EE/ACM 150 - Applications of Convex Optimization in Signal Processing and Communications Lecture 2

### Andre Tkacenko

Signal Processing Research Group Jet Propulsion Laboratory

### April 5, 2012



- 1 Linear Algebra / Matrix Analysis Notation & Definitions
- 2 Basic Vector Space Results
- 3 Overview of Matrix Analysis Concepts
- 4 Special Types of Matrices
- 5 Inner Products & Norms

## **Terminology List**

### Common fields and sets

| $\mathbb{R}$                                                             | _ | field of real scalars                                                                    |
|--------------------------------------------------------------------------|---|------------------------------------------------------------------------------------------|
| $\mathbb{C}$                                                             | _ | field of complex scalars                                                                 |
| $\mathbb{F}$                                                             | _ | general field (will be either ${\mathbb R}$ or ${\mathbb C}$ here)                       |
| $\mathbb{R}^n, \mathbb{C}^n, \mathbb{F}^n$                               | _ | set of $n \times 1$ vectors over $\mathbb{R}, \mathbb{C},$ or $\mathbb{F},$ respectively |
| $\mathbb{R}^{m\times n}, \mathbb{C}^{m\times n}, \mathbb{F}^{m\times n}$ | - | set of $m\times n$ matrices over $\mathbb{R},\mathbb{C},$ or $\mathbb{F},$ respectively  |

### Special vector/matrix sets

| $\mathbb{R}^n_+, \mathbb{R}^n_{++}$ | - | set of $n \times 1$ real vectors whose components are |
|-------------------------------------|---|-------------------------------------------------------|
|                                     |   | nonnegative or positive, respectively                 |

- $\mathbb{S}^n$  set of  $n \times n$  real symmetric matrices
- $\mathbb{H}^n$  set of  $n \times n$  Hermitian matrices
- $\mathbb{S}^n_+, \mathbb{S}^n_{++}$  set of  $n \times n$  real symmetric positive semidefinite or positive definite matrices, respectively
- $\mathbb{H}^{n}_{+}, \mathbb{H}^{n}_{++}$  set of  $n \times n$  Hermitian positive semidefinite or positive definite matrices, respectively

# Terminology List (Continued)

### Vector space quantities

- $\dim(\mathcal{V})~-~$  dimension of vector space  $\mathcal{V}$ 
  - $\mathcal{R}(\mathbf{A})~$  range space of matrix  $\mathbf{A}$
  - $\mathcal{N}(\mathbf{A})~-$  null space of matrix  $\mathbf{A}$
- $\mathrm{rank}(\mathbf{A})~-~\mathrm{rank}~\mathrm{of}~\mathrm{matrix}~\mathbf{A}~(\mathrm{i.e.},\,\mathrm{dim}(\mathcal{R}(\mathbf{A})))$
- $\operatorname{nullity}(\mathbf{A})$  nullity of matrix  $\mathbf{A}$  (i.e.,  $\dim(\mathcal{N}(\mathbf{A})))$

### Common matrix operators and quantities

- \* complex conjugate operator (i.e.,  $\mathbf{a}^*$  or  $\mathbf{A}^*$ )
- T transpose operator (i.e.,  $\mathbf{a}^T$  or  $\mathbf{A}^T$ )
- $\dagger~-$  complex conjugate transpose operator (i.e.,  $\mathbf{a}^{\dagger}$  or  $\mathbf{A}^{\dagger})$
- $\det(\mathbf{A})$  determinant of square matrix  $\mathbf{A}$ 
  - $A^{-1}$  inverse of square matrix A (if it exists)
- $\operatorname{diag}(\mathbf{A})$  column vector formed from diagonal components of matrix  $\mathbf{A}$
- $\operatorname{diag}(\mathbf{a})$  diagonal matrix formed from components of vector  $\mathbf{a}$ 
  - ${\rm tr}({\bf A})~-~$  trace of matrix  ${\bf A}$  (i.e., the sum of diagonal components)

# Terminology List (Continued)

### Inner product / norm quantities

- $\langle {\bf x}, {\bf y} \rangle$  inner product of  ${\bf x}$  and  ${\bf y}$  ( ${\bf x}$  and  ${\bf y}$  can be either vectors or matrices)
- $||\mathbf{a}||, ||\mathbf{A}||$  norm of vector  $\mathbf{a}$  or matrix  $\mathbf{A}$ , respectively
  - $||\mathbf{a}||_p$   $\ell_p$ -norm of vector  $\mathbf{a}$
  - $\|\mathbf{A}\|_{a,b}$  operator norm of  $\mathbf{A}$  induced by vector norms  $\|\cdot\|_{a}$  and  $\|\cdot\|_{b}$ 
    - $||\mathbf{A}||_F$  Frobenius norm of matrix  $\mathbf{A}$ 
      - $||\mathbf{z}||_{\circledast}$  dual norm of  $\mathbf{z}$  associated with  $||\mathbf{z}||$  ( $\mathbf{z}$  can be either a vector or a matrix)

