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Singular Value Decomposition (SVD) Introduction to Factorization

The Singular Value Decomposition

Suppose that A ∈ Cm×n is any matrix with rank(A) = ρ. Then A
admits the following factorization, known as the singular value
decomposition (SVD):

A =
[

U1 U2

]︸ ︷︷ ︸
U

[
Σ1 0ρ×(n−ρ)

0(m−ρ)×ρ 0(m−ρ)×(n−ρ)

]
︸ ︷︷ ︸

Σ

[
V†1

V†2

]
︸ ︷︷ ︸

V†

= U1Σ1V
†
1 .

Here U1 ∈ Cm×ρ, U2 ∈ Cm×(m−ρ), U ∈ Cm×m is unitary,
Σ1 = diag(σ1, . . . , σρ) is a ρ× ρ diagonal matrix of singular values of A
(where σk > 0 for all 1 ≤ k ≤ ρ), Σ ∈ Rm×n+ , V1 ∈ Cn×ρ,
V2 ∈ Cn×(n−ρ), and V ∈ Cn×n is unitary.

If A ∈ Rm×n, then there always exists an SVD factorization such that
U ∈ Rm×m and V ∈ Rn×n, and so we have

A = UΣVT = U1Σ1V
T
1 .
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Singular Value Decomposition (SVD) Introduction to Factorization

Common SVD Types
Full and Compact

Full SVD:
The SVD representation given by

A = UΣV†

from above is said to be the full SVD, since all columns of U and V are
generated, even though they may not be appear explicitly in the
expression for A. This representation is neither computationally efficient
nor economical from a memory storage perspective, but is useful for
analysis.

Compact SVD:
The SVD representation given by

A = U1Σ1V
†
1

from above is said to be the compact SVD, since only the ρ columns of
U and V contributing to the expression for A are computed. This
representation is both computationally efficient as well as economical in
terms of memory, although not as useful for analysis as the full SVD.
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Singular Value Decomposition (SVD) Properties

Relation to Eigendecomposition
Note that we have

AA† = UΣΣ†U† = UΛLU† , A†A = VΣ†ΣV† = VΛRV† ,

where ΛL ∈ Rm×m+ and ΛR ∈ Rn×n+ are square diagonal matrices given by

ΛL =

[
Σ2

1 0ρ×(m−ρ)

0(m−ρ)×ρ 0(m−ρ)×(m−ρ)

]
, ΛR =

[
Σ2

1 0ρ×(n−ρ)

0(n−ρ)×ρ 0(n−ρ)×(n−ρ)

]
.

Thus, the SVD of A is closely related to the eigendecomposition of AA† and
A†A.

The left singular vectors (columns of U) are eigenvectors of AA†.

The right singular vectors (columns of V) are eigenvectors of A†A.

The nonzero singular values are the square roots of the eigenvalues of
both AA† and A†A, i.e.,

σk =
√
λk(AA†) =

√
λk(A†A) , 1 ≤ k ≤ ρ .
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Singular Value Decomposition (SVD) Properties

Relation to Fundamental Theorem of Linear Algebra
Every matrix A ∈ Fm×n induces four fundamental subspaces which are elegantly
described in terms of the full SVD given above. These are described below.

Subspace Description Underlying Space Dimension Basis

range space, column
space, or image R(A) Fm ρ U1

null space, right null
space, or kernel N (A) Fn n− ρ V2

row space
or co-image R

(
A†

)
Fn ρ V1

left null space
or co-kernel N

(
A†

)
Fm m− ρ U2

In addition, we have the following properties:

For the vector space Fn, we have N (A) =
(
R
(
A†
))⊥. In other words, the (right)

null space is the orthogonal complement of the row space.
For the vector space Fm, we have N

(
A†
)
= (R(A))⊥. In other words, the left

null space is the orthogonal complement of the column space.
Here, the orthogonal complementW⊥ of a subspaceW in an inner product space V
is defined as

W⊥ , {x ∈ V : 〈x,y〉 = 0 ∀ y ∈ W} .
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Singular Value Decomposition (SVD) Properties

Unitarily Invariant Norms and the SVD
An m× n matrix norm for which

||A|| = ||UAV|| ,
for any m× n matrix A, m×m unitary matrix U, and n× n unitary matrix V is said to
be a unitarily invariant norm.

