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Linear Algebra / Matrix Analysis Notation & Definitions

Terminology List

Common fields and sets

R – field of real scalars

C – field of complex scalars

F – general field (will be either R or C here)

Rn,Cn,Fn – set of n× 1 vectors over R, C, or F, respectively

Rm×n,Cm×n,Fm×n – set of m× n matrices over R, C, or F, respectively

Special vector/matrix sets

Rn+,Rn++ – set of n× 1 real vectors whose components are

nonnegative or positive, respectively

Sn – set of n× n real symmetric matrices

Hn – set of n× n Hermitian matrices

Sn+, Sn++ – set of n× n real symmetric positive semidefinite or

positive definite matrices, respectively

Hn+,Hn++ – set of n× n Hermitian positive semidefinite or

positive definite matrices, respectively
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Linear Algebra / Matrix Analysis Notation & Definitions

Terminology List (Continued)

Vector space quantities

dim(V) – dimension of vector space V
R(A) – range space of matrix A

N (A) – null space of matrix A

rank(A) – rank of matrix A (i.e., dim(R(A)))

nullity(A) – nullity of matrix A (i.e., dim(N (A)))

Common matrix operators and quantities

∗ – complex conjugate operator (i.e., a∗ or A∗)

T – transpose operator (i.e., aT or AT )

† – complex conjugate transpose operator (i.e., a† or A†)

det(A) – determinant of square matrix A

A−1 – inverse of square matrix A (if it exists)

diag(A) – column vector formed from diagonal components of matrix A

diag(a) – diagonal matrix formed from components of vector a

tr(A) – trace of matrix A (i.e., the sum of diagonal components)
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Linear Algebra / Matrix Analysis Notation & Definitions

Terminology List (Continued)

Inner product / norm quantities

〈x,y〉 – inner product of x and y (x and y can be either vectors

or matrices)

||a|| , ||A|| – norm of vector a or matrix A, respectively

||a||p – `p-norm of vector a

||A||a,b – operator norm of A induced by vector norms ||·||a and ||·||b
||A||F – Frobenius norm of matrix A

||z||� – dual norm of z associated with ||z|| (z can be either a

vector or a matrix)

Useful vectors & matrices and miscellaneous terminology

1 – column vector of all ones

0m×n – m× n matrix of zeros

In – n× n identity matrix

[a]k – k-th element of vector a

[A]k,` – (k, `)-th element of matrix A
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Basic Vector Space Results

Linear Dependence and Independence
A set of n vectors {v1,v2, . . . ,vn} from a vector space V is said to be linearly
dependent if and only if there are n scalars a1, a2, . . . , an not all zero such that

n∑
k=1

akvk = 0 .

In other words, there is at least one vector, say v`, which depends linearly on
the other vectors, i.e.,

v` = −
1

a`

n∑
k=1

k 6=`

akvk .

The vectors v1,v2, . . . ,vn are said to be linearly independent if they are not
linearly dependent. Equivalently, the set {v1,v2, . . . ,vn} is linearly
independent when

n∑
k=1

akvk = 0 ,

if and only if a1 = a2 = · · · = an = 0.
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Basic Vector Space Results

Span, Basis, & Dimension

Let S , {v1, . . . ,vn} denote a subset of vectors from a vector space V
defined over F. The span of S (denoted span(S)) is the set of all linear
combinations of elements in S, i.e.,

span(S) , {c1v1 + · · ·+ cnvn : c1, . . . , cn ∈ F} .

If S is a linearly independent set of vectors which spans V (meaning
span(S) = V), then S is said to be a basis for V.

Any vector w ∈ V can be represented in terms of a basis S in one and only
one way. As such, a basis effectively defines a “coordinate system” for V.

A vector space V can be characterized by several different bases (bases are
nonunique). However, all bases for a given vector space will have the same
number of elements. This common number is call the dimension of the vector
space V and is denoted dim(V).
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Basic Vector Space Results

Range & Null Space, Rank & Nullity
Let A ∈ Fm×n. Then, the range space R(A) and null space N (A) are defined as
follows.

R(A) , {y = Ax : x ∈ Fn}
N (A) , {x ∈ Fn : Ax = 0}

.