### Useful vectors & matrices and miscellaneous terminology

- 1 column vector of all ones
- $\mathbf{0}_{m imes n}$  m imes n matrix of zeros
  - $\mathbf{I}_n$   $n \times n$  identity matrix
  - $\left[\mathbf{a}\right]_{k}$  k-th element of vector  $\mathbf{a}$
- $\left[\mathbf{A}\right]_{k,\ell}$   $(k,\ell)$ -th element of matrix  $\mathbf{A}$

## Linear Dependence and Independence

A set of *n* vectors  $\{v_1, v_2, ..., v_n\}$  from a vector space  $\mathcal{V}$  is said to be *linearly* dependent if and only if there are *n* scalars  $a_1, a_2, ..., a_n$  not all zero such that

$$\sum_{k=1}^n a_k \mathbf{v}_k = \mathbf{0} \,.$$

In other words, there is at least one vector, say  $\mathbf{v}_\ell,$  which depends linearly on the other vectors, i.e.,

$$\mathbf{v}_{\ell} = -\frac{1}{a_{\ell}} \sum_{\substack{k=1\\k \neq \ell}}^{n} a_k \mathbf{v}_k \,.$$

The vectors  $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n$  are said to be *linearly independent* if they are not linearly dependent. Equivalently, the set  $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$  is linearly independent when

$$\sum_{k=1}^n a_k \mathbf{v}_k = \mathbf{0} \,,$$

if and only if  $a_1 = a_2 = \cdots = a_n = 0$ .

## Span, Basis, & Dimension

Let  $S \triangleq {\mathbf{v}_1, \dots, \mathbf{v}_n}$  denote a subset of vectors from a vector space  $\mathcal{V}$  defined over  $\mathbb{F}$ . The *span* of *S* (denoted  $\operatorname{span}(S)$ ) is the set of all linear combinations of elements in *S*, i.e.,

$$\operatorname{span}(S) \triangleq \{c_1 \mathbf{v}_1 + \dots + c_n \mathbf{v}_n : c_1, \dots, c_n \in \mathbb{F}\}\$$
.

If S is a linearly independent set of vectors which spans  $\mathcal{V}$  (meaning span $(S) = \mathcal{V}$ ), then S is said to be a *basis* for  $\mathcal{V}$ .

Any vector  $\mathbf{w} \in \mathcal{V}$  can be represented in terms of a basis *S* in one and only one way. As such, a basis effectively defines a "coordinate system" for  $\mathcal{V}$ .

A vector space  $\mathcal{V}$  can be characterized by several different bases (bases are nonunique). However, all bases for a given vector space will have the same number of elements. This common number is call the *dimension* of the vector space  $\mathcal{V}$  and is denoted  $\dim(\mathcal{V})$ .

## Range & Null Space, Rank & Nullity

Let  $A \in \mathbb{F}^{m \times n}$ . Then, the range space  $\mathcal{R}(A)$  and null space  $\mathcal{N}(A)$  are defined as follows.

$$egin{array}{rll} \mathcal{R}(\mathbf{A})&\triangleq&\{\mathbf{y}=\mathbf{A}\mathbf{x}:\mathbf{x}\in\mathbb{F}^n\}\ \mathcal{N}(\mathbf{A})&\triangleq&\{\mathbf{x}\in\mathbb{F}^n:\mathbf{A}\mathbf{x}=\mathbf{0}\} \end{array}$$

The rank and nullity of  ${\bf A}$  are the dimensions of the range and null spaces, respectively, i.e.,

$$rank(\mathbf{A}) \triangleq \dim(\mathcal{R}(\mathbf{A}))$$
  
nullity(\mmmA) \equiv dim(\mmms(\mmmA))

٠

Equality of row and column ranks:

$$\operatorname{rank}(\mathbf{A}) = \operatorname{rank}(\mathbf{A}^T)$$
.

### Rank-nullity theorem:

 $\operatorname{rank}(\mathbf{A}) + \operatorname{nullity}(\mathbf{A}) = n.$ 

## Systems of Linear Equations

Let  $\mathbf{A} \in \mathbb{F}^{m \times n}$ ,  $\mathbf{x} \in \mathbb{F}^n$ , and  $\mathbf{b} \in \mathbb{F}^m$ . Consider the following system of linear equations which we would like to solve for  $\mathbf{x}$ .

$$\mathbf{A}\mathbf{x} = \mathbf{b}$$
.

This system can behave in any one of three possible ways:

- 1 It can have a single unique solution. ( $\mathbf{b} \in \mathcal{R}(\mathbf{A})$ ,  $\operatorname{nullity}(\mathbf{A}) = 0$ )
- **2** It can have infinitely many solutions. ( $\mathbf{b} \in \mathcal{R}(\mathbf{A})$ ,  $\operatorname{nullity}(\mathbf{A}) > 0$ )
- **3** It can have no solution. ( $\mathbf{b} \notin \mathcal{R}(\mathbf{A})$ )

If a solution exists (i.e.,  $\mathbf{b} \in \mathcal{R}(\mathbf{A})$ ), then the set of solutions can be characterized as follows. Let  $\mathbf{p}$  be a particular solution to  $\mathbf{A}\mathbf{x} = \mathbf{b}$ , i.e.,  $\mathbf{A}\mathbf{p} = \mathbf{b}$ . Then, the solution set is given by

$$\{\mathbf{p} + \mathbf{v} : \mathbf{A}\mathbf{v} = \mathbf{0}\}$$
,

that is, the solution set is a *translation* of the solution set of the homogeneous system Ax = 0.