Any matrix norm which is only a function of the singular values of a matrix is unitarily
invariant. The Schatten `p-norm is one such example. If A has nonzero singular
values σ1, . . . , σρ, where ρ = rank(A) the Schatten `p-norm of A is defined as

||A||p ,

(
ρ∑
k=1

σpk

) 1
p

.

Special Cases:
p = 1 (nuclear norm or Ky Fan ρ-norm)

||A||1 = tr
(√

A†A
)

p = 2 (Frobenius norm)
||A||2 =

√
tr(A†A)

p =∞ (spectral norm)
||A||∞ = max

1≤k≤ρ
{σk} =

√
λmax(A†A)
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Singular Value Decomposition (SVD) Applications

Low-Rank Approximation Problem
The SVD can be used to find globally optimal solutions to certain nonconvex
problems. One such example is the low-rank matrix approximation problem. If A is
some m× n matrix with rank ρ, the problem is to find an m× n matrix Â with rank
ρ̂ ≤ ρ that minimizes the norm of the error matrix

(
A− Â

)
.

Low-Rank Approximation Problem:

minimize
∣∣∣∣∣∣A− Â

∣∣∣∣∣∣ ,
subject to rank

(
Â
)
= ρ̂ ≤ ρ = rank(A) .

If A has an SVD as given above with singular values arranged in descending order
(i.e., σ1 ≥ · · · ≥ σρ > 0), the globally optimal choice of Â for any unitarily invariant
norm is Â? = UΣ̂?V†, where Σ̂? is given by

Σ̂? =

[
Σ̂?

1 0ρ̂×(n−ρ̂)

0(m−ρ̂)×ρ̂ 0(m−ρ̂)×(n−ρ̂)

]
,

where Σ̂?
1 = diag(σ1, . . . , σρ̂).
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Singular Value Decomposition (SVD) Applications

Orthogonal Procrustes Problem
Another nonconvex problem for which the SVD can be used to obtain a globally
optimal solution is the orthogonal Procrustes problem. This problem involves
approximating, in the Frobenius norm sense, a given m× n matrix A by a right sided
rotation of another given m× n matrix B. This right sided rotation is carried out via an
n× n unitary matrix W to produce the rotation BW†.

Orthogonal Procrustes Problem:

minimize
∣∣∣∣∣∣A−BW†

∣∣∣∣∣∣
F
,

subject to W†W = In .

If the n× n product matrix A†B has an SVD of A†B = UΣV†, then a globally optimal
solution W? to the orthogonal Procrustes problem is given by

W? = UV† .

The globally optimal objective function value is given by√
||A||2F + ||B||2F − 2tr(Σ) .
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Moore-Penrose Pseudoinverse Definition

Moore-Penrose Pseudoinverse: Defining Properties
Suppose A is any m× n matrix. Then, if an n×m matrix A− satisfies

AA−A = A ,

then A− is said to be a generalized inverse of A. If, in addition, A− satisfies

A−AA− = A− ,

then A− is said to be a reflexive generalized inverse of A. Generalized inverses and
reflexive generalized inverses always exist, but are not unique, in general. If we
include two additional conditions, we obtain a Moore-Penrose pseudoinverse, which is
unique.

Moore-Penrose Pseudoinverse Definition:
If A is any m× n matrix, then an n×m matrix A# is said to be a pseudoinverse of A
if the following conditions hold:

1 AA#A = A : (A# is a generalized inverse of A).

2 A#AA# = A# : (A is a generalized inverse of A#).

3
(
AA#

)†
= AA# : (AA# is Hermitian).

4
(
A#A

)†
= A#A : (A#A is Hermitian).
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Moore-Penrose Pseudoinverse Properties

Properties of the Pseudoinverse
For all properties stated here, we assume A is some m× n matrix and A# is the
n×m pseudoinverse of A.

Existence and uniqueness:
As stated above, A# always exists and is unique.

