left[\begin{array}{ll}
\mathbf{A} & \mathbf{B} \\
\mathbf{C} & \mathbf{D}
\end{array}\right]
$$

In this case, the matrix $\mathbf{S}_{\mathbf{D} ; \mathbf{M}} \triangleq \mathbf{A}-\mathbf{B D}^{-1} \mathbf{C}$ is called the Schur complement of \mathbf{D} in \mathbf{M}.
Similarly, $\mathbf{S}_{\mathbf{A} ; \mathbf{M}} \triangleq \mathbf{D}-\mathbf{C A}^{-1} \mathbf{B}$ is the Schur complement of \mathbf{A} in \mathbf{M}.

Eigenvalues \& Eigenvectors

For an $n \times n$ square matrix \mathbf{A}, an $n \times 1$ nonzero vector \mathbf{v} such that

$$
\mathbf{A} \mathbf{v}=\lambda \mathbf{v}
$$

is said to be an eigenvector of \mathbf{A} with eigenvalue λ.
The eigenvalues of \mathbf{A} can be obtained as the roots of its characteristic polynomial $p(\lambda)$ given by

$$
p(\lambda) \triangleq \operatorname{det}\left(\lambda \mathbf{I}_{n}-\mathbf{A}\right) .
$$

Note that there are exactly n eigenvalues (counting multiplicity).

Properties of eigenvalues \& eigenvectors:

- If $\left\{\lambda_{1}, \ldots, \lambda_{n}\right\}$ denote the set of eigenvalues of \mathbf{A}, then it can be shown that

$$
\operatorname{det}(\mathbf{A})=\prod_{k=1}^{n} \lambda_{k}, \operatorname{tr}(\mathbf{A})=\sum_{k=1}^{n} \lambda_{k}
$$

- The eigenvalues of a triangular matrix (either upper or lower) are the diagonal elements.
- Suppose \mathbf{A} is $n \times n$ with n linearly independent eigenvectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$ corresponding to eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$. If $\mathbf{V} \triangleq\left[\begin{array}{lll}\mathbf{v}_{1} & \cdots & \mathbf{v}_{n}\end{array}\right]$ and $\boldsymbol{\Lambda} \triangleq \operatorname{diag}\left(\left[\begin{array}{lll}\lambda_{1} & \cdots & \lambda_{n}\end{array}\right]^{T}\right)$, then we have

$$
\mathbf{A}=\mathbf{V} \boldsymbol{\Lambda} \mathbf{V}^{-1}
$$

and we say that \mathbf{A} is diagonalizable.
■ If the eigenvalues of a matrix \mathbf{A} are distinct, then \mathbf{A} is diagonalizable. Otherwise, \mathbf{A} may or may not be diagonalizable.

Useful Miscellaneous Identities

- Conjugate, transpose, and conjugate transpose:

Suppose that α and β are scalars, that \mathbf{U} is $k \times \ell, \mathbf{V}$ is $k \times \ell, \mathbf{X}$ is $m \times n$, and \mathbf{Y} is $n \times p$, and that \mathbf{A} is $m_{1} \times n_{1}$, \mathbf{B} is $m_{1} \times n_{2}, \mathbf{C}$ is $m_{2} \times n_{1}$, and \mathbf{D} is $m_{2} \times n_{2}$. Then we have

$$
\begin{aligned}
& (\alpha \mathbf{U}+\beta \mathbf{V})^{*}=\alpha^{*} \mathbf{U}^{*}+\beta^{*} \mathbf{V}^{*},(\mathbf{X Y})^{*}=\mathbf{X}^{*} \mathbf{Y}^{*},\left[\begin{array}{ll}
\mathbf{A} & \mathbf{B} \\
\mathbf{C} & \mathbf{D}
\end{array}\right]^{*}=\left[\begin{array}{ll}
\mathbf{A}^{*} & \mathbf{B}^{*} \\
\mathbf{C}^{*} & \mathbf{D}^{*}
\end{array}\right] . \\
& (\alpha \mathbf{U}+\beta \mathbf{V})^{T}=\alpha \mathbf{U}^{T}+\beta \mathbf{V}^{T},(\mathbf{X Y})^{T}=\mathbf{Y}^{T} \mathbf{X}^{T},\left[\begin{array}{ll}
\mathbf{A} & \mathbf{B} \\
\mathbf{C} & \mathbf{D}
\end{array}\right]^{T}=\left[\begin{array}{ll}
\mathbf{A}^{T} & \mathbf{C}^{T} \\
\mathbf{B}^{T} & \mathbf{D}^{T}
\end{array}\right] . \\
& (\alpha \mathbf{U}+\beta \mathbf{V})^{\dagger}=\alpha^{*} \mathbf{U}^{\dagger}+\beta^{*} \mathbf{V}^{\dagger},(\mathbf{X Y})^{\dagger}=\mathbf{Y}^{\dagger} \mathbf{X}^{\dagger},\left[\begin{array}{ll}
\mathbf{A} & \mathbf{B} \\
\mathbf{C} & \mathbf{D}
\end{array}\right]^{\dagger}=\left[\begin{array}{ll}
\mathbf{A}^{\dagger} & \mathbf{C}^{\dagger} \\
\mathbf{B}^{\dagger} & \mathbf{D}^{\dagger}
\end{array}\right] .
\end{aligned}
$$