Andre Tkacenko (JPL)

## Matrix Arithmetic Operations

Addition and scalar multiplication:

If  $\alpha, \beta \in \mathbb{F}$ ,  $\mathbf{A} \in \mathbb{F}^{m \times n}$ , and  $\mathbf{B} \in \mathbb{F}^{m \times n}$ , then  $\mathbf{C} \triangleq \alpha \mathbf{A} + \beta \mathbf{B}$  is such that  $\mathbf{C} \in \mathbb{F}^{m \times n}$  with  $[\mathbf{C}]_{k,\ell} = \alpha [\mathbf{A}]_{k,\ell} + \beta [\mathbf{B}]_{k,\ell}$ .

### Matrix multiplication:

If  $\mathbf{A} \in \mathbb{F}^{m \times n}$  and  $\mathbf{B} \in \mathbb{F}^{n \times p}$ , then  $\mathbf{C} \triangleq \mathbf{AB}$  is such that  $\mathbf{C} \in \mathbb{F}^{m \times p}$  with

$$[\mathbf{C}]_{k,\ell} = \sum_{i=1}^{n} [\mathbf{A}]_{k,i} [\mathbf{B}]_{i,\ell} , 1 \le k \le m, 1 \le \ell \le p.$$

Block matrix multiplication: If  $\mathbf{A} \in \mathbb{F}^{m_1 \times n_1}$ ,  $\mathbf{B} \in \mathbb{F}^{m_1 \times n_2}$ ,  $\mathbf{C} \in \mathbb{F}^{m_2 \times n_1}$ ,  $\mathbf{D} \in \mathbb{F}^{m_2 \times n_2}$ ,  $\mathbf{E} \in \mathbb{F}^{n_1 \times p_1}$ ,  $\mathbf{F} \in \mathbb{F}^{n_1 \times p_2}$ ,  $\mathbf{G} \in \mathbb{F}^{n_2 \times p_1}$ , and  $\mathbf{H} \in \mathbb{F}^{n_2 \times p_2}$ , then we have

$$\left[ \begin{array}{cc} \mathbf{A} & \mathbf{B} \\ \mathbf{C} & \mathbf{D} \end{array} \right] \left[ \begin{array}{cc} \mathbf{E} & \mathbf{F} \\ \mathbf{G} & \mathbf{H} \end{array} \right] = \left[ \begin{array}{cc} \mathbf{A}\mathbf{E} + \mathbf{B}\mathbf{G} & \mathbf{A}\mathbf{F} + \mathbf{B}\mathbf{H} \\ \mathbf{C}\mathbf{E} + \mathbf{D}\mathbf{G} & \mathbf{C}\mathbf{F} + \mathbf{D}\mathbf{H} \end{array} \right]$$

# Determinant of a Square Matrix

The determinant of an  $n \times n$  square matrix **A**, denoted det(**A**), is a scalar quantity used to help construct the inverse of **A** (if it exists), calculate the eigenvalues of **A**, and determine the volume of the parallelepiped spanned by the columns of **A** (via its absolute value). It can be determined recursively as

$$\det(\mathbf{A}) = \sum_{k=1}^{n} (-1)^{k+\ell} [\mathbf{A}]_{k,\ell} M_{k,\ell} = \sum_{k=1}^{n} (-1)^{k+\ell} [\mathbf{A}]_{\ell,k} M_{\ell,k},$$

where  $\ell$  is a fixed integer in  $1 \leq \ell \leq n$  and  $M_{k,\ell}$  is the *minor* of  $[\mathbf{A}]_{k,\ell}$ , which is the determinant of the  $(n-1) \times (n-1)$  submatrix formed by deleting the *k*-th row and *m*-th column of  $\mathbf{A}$ . (The determinant of a scalar is the scalar itself.)

### **Properties:**

- If A and B are  $n \times n$  and  $C \triangleq AB$ , then det(C) = det(A) det(B).
- If A, B, C, and D are  $m \times m$ ,  $m \times n$ ,  $n \times m$ , and  $n \times n$ , respectively, then

$$\det \left( \left[ \begin{array}{cc} \mathbf{A} & \mathbf{0}_{m \times n} \\ \mathbf{C} & \mathbf{D} \end{array} \right] \right) = \det \left( \left[ \begin{array}{cc} \mathbf{A} & \mathbf{B} \\ \mathbf{0}_{n \times m} & \mathbf{D} \end{array} \right] \right) = \det (\mathbf{A}) \det (\mathbf{D}) \ .$$

If A is an  $n \times n$  triangular matrix (either upper or lower), then

$$\det(\mathbf{A}) = \prod_{k=1}^{n} \left[\mathbf{A}\right]_{k,\ell}$$

## Matrix Inverse

The inverse of an  $n \times n$  square matrix A, denoted  $A^{-1}$ , is one for which

$$\mathbf{A}\mathbf{A}^{-1} = \mathbf{A}^{-1}\mathbf{A} = \mathbf{I}_n \,.$$

If such a matrix exists, A is said to be invertible. Otherwise, A is said to be singular. It can be shown that A is invertible if and only if  $det(A) \neq 0$ . In this case,

$$\left[\mathbf{A}^{-1}\right]_{k,\ell} = \frac{1}{\det(\mathbf{A})} (-1)^{\ell+k} M_{\ell,k} , \ 1 \le k \le n, 1 \le \ell \le n ,$$

where  $M_{\ell,k}$  is the minor of  $[\mathbf{A}]_{\ell,k}$ . The quantity  $C_{\ell,k} \triangleq (-1)^{\ell+k} M_{\ell,k}$  is the *cofactor* of  $[\mathbf{A}]_{\ell,k}$ .