The rank and nullity of A are the dimensions of the range and null spaces,
respectively, i.e.,

rank(A) , dim(R(A))

nullity(A) , dim(N (A))
.

Equality of row and column ranks:

rank(A) = rank
(
AT

)
.

Rank-nullity theorem:

rank(A) + nullity(A) = n .
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Basic Vector Space Results

Systems of Linear Equations

Let A ∈ Fm×n, x ∈ Fn, and b ∈ Fm. Consider the following system of
linear equations which we would like to solve for x.

Ax = b .

This system can behave in any one of three possible ways:
1 It can have a single unique solution. (b ∈ R(A), nullity(A) = 0)
2 It can have infinitely many solutions. (b ∈ R(A), nullity(A) > 0)
3 It can have no solution. (b /∈ R(A))

If a solution exists (i.e., b ∈ R(A)), then the set of solutions can be
characterized as follows. Let p be a particular solution to Ax = b, i.e.,
Ap = b. Then, the solution set is given by

{p + v : Av = 0} ,

that is, the solution set is a translation of the solution set of the
homogeneous system Ax = 0.
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Overview of Matrix Analysis Concepts

Matrix Arithmetic Operations

Addition and scalar multiplication:
If α, β ∈ F, A ∈ Fm×n, and B ∈ Fm×n, then C , αA + βB is such
that C ∈ Fm×n with [C]k,` = α [A]k,` + β [B]k,`.
Matrix multiplication:
If A ∈ Fm×n and B ∈ Fn×p, then C , AB is such that C ∈ Fm×p
with

[C]k,` =

n∑
i=1

[A]k,i [B]i,` , 1 ≤ k ≤ m, 1 ≤ ` ≤ p .

Block matrix multiplication:
If A ∈ Fm1×n1 , B ∈ Fm1×n2 , C ∈ Fm2×n1 , D ∈ Fm2×n2 , E ∈ Fn1×p1 ,
F ∈ Fn1×p2 , G ∈ Fn2×p1 , and H ∈ Fn2×p2 , then we have[

A B

C D

][
E F

G H

]
=

[
AE + BG AF + BH

CE + DG CF + DH

]
.
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Overview of Matrix Analysis Concepts

Determinant of a Square Matrix
The determinant of an n× n square matrix A, denoted det(A), is a scalar quantity used to help
construct the inverse of A (if it exists), calculate the eigenvalues of A, and determine the volume
of the parallelepiped spanned by the columns of A (via its absolute value).
It can be determined recursively as

det(A) =
n∑
k=1

(−1)k+` [A]k,`Mk,` =
n∑
k=1

(−1)k+` [A]`,kM`,k ,

where ` is a fixed integer in 1 ≤ ` ≤ n and Mk,` is the minor of [A]k,`, which is the determinant
of the (n− 1)× (n− 1) submatrix formed by deleting the k-th row and m-th column of A. (The
determinant of a scalar is the scalar itself.)

Properties:
If A and B are n× n and C , AB, then det(C) = det(A) det(B).
If A, B, C, and D are m×m, m× n, n×m, and n× n, respectively, then

det

([
A 0m×n

C D

])
= det

([
A B

0n×m D

])
= det(A) det(D) .

If A is an n× n triangular matrix (either upper or lower), then

det(A) =
n∏
k=1

[A]k,` .
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Overview of Matrix Analysis Concepts

Matrix Inverse
The inverse of an n× n square matrix A, denoted A−1, is one for which

AA−1 = A−1A = In .

If such a matrix exists, A is said to be invertible. Otherwise, A is said to be singular.
It can be shown that A is invertible if and only if det(A) 6= 0. In this case,[

A−1
]
k,`

=
1

det(A)
(−1)`+kM`,k , 1 ≤ k ≤ n, 1 ≤ ` ≤ n ,

where M`,k is the minor of [A]`,k. The quantity C`,k , (−1)`+kM`,k is the cofactor of [A]`,k.

Matrix Inversion Lemma:
If A, B, C, and D are m×m, m× n, n×m, and n× n, respectively, and A and D are
nonsingular, then(

A−BD−1C
)−1

= A−1 + A−1B
(
D−CA−1B

)−1
CA−1 .

This lemma can be proved by considering the inverse of the block matrix M given by

M ,

[
A B

C D

]
.