- Trace:

Suppose that α and β are scalars, that \mathbf{U} is $k \times k, \mathbf{V}$ is $k \times k, \mathbf{X}$ is $m \times n$, and \mathbf{Y} is $n \times m$, and that \mathbf{A} is $m \times m$, \mathbf{B} is $m \times n, \mathbf{C}$ is $n \times m$, and \mathbf{D} is $n \times n$. Then we have

$$
\operatorname{tr}(\alpha \mathbf{U}+\beta \mathbf{V})=\alpha \operatorname{tr}(\mathbf{U})+\beta \operatorname{tr}(\mathbf{V}), \operatorname{tr}(\mathbf{X Y})=\operatorname{tr}(\mathbf{Y X}), \operatorname{tr}\left(\left[\begin{array}{ll}
\mathbf{A} & \mathbf{B} \\
\mathbf{C} & \mathbf{D}
\end{array}\right]\right)=\operatorname{tr}(\mathbf{A})+\operatorname{tr}(\mathbf{D})
$$

- Inverse:

Suppose that c is a nonzero scalar and that \mathbf{A} and \mathbf{B} are invertible $n \times n$ matrices. Then we have

$$
\begin{gathered}
(c \mathbf{A})^{-1}=\frac{1}{c} \mathbf{A}^{-1},\left(\mathbf{A}^{-1}\right)^{-1}=\mathbf{A},(\mathbf{A B})^{-1}=\mathbf{B}^{-1} \mathbf{A}^{-1} \\
\left(\mathbf{A}^{T}\right)^{-1}=\left(\mathbf{A}^{-1}\right)^{T},\left(\mathbf{A}^{\dagger}\right)^{-1}=\left(\mathbf{A}^{-1}\right)^{\dagger}, \operatorname{det}\left(\mathbf{A}^{-1}\right)=\frac{1}{\operatorname{det}(\mathbf{A})}
\end{gathered}
$$

Unitary and Normal Matrices

- Unitary Matrices:

A matrix $\mathbf{U} \in \mathbb{C}^{m \times n}$ (with $m \geq n$) is said to be unitary if $\mathbf{U}^{\dagger} \mathbf{U}=\mathbf{I}_{n}$. Similarly, if $\mathbf{U} \in \mathbb{R}^{m \times n}$, then \mathbf{U} is unitary if $\mathbf{U}^{T} \mathbf{U}=\mathbf{I}_{n}$. If $m=n$, then we have

$$
\begin{aligned}
\mathbf{U}^{\dagger} \mathbf{U} & =\mathbf{U} \mathbf{U}^{\dagger}=\mathbf{I}_{m},\left(\mathbf{U} \in \mathbb{C}^{m \times m}\right) \\
\mathbf{U}^{T} \mathbf{U} & =\mathbf{U U}^{T}=\mathbf{I}_{m},\left(\mathbf{U} \in \mathbb{R}^{m \times m}\right)
\end{aligned}
$$