### Matrix Inversion Lemma:

If A, B, C, and D are  $m \times m$ ,  $m \times n$ ,  $n \times m$ , and  $n \times n$ , respectively, and A and D are nonsingular, then

$$\left(\mathbf{A} - \mathbf{B}\mathbf{D}^{-1}\mathbf{C}\right)^{-1} = \mathbf{A}^{-1} + \mathbf{A}^{-1}\mathbf{B}\left(\mathbf{D} - \mathbf{C}\mathbf{A}^{-1}\mathbf{B}\right)^{-1}\mathbf{C}\mathbf{A}^{-1}$$

This lemma can be proved by considering the inverse of the block matrix  ${\bf M}$  given by

$$\mathbf{M} \triangleq \left[ egin{array}{cc} \mathbf{A} & \mathbf{B} \\ \mathbf{C} & \mathbf{D} \end{array} 
ight]$$

In this case, the matrix  $\mathbf{S}_{\mathbf{D};\mathbf{M}} \triangleq \mathbf{A} - \mathbf{B}\mathbf{D}^{-1}\mathbf{C}$  is called the *Schur complement* of  $\mathbf{D}$  in  $\mathbf{M}$ .

Similarly,  $\mathbf{S}_{\mathbf{A};\mathbf{M}} \triangleq \mathbf{D} - \mathbf{C}\mathbf{A}^{-1}\mathbf{B}$  is the Schur complement of  $\mathbf{A}$  in  $\mathbf{M}$ .

Andre Tkacenko (JPL)

# Eigenvalues & Eigenvectors

For an  $n \times n$  square matrix **A**, an  $n \times 1$  nonzero vector **v** such that

 $Av = \lambda v$ 

is said to be an *eigenvector* of **A** with *eigenvalue*  $\lambda$ .

The eigenvalues of A can be obtained as the roots of its *characteristic polynomial*  $p(\lambda)$  given by

$$p(\lambda) \triangleq \det(\lambda \mathbf{I}_n - \mathbf{A})$$
.

Note that there are exactly *n* eigenvalues (counting multiplicity). **Properties of eigenvalues & eigenvectors:** 

If  $\{\lambda_1, \ldots, \lambda_n\}$  denote the set of eigenvalues of **A**, then it can be shown that

$$\det(\mathbf{A}) = \prod_{k=1}^{n} \lambda_k \,, \, \operatorname{tr}(\mathbf{A}) = \sum_{k=1}^{n} \lambda_k \,.$$

The eigenvalues of a triangular matrix (either upper or lower) are the diagonal elements.

Suppose  $\mathbf{A}$  is  $n \times n$  with n linearly independent eigenvectors  $\mathbf{v}_1, \dots, \mathbf{v}_n$  corresponding to eigenvalues  $\lambda_1, \dots, \lambda_n$ . If  $\mathbf{V} \triangleq \begin{bmatrix} \mathbf{v}_1 & \cdots & \mathbf{v}_n \end{bmatrix}$  and  $\mathbf{\Lambda} \triangleq \operatorname{diag} \left( \begin{bmatrix} \lambda_1 & \cdots & \lambda_n \end{bmatrix}^T \right)$ , then we have

$$\mathbf{A} = \mathbf{V} \mathbf{\Lambda} \mathbf{V}^{-1} \,,$$

and we say that  $\mathbf{A}$  is *diagonalizable*.

If the eigenvalues of a matrix A are distinct, then A is diagonalizable. Otherwise, A may or may not be diagonalizable.

## **Useful Miscellaneous Identities**

#### Conjugate, transpose, and conjugate transpose:

Suppose that  $\alpha$  and  $\beta$  are scalars, that **U** is  $k \times \ell$ , **V** is  $k \times \ell$ , **X** is  $m \times n$ , and **Y** is  $n \times p$ , and that **A** is  $m_1 \times n_1$ , **B** is  $m_1 \times n_2$ , **C** is  $m_2 \times n_1$ , and **D** is  $m_2 \times n_2$ . Then we have