In this case, the matrix SD;M , A−BD−1C is called the Schur complement of D in M.

Similarly, SA;M , D−CA−1B is the Schur complement of A in M.
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Overview of Matrix Analysis Concepts

Eigenvalues & Eigenvectors
For an n× n square matrix A, an n× 1 nonzero vector v such that

Av = λv

is said to be an eigenvector of A with eigenvalue λ.
The eigenvalues of A can be obtained as the roots of its characteristic polynomial p(λ) given by

p(λ) , det(λIn −A) .

Note that there are exactly n eigenvalues (counting multiplicity).
Properties of eigenvalues & eigenvectors:

If {λ1, . . . , λn} denote the set of eigenvalues of A, then it can be shown that

det(A) =
n∏
k=1

λk , tr(A) =
n∑
k=1

λk .

The eigenvalues of a triangular matrix (either upper or lower) are the diagonal elements.
Suppose A is n× n with n linearly independent eigenvectors v1, . . . ,vn corresponding to
eigenvalues λ1, . . . , λn. If V ,

[
v1 · · · vn

]
and Λ , diag

([
λ1 · · · λn

]T),
then we have

A = VΛV−1 ,

and we say that A is diagonalizable.
If the eigenvalues of a matrix A are distinct, then A is diagonalizable. Otherwise, A may
or may not be diagonalizable.
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Overview of Matrix Analysis Concepts

Useful Miscellaneous Identities
Conjugate, transpose, and conjugate transpose:
Suppose that α and β are scalars, that U is k× `, V is k× `, X ism× n, and Y is n× p, and that A ism1 × n1,
B is m1 × n2, C is m2 × n1 , and D is m2 × n2 . Then we have

(αU + βV)
∗

= α
∗
U
∗
+ β
∗
V
∗
, (XY)

∗
= X

∗
Y
∗
,

[
A B

C D

]∗
=

[
A∗ B∗

C∗ D∗

]
.

(αU + βV)
T

= αU
T

+ βV
T
, (XY)

T
= Y

T
X

T
,

[
A B

C D

]T
=

[
AT CT

BT DT

]
.

(αU + βV)
†
= α
∗
U
†
+ β
∗
V
†
, (XY)

†
= Y

†
X
†
,

[
A B

C D

]†
=

[
A† C†

B† D†

]
.

Trace:
Suppose that α and β are scalars, that U is k× k, V is k× k, X ism× n, and Y is n×m, and that A ism×m,
B is m× n, C is n×m, and D is n× n. Then we have

tr(αU + βV) = αtr(U) + βtr(V) , tr(XY) = tr(YX) , tr

([
A B

C D

])
= tr(A) + tr(D) .

Inverse:
Suppose that c is a nonzero scalar and that A and B are invertible n× n matrices. Then we have

(cA)
−1

=
1

c
A
−1

,
(
A
−1
)−1

= A , (AB)
−1

= B
−1

A
−1

.

(
A

T
)−1

=
(
A
−1
)T

,
(
A
†
)−1

=
(
A
−1
)†

, det
(
A
−1
)

=
1

det(A)
.
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Special Types of Matrices

Unitary and Normal Matrices

Unitary Matrices:
A matrix U ∈ Cm×n (with m ≥ n) is said to be unitary if U†U = In.
Similarly, if U ∈ Rm×n, then U is unitary if UTU = In. If m = n, then we
have

U†U = UU† = Im , (U ∈ Cm×m) .

UTU = UUT = Im , (U ∈ Rm×m) .

Normal Matrices:
A matrix A ∈ Cn×n is said to be normal if A†A = AA†. Similarly, if
A ∈ Rn×n, then A is normal if ATA = AAT . It can be shown that A is
normal if and only if it is diagonalizable by a unitary matrix. More
specifically, A is diagonalizable if and only if

A = UΛU† , (A ∈ Cn×n) .

A = UΛUT , (A ∈ Rn×n) .