■ Normal Matrices:
A matrix $\mathbf{A} \in \mathbb{C}^{n \times n}$ is said to be normal if $\mathbf{A}^{\dagger} \mathbf{A}=\mathbf{A} \mathbf{A}^{\dagger}$. Similarly, if $\mathbf{A} \in \mathbb{R}^{n \times n}$, then \mathbf{A} is normal if $\mathbf{A}^{T} \mathbf{A}=\mathbf{A} \mathbf{A}^{T}$. It can be shown that \mathbf{A} is normal if and only if it is diagonalizable by a unitary matrix. More specifically, \mathbf{A} is diagonalizable if and only if

$$
\begin{aligned}
& \mathbf{A}=\mathbf{U} \boldsymbol{\Lambda} \mathbf{U}^{\dagger},\left(\mathbf{A} \in \mathbb{C}^{n \times n}\right) . \\
& \mathbf{A}=\mathbf{U} \boldsymbol{\Lambda} \mathbf{U}^{T},\left(\mathbf{A} \in \mathbb{R}^{n \times n}\right) .
\end{aligned}
$$

Here, \mathbf{U} is unitary and $\boldsymbol{\Lambda}=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right)$ is a diagonal matrix of eigenvalues of \mathbf{A}.

Symmetric and Hermitian Matrices

- Symmetric matrices:

An $n \times n$ matrix \mathbf{A} is said to be symmetric if $\mathbf{A}=\mathbf{A}^{T}$.
The set of $n \times n$ real symmetric matrices is a special one and will be denoted \mathbb{S}^{n}. Any real symmetric matrix \mathbf{A} is normal and as such, is unitarily diagonalizable, i.e., admits a decomposition of the form $\mathbf{A}=\mathbf{U} \boldsymbol{\Lambda} \mathbf{U}^{T}$ as described above.

- Hermitian matrices:

An $n \times n$ matrix \mathbf{A} is said to be Hermitian if $\mathbf{A}=\mathbf{A}^{\dagger}$.
The set of $n \times n$ Hermitian matrices is a special one and will be denoted \mathbb{H}^{n}. As any real symmetric matrix is also Hermitian (yet there are Hermitian matrices which are not real symmetric), it follows that $\mathbb{S}^{n} \subset \mathbb{H}^{n}$.
Any Hermitian matrix is normal and as such, is unitarily diagonalizable, i.e., admits a decomposition of the form $\mathbf{A}=\mathbf{U} \boldsymbol{\Lambda} \mathbf{U}^{\dagger}$ as described above.

- Properties of real symmetric and Hermitian matrices:
- The eigenvalues of any real symmetric or any Hermitian matrix are always real.
$■$ If $\mathbf{A} \in \mathbb{S}^{n}, \mathbf{v} \in \mathbb{R}^{n}, \mathbf{B} \in \mathbb{H}^{n}$, and $\mathbf{w} \in \mathbb{C}^{n}$, then we have

$$
\mathbf{v}^{T} \mathbf{A} \mathbf{v} \in \mathbb{R}, \mathbf{w}^{\dagger} \mathbf{B} \mathbf{w} \in \mathbb{R} .
$$

Positive Semidefinite / Positive Definite Matrices

■ Positive semidefinite matrices:
An $n \times n$ real symmetric matrix \mathbf{A} is said to be positive semidefinite if

$$
\mathbf{v}^{T} \mathbf{A} \mathbf{v} \geq 0 \text { for all } \mathbf{v} \in \mathbb{R}^{n}
$$

Similarly, an $n \times n$ Hermitian matrix \mathbf{B} is said to be positive semidefinite if

$$
\mathbf{w}^{\dagger} \mathbf{B} \mathbf{w} \geq 0 \text { for all } \mathbf{w} \in \mathbb{C}^{n}
$$

In either case, we will write $\mathbf{A} \succeq \mathbf{0}$ and $\mathbf{B} \succeq \mathbf{0}$.
The sets of positive semidefinite real symmetric and Hermitian matrices are special ones and will be denoted \mathbb{S}_{+}^{n} and \mathbb{H}_{+}^{n}, respectively.

- Positive definite matrices:

An $n \times n$ real symmetric matrix \mathbf{A} is said to be positive definite if

$$
\mathbf{v}^{T} \mathbf{A} \mathbf{v}>0 \text { for all } \mathbf{v} \in \mathbb{R}^{n}, \mathbf{v} \neq \mathbf{0}
$$

Similarly, an $n \times n$ Hermitian matrix \mathbf{B} is said to be positive definite if

$$
\mathbf{w}^{\dagger} \mathbf{B} \mathbf{w}>0 \text { for all } \mathbf{w} \in \mathbb{C}^{n}, \mathbf{w} \neq \mathbf{0}
$$

In either case, we will write $\mathbf{A} \succ \mathbf{0}$ and $\mathbf{B} \succ \mathbf{0}$.
The sets of positive semidefinite real symmetric and Hermitian matrices are special ones and will be denoted \mathbb{S}_{++}^{n} and \mathbb{H}_{++}^{n}, respectively.