$$\begin{aligned} (\alpha \mathbf{U} + \beta \mathbf{V})^* &= \alpha^* \mathbf{U}^* + \beta^* \mathbf{V}^* , \ (\mathbf{X}\mathbf{Y})^* &= \mathbf{X}^* \mathbf{Y}^* , \ \begin{bmatrix} \mathbf{A} & \mathbf{B} \\ \mathbf{C} & \mathbf{D} \end{bmatrix}^* = \begin{bmatrix} \mathbf{A}^* & \mathbf{B}^* \\ \mathbf{C}^* & \mathbf{D}^* \end{bmatrix} , \\ (\alpha \mathbf{U} + \beta \mathbf{V})^T &= \alpha \mathbf{U}^T + \beta \mathbf{V}^T , \ (\mathbf{X}\mathbf{Y})^T &= \mathbf{Y}^T \mathbf{X}^T , \ \begin{bmatrix} \mathbf{A} & \mathbf{B} \\ \mathbf{C} & \mathbf{D} \end{bmatrix}^T = \begin{bmatrix} \mathbf{A}^T & \mathbf{C}^T \\ \mathbf{B}^T & \mathbf{D}^T \end{bmatrix} , \\ (\alpha \mathbf{U} + \beta \mathbf{V})^\dagger &= \alpha^* \mathbf{U}^\dagger + \beta^* \mathbf{V}^\dagger , \ (\mathbf{X}\mathbf{Y})^\dagger &= \mathbf{Y}^\dagger \mathbf{X}^\dagger , \ \begin{bmatrix} \mathbf{A} & \mathbf{B} \\ \mathbf{C} & \mathbf{D} \end{bmatrix}^\dagger = \begin{bmatrix} \mathbf{A}^\dagger & \mathbf{C}^\dagger \\ \mathbf{B}^\dagger & \mathbf{D}^\dagger \end{bmatrix} . \end{aligned}$$

#### Trace:

Suppose that  $\alpha$  and  $\beta$  are scalars, that **U** is  $k \times k$ , **V** is  $k \times k$ , **X** is  $m \times n$ , and **Y** is  $n \times m$ , and that **A** is  $m \times m$ , **B** is  $m \times n$ , **C** is  $n \times m$ , and **D** is  $n \times n$ . Then we have

$$\mathrm{tr}(\alpha \mathbf{U} + \beta \mathbf{V}) = \alpha \mathrm{tr}(\mathbf{U}) + \beta \mathrm{tr}(\mathbf{V}) \ , \ \mathrm{tr}(\mathbf{X}\mathbf{Y}) = \mathrm{tr}(\mathbf{Y}\mathbf{X}) \ , \ \mathrm{tr}\left( \left[ \begin{array}{cc} \mathbf{A} & \mathbf{B} \\ \mathbf{C} & \mathbf{D} \end{array} \right] \right) = \mathrm{tr}(\mathbf{A}) + \mathrm{tr}(\mathbf{D}) \ .$$

#### Inverse:

Suppose that c is a nonzero scalar and that A and B are invertible  $n \times n$  matrices. Then we have

$$(c\mathbf{A})^{-1} = \frac{1}{c}\mathbf{A}^{-1}, \ \left(\mathbf{A}^{-1}\right)^{-1} = \mathbf{A}, \ (\mathbf{A}\mathbf{B})^{-1} = \mathbf{B}^{-1}\mathbf{A}^{-1}.$$
$$\left(\mathbf{A}^{T}\right)^{-1} = \left(\mathbf{A}^{-1}\right)^{T}, \ \left(\mathbf{A}^{\dagger}\right)^{-1} = \left(\mathbf{A}^{-1}\right)^{\dagger}, \ \det\left(\mathbf{A}^{-1}\right) = \frac{1}{\det(\mathbf{A})}.$$

Andre Tkacenko (JPL)

## Unitary and Normal Matrices

### Unitary Matrices:

A matrix  $\mathbf{U} \in \mathbb{C}^{m \times n}$  (with  $m \ge n$ ) is said to be *unitary* if  $\mathbf{U}^{\dagger}\mathbf{U} = \mathbf{I}_n$ . Similarly, if  $\mathbf{U} \in \mathbb{R}^{m \times n}$ , then  $\mathbf{U}$  is unitary if  $\mathbf{U}^T\mathbf{U} = \mathbf{I}_n$ . If m = n, then we have

$$\mathbf{U}^{\dagger}\mathbf{U} = \mathbf{U}\mathbf{U}^{\dagger} = \mathbf{I}_{m}, \ (\mathbf{U} \in \mathbb{C}^{m \times m}).$$
$$\mathbf{U}^{T}\mathbf{U} = \mathbf{U}\mathbf{U}^{T} = \mathbf{I}_{m}, \ (\mathbf{U} \in \mathbb{R}^{m \times m}).$$

### Normal Matrices:

A matrix  $\mathbf{A} \in \mathbb{C}^{n \times n}$  is said to be *normal* if  $\mathbf{A}^{\dagger}\mathbf{A} = \mathbf{A}\mathbf{A}^{\dagger}$ . Similarly, if  $\mathbf{A} \in \mathbb{R}^{n \times n}$ , then  $\mathbf{A}$  is normal if  $\mathbf{A}^T\mathbf{A} = \mathbf{A}\mathbf{A}^T$ . It can be shown that  $\mathbf{A}$  is normal if and only if it is diagonalizable by a unitary matrix. More specifically,  $\mathbf{A}$  is diagonalizable if and only if

$$\mathbf{A} = \mathbf{U} \mathbf{\Lambda} \mathbf{U}^{\dagger}$$
,  $(\mathbf{A} \in \mathbb{C}^{n \times n})$ .  
 $\mathbf{A} = \mathbf{U} \mathbf{\Lambda} \mathbf{U}^{T}$ ,  $(\mathbf{A} \in \mathbb{R}^{n \times n})$ .