Basic Properties:
If A ∈ Rm×n, then A# ∈ Rn×m.
If A is invertible, then A# = A−1.
If A = 0m×n, then A# = 0n×m.(
A#
)#

= A.
(A∗)# =

(
A#
)∗, (AT

)#
=
(
A#
)T ,

(
A†
)#

=
(
A#
)†.

(αA)# = 1
α

A# for any scalar α such that α 6= 0.
Identities:

A# = A#
(
A#
)†

A† .

A# = A†
(
A#
)†

A# .

A =
(
A#
)†

A†A .

A = AA†
(
A#
)†
.

A† = A†AA# .

A† = A#AA† .

Andre Tkacenko (JPL) EE/ACM 150 - Lecture 3 April 10, 2012 11 / 14



Moore-Penrose Pseudoinverse Relation to SVD

Connection Between the Pseudoinverse and SVD

There is an intimate connection between the SVD of a matrix and its
pseudoinverse. Specifically, if A is an m× n matrix with an SVD given
by

A =
[

U1 U2

]︸ ︷︷ ︸
U

[
Σ1 0ρ×(n−ρ)

0(m−ρ)×ρ 0(m−ρ)×(n−ρ)

]
︸ ︷︷ ︸

Σ

[
V†1

V†2

]
︸ ︷︷ ︸

V†

= U1Σ1V
†
1 .

then the n×m pseudoinverse A# is given by

A# ,
[

V1 V2

]︸ ︷︷ ︸
V

[
Σ−11 0ρ×(m−ρ)

0(n−ρ)×ρ 0(n−ρ)×(m−ρ)

]
︸ ︷︷ ︸

Σ#

[
U†1

U†2

]
︸ ︷︷ ︸

U†

= V1Σ
−1
1 U†1 .

Note that the matrix Σ# is the pseudoinverse of the matrix Σ.
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Moore-Penrose Pseudoinverse Role in Linear Least-Squares Problems

Pseudoinverse and Linear Least-Squares Problems
The pseudoinverse arises in solutions to linear least-squares problems, in
which the aim is to find the best linear model fit to a set of observed data in a
mean-squared sense.

If A is an m× n matrix characterizing the linear model, b is an m× 1 vector
characterizing the observed data, and x is an n× 1 vector characterizing the
fitting parameters, then the traditional linear least-squares problem is simply
the following.

Linear Least-Squares Problem:

minimize ξ2 , ||Ax− b||22 .

This problem is always convex and a globally optimizing solution x? and
corresponding optimal objective value

(
ξ2
)? are given by

x? = A#b ,
(
ξ2
)?

=
∣∣∣∣(Im −AA#

)
b
∣∣∣∣2
2
.
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Moore-Penrose Pseudoinverse Role in Linear Least-Squares Problems

Completing the Square
The optimizing solution x = A#b to the linear least-squares problem can be obtained
through a variety of ways. However, one technique simultaneously yields this solution
and shows its global optimality. This involves using the trick of completing the square.

We will show this for the special case in which m ≥ n (i.e., A is a tall matrix) and A is
full rank (i.e., rank(A) = n). Expanding ξ2 from above, we get

ξ2 = ||Ax− b||22 = x†A†Ax− x†A†b− b†Ax + b†b ,

=

(
x† − b†A

(
A†A

)−1
)(

A†A
)(

x−
(
A†A

)−1

A†b

)
+ b†

(
Im −A

(
A†A

)−1

A†
)

b ,

=

∣∣∣∣∣∣∣∣A(x−
(
A†A

)−1

A†b

)∣∣∣∣∣∣∣∣2
2

+

∣∣∣∣∣∣∣∣(Im −A
(
A†A

)−1

A†
)

b

∣∣∣∣∣∣∣∣2
2

.

Note that only the first term from above depends upon x. This term is nonnegative
and zero if and only if its argument is zero, which occurs if we have

x = x? =
(
A†A

)−1

A†︸ ︷︷ ︸
A#

b =⇒ ξ2 =
(
ξ2
)?

=

∣∣∣∣ ∣∣∣∣ ( Im −A
(
A†A

)−1

A†︸ ︷︷ ︸
AA#

)
b

∣∣∣∣ ∣∣∣∣2
2

.
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