Here, U is unitary and Λ = diag(λ1, . . . , λn) is a diagonal matrix of
eigenvalues of A.
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Special Types of Matrices

Symmetric and Hermitian Matrices

Symmetric matrices:
An n× n matrix A is said to be symmetric if A = AT .
The set of n× n real symmetric matrices is a special one and will be denoted Sn.
Any real symmetric matrix A is normal and as such, is unitarily diagonalizable,
i.e., admits a decomposition of the form A = UΛUT as described above.
Hermitian matrices:
An n× n matrix A is said to be Hermitian if A = A†.
The set of n× n Hermitian matrices is a special one and will be denoted Hn.
As any real symmetric matrix is also Hermitian (yet there are Hermitian matrices
which are not real symmetric), it follows that Sn ⊂ Hn.
Any Hermitian matrix is normal and as such, is unitarily diagonalizable, i.e.,
admits a decomposition of the form A = UΛU† as described above.

Properties of real symmetric and Hermitian matrices:

The eigenvalues of any real symmetric or any Hermitian matrix are
always real.
If A ∈ Sn, v ∈ Rn, B ∈ Hn, and w ∈ Cn, then we have

vTAv ∈ R , w†Bw ∈ R .
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Special Types of Matrices

Positive Semidefinite / Positive Definite Matrices

Positive semidefinite matrices:
An n× n real symmetric matrix A is said to be positive semidefinite if

vTAv ≥ 0 for all v ∈ Rn .
Similarly, an n× n Hermitian matrix B is said to be positive semidefinite if

w†Bw ≥ 0 for all w ∈ Cn .
In either case, we will write A � 0 and B � 0.
The sets of positive semidefinite real symmetric and Hermitian matrices are
special ones and will be denoted Sn+ and Hn+, respectively.
Positive definite matrices:
An n× n real symmetric matrix A is said to be positive definite if

vTAv > 0 for all v ∈ Rn,v 6= 0 .

Similarly, an n× n Hermitian matrix B is said to be positive definite if

w†Bw > 0 for all w ∈ Cn,w 6= 0 .

In either case, we will write A � 0 and B � 0.
The sets of positive semidefinite real symmetric and Hermitian matrices are
special ones and will be denoted Sn++ and Hn++, respectively.
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Special Types of Matrices

Properties of Positive Semidefinite/Definite Matrices

(Definiteness of Diagonal Elements and Eigenvalues:) The diagonal
entries of a positive semidefinite (definite) matrix are always nonnegative
(positive). A real symmetric or Hermitian matrix is positive semidefinite
(definite) if and only if all of the eigenvalues are nonnegative (positive).

(Partial Ordering:) For arbitrary square matrices A and B, we will write
A � B if (A−B) � 0 and write A � B if (A−B) � 0. This defines a
partial ordering on the set of all square matrices.

(Matrix Square Roots:) If A ∈ Sn+, ρA = rank(A), B ∈ Hn+, and
ρB = rank(B), then there exists a P ∈ RρA×n and Q ∈ CρB×n such that

A = PTP , B = Q†Q .

(Cholesky Decomposition:) If A ∈ Sn++ and B ∈ Hn++, then there exist
lower triangular matrices LA ∈ Rn×n and LB ∈ Cn×n with strictly
positive diagonal entries such that

A = LALTA , B = LBL†B .
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Inner Products & Norms

Inner Products
One way to measure the correlation or coherence between two vectors or matrices is through the
use of an inner product. An inner product 〈x,y〉 maps two vectors or matrices x and y (defined
over a field F) to the underlying field F and satisfies the following properties.

Conjugate symmetry:
〈x,y〉 = 〈y,x〉∗ .

Linearity in the first argument:

〈αx + βy, z〉 = α 〈x, z〉+ β 〈y, z〉 for all α, β ∈ F .

Positive definiteness:

〈x,x〉 ≥ 0 with equality if and only if x = 0 .

Common inner products:

〈x,y〉 =


yTx , for x,y ∈ Rn (standard inner product on Rn)

y†x , for x,y ∈ Cn (standard inner product on Cn)

y†Px , for x,y ∈ Cn, P ∈ Hn++

.

〈X,Y〉 =


tr
(
YTX

)
, for X,Y ∈ Rm×n (standard inner product on Rm×n)

tr
(
Y†X

)
, for X,Y ∈ Cm×n (standard inner product on Cm×n)

tr
(
Y†PX

)
, for X,Y ∈ Cm×n, P ∈ Hn++

.
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Inner Products & Norms

Norms: Definition and Examples of Vector Norms
One way to measure the length of a vector or matrix in some sense is through the use of a norm.
A norm ||x|| maps a vector or matrix x (defined over a field F) to R+ and satisfies the following.