Here, U is unitary and  $\Lambda = \operatorname{diag}(\lambda_1, \dots, \lambda_n)$  is a diagonal matrix of eigenvalues of A.

## Symmetric and Hermitian Matrices

### Symmetric matrices:

An  $n \times n$  matrix A is said to be *symmetric* if  $A = A^T$ .

The set of  $n \times n$  real symmetric matrices is a special one and will be denoted  $\mathbb{S}^n$ . Any real symmetric matrix **A** is *normal* and as such, is unitarily diagonalizable, i.e., admits a decomposition of the form  $\mathbf{A} = \mathbf{U}\mathbf{A}\mathbf{U}^T$  as described above.

### Hermitian matrices:

An  $n \times n$  matrix **A** is said to be *Hermitian* if  $\mathbf{A} = \mathbf{A}^{\dagger}$ .

The set of  $n \times n$  Hermitian matrices is a special one and will be denoted  $\mathbb{H}^n$ . As any real symmetric matrix is also Hermitian (yet there are Hermitian matrices which are not real symmetric), it follows that  $\mathbb{S}^n \subset \mathbb{H}^n$ .

Any Hermitian matrix is *normal* and as such, is unitarily diagonalizable, i.e., admits a decomposition of the form  $\mathbf{A} = \mathbf{U} \mathbf{\Lambda} \mathbf{U}^{\dagger}$  as described above.

### Properties of real symmetric and Hermitian matrices:

- The eigenvalues of any real symmetric or any Hermitian matrix are always real.
- If  $\mathbf{A} \in \mathbb{S}^n$ ,  $\mathbf{v} \in \mathbb{R}^n$ ,  $\mathbf{B} \in \mathbb{H}^n$ , and  $\mathbf{w} \in \mathbb{C}^n$ , then we have

$$\mathbf{v}^T \mathbf{A} \mathbf{v} \in \mathbb{R}, \ \mathbf{w}^\dagger \mathbf{B} \mathbf{w} \in \mathbb{R}.$$

## Positive Semidefinite / Positive Definite Matrices

### Positive semidefinite matrices:

An  $n \times n$  real symmetric matrix A is said to be *positive semidefinite* if

 $\mathbf{v}^T \mathbf{A} \mathbf{v} \geq 0$  for all  $\mathbf{v} \in \mathbb{R}^n$ .

Similarly, an  $n \times n$  Hermitian matrix  ${f B}$  is said to be positive semidefinite if

 $\mathbf{w}^{\dagger}\mathbf{B}\mathbf{w} \geq 0$  for all  $\mathbf{w} \in \mathbb{C}^{n}$ .

In either case, we will write  $\mathbf{A} \succeq \mathbf{0}$  and  $\mathbf{B} \succeq \mathbf{0}$ .

The sets of positive semidefinite real symmetric and Hermitian matrices are special ones and will be denoted  $\mathbb{S}^n_+$  and  $\mathbb{H}^n_+$ , respectively.

### Positive definite matrices:

An  $n \times n$  real symmetric matrix A is said to be *positive definite* if

$$\mathbf{v}^T \mathbf{A} \mathbf{v} > 0$$
 for all  $\mathbf{v} \in \mathbb{R}^n, \mathbf{v} \neq \mathbf{0}$ .

Similarly, an  $n \times n$  Hermitian matrix  ${f B}$  is said to be positive definite if

 $\mathbf{w}^{\dagger}\mathbf{B}\mathbf{w} > 0$  for all  $\mathbf{w} \in \mathbb{C}^{n}, \mathbf{w} \neq \mathbf{0}$ .

In either case, we will write  $\mathbf{A} \succ \mathbf{0}$  and  $\mathbf{B} \succ \mathbf{0}$ .

The sets of positive semidefinite real symmetric and Hermitian matrices are special ones and will be denoted  $\mathbb{S}_{++}^n$  and  $\mathbb{H}_{++}^n$ , respectively.

## Properties of Positive Semidefinite/Definite Matrices

- (Definiteness of Diagonal Elements and Eigenvalues:) The diagonal entries of a positive semidefinite (definite) matrix are always nonnegative (positive). A real symmetric or Hermitian matrix is positive semidefinite (definite) if and only if all of the eigenvalues are nonnegative (positive).
- (*Partial Ordering:*) For arbitrary square matrices A and B, we will write  $A \succeq B$  if  $(A B) \succeq 0$  and write  $A \succ B$  if  $(A B) \succ 0$ . This defines a *partial ordering* on the set of all square matrices.
- (*Matrix Square Roots:*) If  $\mathbf{A} \in \mathbb{S}^n_+$ ,  $\rho_{\mathbf{A}} = \operatorname{rank}(\mathbf{A})$ ,  $\mathbf{B} \in \mathbb{H}^n_+$ , and  $\rho_{\mathbf{B}} = \operatorname{rank}(\mathbf{B})$ , then there exists a  $\mathbf{P} \in \mathbb{R}^{\rho_{\mathbf{A}} \times n}$  and  $\mathbf{Q} \in \mathbb{C}^{\rho_{\mathbf{B}} \times n}$  such that

$$\mathbf{A} = \mathbf{P}^T \mathbf{P} \,, \; \mathbf{B} = \mathbf{Q}^{\dagger} \mathbf{Q} \,.$$