Properties of Positive Semidefinite/Definite Matrices

■ (Definiteness of Diagonal Elements and Eigenvalues:) The diagonal entries of a positive semidefinite (definite) matrix are always nonnegative (positive). A real symmetric or Hermitian matrix is positive semidefinite (definite) if and only if all of the eigenvalues are nonnegative (positive).

- (Partial Ordering:) For arbitrary square matrices \mathbf{A} and \mathbf{B}, we will write $\mathbf{A} \succeq \mathbf{B}$ if $(\mathbf{A}-\mathbf{B}) \succeq 0$ and write $\mathbf{A} \succ \mathbf{B}$ if $(\mathbf{A}-\mathbf{B}) \succ \mathbf{0}$. This defines a partial ordering on the set of all square matrices.
\square (Matrix Square Roots:) If $\mathbf{A} \in \mathbb{S}_{+}^{n}, \rho_{\mathbf{A}}=\operatorname{rank}(\mathbf{A}), \mathbf{B} \in \mathbb{H}_{+}^{n}$, and $\rho_{\mathbf{B}}=\operatorname{rank}(\mathbf{B})$, then there exists a $\mathbf{P} \in \mathbb{R}^{\rho_{\mathbf{A}} \times n}$ and $\mathbf{Q} \in \mathbb{C}^{\rho_{\mathbf{B}} \times n}$ such that

$$
\mathbf{A}=\mathbf{P}^{T} \mathbf{P}, \mathbf{B}=\mathbf{Q}^{\dagger} \mathbf{Q}
$$

- (Cholesky Decomposition:) If $\mathbf{A} \in \mathbb{S}_{++}^{n}$ and $\mathbf{B} \in \mathbb{H}_{++}^{n}$, then there exist lower triangular matrices $\mathbf{L}_{\mathbf{A}} \in \mathbb{R}^{n \times n}$ and $\mathbf{L}_{\mathbf{B}} \in \mathbb{C}^{n \times n}$ with strictly positive diagonal entries such that

$$
\mathbf{A}=\mathbf{L}_{\mathbf{A}} \mathbf{L}_{\mathbf{A}}^{T}, \mathbf{B}=\mathbf{L}_{\mathbf{B}} \mathbf{L}_{\mathbf{B}}^{\dagger}
$$

Inner Products

One way to measure the correlation or coherence between two vectors or matrices is through the use of an inner product. An inner product $\langle\mathbf{x}, \mathbf{y}\rangle$ maps two vectors or matrices \mathbf{x} and \mathbf{y} (defined over a field \mathbb{F}) to the underlying field \mathbb{F} and satisfies the following properties.

- Conjugate symmetry:

$$
\langle\mathbf{x}, \mathbf{y}\rangle=\langle\mathbf{y}, \mathbf{x}\rangle^{*} .
$$

- Linearity in the first argument:

$$
\langle\alpha \mathbf{x}+\beta \mathbf{y}, \mathbf{z}\rangle=\alpha\langle\mathbf{x}, \mathbf{z}\rangle+\beta\langle\mathbf{y}, \mathbf{z}\rangle \text { for all } \alpha, \beta \in \mathbb{F}
$$

- Positive definiteness:

$$
\langle\mathbf{x}, \mathbf{x}\rangle \geq 0 \text { with equality if and only if } \mathbf{x}=\mathbf{0} .
$$

Common inner products:

$$
\begin{gathered}
\langle\mathbf{x}, \mathbf{y}\rangle= \begin{cases}\mathbf{y}^{T} \mathbf{x}, & \text { for } \mathbf{x}, \mathbf{y} \in \mathbb{R}^{n} \text { (standard inner product on } \mathbb{R}^{n} \text {) } \\
\mathbf{y}^{\dagger} \mathbf{x}, & \text { for } \mathbf{x}, \mathbf{y} \in \mathbb{C}^{n} \text { (standard inner product on } \mathbb{C}^{n} \text {) } \\
\mathbf{y}^{\dagger} \mathbf{P} \mathbf{x}, & \text { for } \mathbf{x}, \mathbf{y} \in \mathbb{C}^{n}, \mathbf{P} \in \mathbb{H}_{++}^{n}\end{cases} \\
\langle\mathbf{X}, \mathbf{Y}\rangle= \begin{cases}\operatorname{tr}\left(\mathbf{Y}^{T} \mathbf{X}\right), & \text { for } \mathbf{X}, \mathbf{Y} \in \mathbb{R}^{m \times n} \text { (standard inner product on } \mathbb{R}^{m \times n} \text {) } \\
\operatorname{tr}\left(\mathbf{Y}^{\dagger} \mathbf{X}\right), & \text { for } \mathbf{X}, \mathbf{Y} \in \mathbb{C}^{m \times n} \text { (standard inner product on } \mathbb{C}^{m \times n} \text {) . } \\
\operatorname{tr}\left(\mathbf{Y}^{\dagger} \mathbf{P} \mathbf{X}\right), & \text { for } \mathbf{X}, \mathbf{Y} \in \mathbb{C}^{m \times n}, \mathbf{P} \in \mathbb{H}_{++}^{n}\end{cases}
\end{gathered}
$$

Norms: Definition and Examples of Vector Norms

One way to measure the length of a vector or matrix in some sense is through the use of a norm. A norm $\|\mathbf{x}\|$ maps a vector or matrix \mathbf{x} (defined over a field \mathbb{F}) to \mathbb{R}_{+}and satisfies the following.

■ Positive definiteness:

$$
\|\mathbf{x}\| \geq 0 \text { with equality if and only if } \mathbf{x}=\mathbf{0} .
$$

- Homogeneity:

$$
\|\alpha \mathbf{x}\|=|\alpha| \cdot\|\mathbf{x}\| \text { for all } \alpha \in \mathbb{F} .
$$

- Triangle inequality:

$$
\|\mathbf{x}+\mathbf{y}\| \leq\|\mathbf{x}\|+\|\mathbf{y}\| \text { for all } \mathbf{x}, \mathbf{y}
$$

Common vector norms:

For all examples considered here, we assume $\mathbf{x} \in \mathbb{F}^{n}$ and $x_{k}=[\mathbf{x}]_{k}$.

- Euclidean norm: (ℓ_{2}-norm)

$$
\|\mathbf{x}\|_{2}=\sqrt{\sum_{k=1}^{n}\left|x_{k}\right|^{2}}=\sqrt{\mathbf{x}^{\dagger} \mathbf{x}}
$$

- Chebyshev norm: (ℓ_{∞}-norm)

$$
\|\mathbf{x}\|_{\infty}=\max \left\{\left|x_{1}\right|, \ldots,\left|x_{n}\right|\right\}
$$

- ℓ_{p}-norm:

$$
\|\mathbf{x}\|_{p}=\left(\sum_{k=1}^{n}\left|x_{k}\right|^{p}\right)^{\frac{1}{p}} \quad(\text { valid only for } p \geq 1)
$$

Matrix Norms: Operator and Entrywise Norms

There are conventionally three varieties of matrix norms: operator norms, entrywise norms, and Schatten norms (which will be discussed at another time).

- Operator Norms:

If $\|\cdot\|_{\mathrm{a}}$ and $\|\cdot\|_{\mathrm{b}}$ are vector norms defined over \mathbf{F}^{m} and \mathbf{F}^{n}, respectively, then the operator norm of $\mathbf{X} \in \mathbb{F}^{m \times n}$, induced by $\|\cdot\|_{\mathrm{a}}$ and $\|\cdot\|_{\mathrm{b}}$, is defined as

$$
\|\mathbf{X}\|_{\mathrm{a}, \mathrm{~b}} \triangleq \sup \left\{\|\mathbf{X} \mathbf{u}\|_{\mathrm{a}}:\|\mathbf{u}\|_{\mathrm{b}} \leq 1\right\} .
$$

Example: When both $\|\cdot\|_{\mathrm{a}}$ and $\|\cdot\|_{\mathrm{b}}$ are the Euclidean norm, the resulting operator norm is called the spectral norm or the ℓ_{2}-norm and is given by

$$
\|\mathbf{X}\|_{2}=\sqrt{\lambda_{\max }\left(\mathbf{X}^{\dagger} \mathbf{X}\right)}
$$

where $\lambda_{\max }\left(\mathbf{X}^{\dagger} \mathbf{X}\right)$ denotes the maximum eigenvalue of $\mathbf{X}^{\dagger} \mathbf{X}$.