Positive definiteness:

||x|| ≥ 0 with equality if and only if x = 0 .

Homogeneity:
||αx|| = |α| · ||x|| for all α ∈ F .

Triangle inequality:
||x + y|| ≤ ||x||+ ||y|| for all x,y .

Common vector norms:
For all examples considered here, we assume x ∈ Fn and xk = [x]k.

Euclidean norm: (`2-norm)

||x||2 =

√√√√ n∑
k=1

|xk|2 =
√

x†x .

Chebyshev norm: (`∞-norm)
||x||∞ = max {|x1| , . . . , |xn|} .

`p-norm:
||x||p =

(
n∑
k=1

|xk|p
) 1

p

(valid only for p ≥ 1) .

Andre Tkacenko (JPL) EE/ACM 150 - Lecture 2 April 5, 2012 20 / 23



Inner Products & Norms

Matrix Norms: Operator and Entrywise Norms
There are conventionally three varieties of matrix norms: operator norms, entrywise norms, and
Schatten norms (which will be discussed at another time).

Operator Norms:
If ||·||a and ||·||b are vector norms defined over Fm and Fn, respectively, then the operator
norm of X ∈ Fm×n, induced by ||·||a and ||·||b, is defined as

||X||a,b , sup
{
||Xu||a : ||u||b ≤ 1

}
.

Example: When both ||·||a and ||·||b are the Euclidean norm, the resulting operator norm is
called the spectral norm or the `2-norm and is given by

||X||2 =
√
λmax

(
X†X

)
,

where λmax
(
X†X

)
denotes the maximum eigenvalue of X†X.

Entrywise Norms:
If we treat the matrix X ∈ Fm×n as a vector of size mn and apply a familiar vector norm,
we obtain an entrywise norm. Assuming Xk,` = [X]k,`, some examples are as follows.

||X||F =

√√√√ m∑
k=1

n∑
`=1

∣∣Xk,`∣∣2 =
√

tr
(
X†X

)
(Frobenius norm) .

||X||p =

(
m∑
k=1

n∑
`=1

∣∣Xk,`∣∣p
) 1

p

(`p-norm) .
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Inner Products & Norms

The Dual Norm
The concept of duality occurs frequently throughout the study of convex
optimization. One way in which duality manifests itself is through the dual
norm. If ||z|| is some norm for either a vector or matrix z, the associated dual
norm ||z||� is defined as follows.

||z||� , sup{Re[〈x, z〉] : ||x|| ≤ 1} .
The dual norm can be expressed in the following equivalent forms, which are
more convenient for analysis.

||z||� = sup{|〈x, z〉| : ||x|| = 1} = sup

{∣∣∣∣〈 x

||x||
, z

〉∣∣∣∣ : x 6= 0

}
.

Properties:

The dual norm ||z||� is indeed a norm.

The primal norm and dual norm satisfy the inequality
||x|| · ||y||� ≥ |〈x,y〉| = |〈y,x〉| for all x, y .

The dual of the dual norm, denoted ||z||��, is the original norm ||z||, i.e.,

||z||�� = ||z|| .
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Inner Products & Norms

Examples of Dual Norms
To calculate the dual norm ||z||�, typically an upper bound on |〈x, z〉| is
computed and x is chosen so as to achieve the upper bound, if possible.
Using this approach leads to the following examples of dual norms.

Primal Norm: Dual Norm:

Euclidean norm –

√√√√ n∑
k=1

|zk|2 Euclidean norm –

√√√√ n∑
k=1

|zk|2

`1-norm –
n∑
k=1

|zk| `∞-norm – max{|z1| , . . . , |zn|}

`p-norm –

(
n∑
k=1

|zk|p
) 1

p

`q-norm –

(
n∑
k=1

|zk|q
) 1

q

(q = p/(p− 1))

spectral norm – nuclear norm –

||Z||2 =
√
λmax(Z†Z) ||Z||2� = tr

(√
Z†Z

)
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