• (*Cholesky Decomposition:*) If  $\mathbf{A} \in \mathbb{S}^{n}_{++}$  and  $\mathbf{B} \in \mathbb{H}^{n}_{++}$ , then there exist lower triangular matrices  $\mathbf{L}_{\mathbf{A}} \in \mathbb{R}^{n \times n}$  and  $\mathbf{L}_{\mathbf{B}} \in \mathbb{C}^{n \times n}$  with strictly positive diagonal entries such that

$$\mathbf{A} = \mathbf{L}_{\mathbf{A}} \mathbf{L}_{\mathbf{A}}^T, \ \mathbf{B} = \mathbf{L}_{\mathbf{B}} \mathbf{L}_{\mathbf{B}}^\dagger.$$

## **Inner Products**

One way to measure the *correlation* or *coherence* between two vectors or matrices is through the use of an *inner product*. An inner product  $\langle \mathbf{x}, \mathbf{y} \rangle$  maps two vectors or matrices  $\mathbf{x}$  and  $\mathbf{y}$  (defined over a field  $\mathbb{F}$ ) to the underlying field  $\mathbb{F}$  and satisfies the following properties.

Conjugate symmetry:

$$\langle \mathbf{x}, \mathbf{y} 
angle = \langle \mathbf{y}, \mathbf{x} 
angle^*$$
 .

Linearity in the first argument:

$$\langle \alpha \mathbf{x} + \beta \mathbf{y}, \mathbf{z} \rangle = \alpha \langle \mathbf{x}, \mathbf{z} \rangle + \beta \langle \mathbf{y}, \mathbf{z} \rangle$$
 for all  $\alpha, \beta \in \mathbb{F}$ .

Positive definiteness:

 $\langle {\bf x}, {\bf x} \rangle \geq 0$  with equality if and only if  ${\bf x} = {\bf 0}$  .

Common inner products:

$$\langle \mathbf{x}, \mathbf{y} \rangle = \begin{cases} \mathbf{y}^T \mathbf{x}, & \text{ for } \mathbf{x}, \mathbf{y} \in \mathbb{R}^n \text{ (standard inner product on } \mathbb{R}^n \text{)} \\ \mathbf{y}^\dagger \mathbf{x}, & \text{ for } \mathbf{x}, \mathbf{y} \in \mathbb{C}^n \text{ (standard inner product on } \mathbb{C}^n \text{)} \\ \mathbf{y}^\dagger \mathbf{P} \mathbf{x}, & \text{ for } \mathbf{x}, \mathbf{y} \in \mathbb{C}^n, \mathbf{P} \in \mathbb{H}_{++}^n \end{array} \\ \langle \mathbf{X}, \mathbf{Y} \rangle = \begin{cases} \operatorname{tr}(\mathbf{Y}^T \mathbf{X}), & \text{ for } \mathbf{X}, \mathbf{Y} \in \mathbb{R}^{m \times n} \text{ (standard inner product on } \mathbb{R}^{m \times n} \text{)} \\ \operatorname{tr}(\mathbf{Y}^\dagger \mathbf{X}), & \text{ for } \mathbf{X}, \mathbf{Y} \in \mathbb{C}^{m \times n} \text{ (standard inner product on } \mathbb{C}^{m \times n} \text{)} \\ \operatorname{tr}(\mathbf{Y}^\dagger \mathbf{P} \mathbf{X}), & \text{ for } \mathbf{X}, \mathbf{Y} \in \mathbb{C}^{m \times n}, \mathbf{P} \in \mathbb{H}_{++}^n \end{cases} \end{cases}$$

# Norms: Definition and Examples of Vector Norms

One way to measure the length of a vector or matrix in some sense is through the use of a *norm*. A norm  $||\mathbf{x}||$  maps a vector or matrix  $\mathbf{x}$  (defined over a field  $\mathbb{F}$ ) to  $\mathbb{R}_+$  and satisfies the following.

Positive definiteness:

 $||\mathbf{x}|| \ge 0$  with equality if and only if  $\mathbf{x} = \mathbf{0}$ .

Homogeneity:

 $||\alpha \mathbf{x}|| = |\alpha| \cdot ||\mathbf{x}||$  for all  $\alpha \in \mathbb{F}$ .

Triangle inequality:

 $||\mathbf{x} + \mathbf{y}|| \le ||\mathbf{x}|| + ||\mathbf{y}|| \text{ for all } \mathbf{x}, \mathbf{y}.$ 

#### Common vector norms:

For all examples considered here, we assume  $\mathbf{x} \in \mathbb{F}^n$  and  $x_k = [\mathbf{x}]_k$ .