- Entrywise Norms:

If we treat the matrix $\mathbf{X} \in \mathbb{F}^{m \times n}$ as a vector of size $m n$ and apply a familiar vector norm, we obtain an entrywise norm. Assuming $X_{k, \ell}=[\mathbf{X}]_{k, \ell}$, some examples are as follows.

$$
\begin{aligned}
&\|\mathbf{X}\|_{F}= \sqrt{\sum_{k=1}^{m} \sum_{\ell=1}^{n}\left|X_{k, \ell}\right|^{2}}=\sqrt{\operatorname{tr}\left(\mathbf{X}^{\dagger} \mathbf{X}\right)} \text { (Frobenius norm). } \\
&\|\mathbf{X}\|_{p}=\left(\sum_{k=1}^{m} \sum_{\ell=1}^{n}\left|X_{k, \ell}\right|^{p}\right)^{\frac{1}{p}}\left(\ell_{p}\right. \text {-norm). }
\end{aligned}
$$

The Dual Norm

The concept of duality occurs frequently throughout the study of convex optimization. One way in which duality manifests itself is through the dual norm. If $\|\mathbf{z}\|$ is some norm for either a vector or matrix \mathbf{z}, the associated dual norm $\|\mathbf{z}\|_{\circledast}$ is defined as follows.

$$
\|\mathbf{z}\|_{\circledast} \triangleq \sup \{\operatorname{Re}[\langle\mathbf{x}, \mathbf{z}\rangle]:\|\mathbf{x}\| \leq 1\} .
$$

The dual norm can be expressed in the following equivalent forms, which are more convenient for analysis.

$$
\|\mathbf{z}\|_{\circledast}=\sup \{|\langle\mathbf{x}, \mathbf{z}\rangle|:\|\mathbf{x}\|=1\}=\sup \left\{\left|\left\langle\frac{\mathbf{x}}{\|\mathbf{x}\|}, \mathbf{z}\right\rangle\right|: \mathbf{x} \neq 0\right\}
$$

Properties:

- The dual norm $\|\mathbf{z}\|_{\circledast}$ is indeed a norm.

■ The primal norm and dual norm satisfy the inequality

$$
\|\mathbf{x}\| \cdot\|\mathbf{y}\|_{\circledast} \geq|\langle\mathbf{x}, \mathbf{y}\rangle|=|\langle\mathbf{y}, \mathbf{x}\rangle| \text { for all } \mathbf{x}, \mathbf{y} .
$$

- The dual of the dual norm, denoted $\|\mathbf{z}\|_{\circledast \circledast \odot}$, is the original norm $\|\mathbf{z}\|$, i.e.,

$$
\|\mathbf{z}\|_{\circledast \circledast \circledast}=\|\mathbf{z}\| .
$$

Examples of Dual Norms

To calculate the dual norm $\|\mathbf{z}\|_{\circledast}$, typically an upper bound on $|\langle\mathbf{x}, \mathbf{z}\rangle|$ is computed and x is chosen so as to achieve the upper bound, if possible. Using this approach leads to the following examples of dual norms.

Primal Norm:

Euclidean norm $-\sqrt{\sum_{k=1}^{n}\left|z_{k}\right|^{2}}$

$$
\begin{gathered}
\ell_{1} \text {-norm }-\sum_{k=1}^{n}\left|z_{k}\right| \\
\ell_{p} \text {-norm - }\left(\sum_{k=1}^{n}\left|z_{k}\right|^{p}\right)^{\frac{1}{p}}
\end{gathered}
$$

$$
\ell_{q} \text {-norm - }\left(\sum_{k=1}^{n}\left|z_{k}\right|^{q}\right)^{\frac{1}{q}} \quad(q=p /(p-1))
$$

spectral norm -
nuclear norm -

$$
\|\mathbf{Z}\|_{2}=\sqrt{\lambda_{\max }\left(\mathbf{Z}^{\dagger} \mathbf{Z}\right)}
$$

$$
\|\mathbf{Z}\|_{2 \circledast}=\operatorname{tr}\left(\sqrt{\mathbf{Z}^{\dagger} \mathbf{Z}}\right)
$$