Euclidean norm: ( $\ell_2$ -norm)

$$||\mathbf{x}||_2 = \sqrt{\sum_{k=1}^n |x_k|^2} = \sqrt{\mathbf{x}^{\dagger} \mathbf{x}}.$$

Chebyshev norm: (ℓ<sub>∞</sub>-norm)

$$\left\|\mathbf{x}\right\|_{\infty} = \max\left\{\left|x_{1}\right|, \ldots, \left|x_{n}\right|\right\} \,.$$

|| 
$$\ell_p$$
 -norm: 
$$||\mathbf{x}||_p = \left(\sum_{k=1}^n |x_k|^p\right)^{\frac{1}{p}} \ \ (\text{valid only for } p \geq 1)$$

Andre Tkacenko (JPL)

# Matrix Norms: Operator and Entrywise Norms

There are conventionally three varieties of matrix norms: operator norms, entrywise norms, and Schatten norms (which will be discussed at another time).

### Operator Norms:

If  $\|\cdot\|_a$  and  $\|\cdot\|_b$  are vector norms defined over  $\mathbf{F}^m$  and  $\mathbf{F}^n$ , respectively, then the *operator* norm of  $\mathbf{X} \in \mathbb{F}^{m \times n}$ , induced by  $\|\cdot\|_a$  and  $\|\cdot\|_b$ , is defined as

$$||\mathbf{X}||_{a,b} \triangleq \sup \left\{ ||\mathbf{X}\mathbf{u}||_{a} : ||\mathbf{u}||_{b} \le 1 \right\}$$

*Example:* When both  $||\cdot||_a$  and  $||\cdot||_b$  are the Euclidean norm, the resulting operator norm is called the *spectral norm* or the  $\ell_2$ -norm and is given by

$$\left|\mathbf{X}\right|\right|_{2} = \sqrt{\lambda_{\max} \left(\mathbf{X}^{\dagger} \mathbf{X}\right)} \,,$$

where  $\lambda_{\max}(\mathbf{X}^{\dagger}\mathbf{X})$  denotes the maximum eigenvalue of  $\mathbf{X}^{\dagger}\mathbf{X}$ .

### Entrywise Norms:

If we treat the matrix  $\mathbf{X} \in \mathbb{F}^{m \times n}$  as a vector of size mn and apply a familiar vector norm, we obtain an *entrywise norm*. Assuming  $X_{k,\ell} = [\mathbf{X}]_{k,\ell}$ , some examples are as follows.

$$\begin{split} ||\mathbf{X}||_{F} &= \sqrt{\sum_{k=1}^{m} \sum_{\ell=1}^{n} |X_{k,\ell}|^{2}} = \sqrt{\operatorname{tr}(\mathbf{X}^{\dagger}\mathbf{X})} \quad \text{(Frobenius norm)} \\ &||\mathbf{X}||_{p} = \left(\sum_{k=1}^{m} \sum_{\ell=1}^{n} |X_{k,\ell}|^{p}\right)^{\frac{1}{p}} \quad (\ell_{p}\operatorname{-norm}) \,. \end{split}$$

Andre Tkacenko (JPL)

# The Dual Norm

The concept of duality occurs frequently throughout the study of convex optimization. One way in which duality manifests itself is through the *dual norm*. If  $||\mathbf{z}||$  is some norm for either a vector or matrix  $\mathbf{z}$ , the associated dual norm  $||\mathbf{z}||_{\otimes}$  is defined as follows.

$$\left|\mathbf{z}\right|\right|_{\circledast} \triangleq \sup \{\operatorname{Re}[\langle \mathbf{x}, \mathbf{z} \rangle] : \left|\left|\mathbf{x}\right|\right| \le 1\} \ .$$

The dual norm can be expressed in the following equivalent forms, which are more convenient for analysis.

$$||\mathbf{z}||_{\circledast} = \sup\{|\langle \mathbf{x}, \mathbf{z} \rangle| : ||\mathbf{x}|| = 1\} = \sup\{\left|\left\langle \frac{\mathbf{x}}{||\mathbf{x}||}, \mathbf{z} \right\rangle\right| : \mathbf{x} \neq 0\}$$

### **Properties:**

- $\blacksquare$  The dual norm  $||\mathbf{z}||_{\circledast}$  is indeed a norm.
- The primal norm and dual norm satisfy the inequality

 $||\mathbf{x}|| \cdot ||\mathbf{y}||_{\circledast} \geq |\langle \mathbf{x}, \mathbf{y} \rangle| = |\langle \mathbf{y}, \mathbf{x} \rangle| \text{ for all } \mathbf{x}, \, \mathbf{y} \, .$ 

The dual of the dual norm, denoted  $||\mathbf{z}||_{\otimes \otimes}$ , is the original norm  $||\mathbf{z}||$ , i.e.,  $||\mathbf{z}||_{\otimes \otimes} = ||\mathbf{z}||$ .

## Examples of Dual Norms

To calculate the dual norm  $||\mathbf{z}||_{\otimes}$ , typically an upper bound on  $|\langle \mathbf{x}, \mathbf{z} \rangle|$  is computed and  $\mathbf{x}$  is chosen so as to achieve the upper bound, if possible. Using this approach leads to the following examples of dual norms.

