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Real Vector/Matrix Differentiation Notation & Conventions

Introduction to Vector/Matrix Differentiation
Often we will be interested in computing stationary points of scalar/vector/matrix-valued functions
which are themselves functions of scalars, vectors, or matrices. This will involve calculating a set
of partial derivatives. In many cases, the variation of the function with repsect to its arguments
can be greatly simplified by exploiting what is known about matrix analysis.
Suppose x, y ∈ R, x ∈ Rm1 with xk , [x]k, y ∈ Rm2 with yk , [y]k, X ∈ Rn1×p1 with
Xk,` , [X]k,`, and Y ∈ Rn2×p2 with Yk,` , [Y]k,`. Here, x, x, or X will represent the function
argument while y, y, or Y will denote the function under consideration. The derivative of the
function under consideration will be formed from the partials as shown in the table below.

scalar - y vector - y matrix - Y

scalar - x
dy

dx

dy

dx
=

[
∂yk

∂x

]
dY

dx
=

[
∂Yk,`

∂x

]

vector - x
dy

dx
=

[
∂y

∂x`

]
dy

dx
=

[
∂yk

∂x`

]

matrix - X
dy

dX
=

[
∂y

∂X`,k

]
Here, the partials with respect to the numerator are laid out according to the shape of the function,
whereas the partials with respect to the denominator are laid out according to the transpose of
the function argument. For example, dy

dx
is a column vector, while dy

dx
is a row vector.

Andre Tkacenko (JPL) EE/ACM 150 - Lecture 5 April 17, 2012 3 / 19



Real Vector/Matrix Differentiation Notation & Conventions

Nuances of Adopted Notational Convention
The subtleties associated with the transposed function argument convention are best
explained with an example. Suppose that we have

y , xTAx =
∑
k1,k2

xk1Ak1,k2xk2 ,

=
∑
k1 6=`

∑
k2 6=`

xk1Ak1,k2xk2 +
∑
k1 6=`

xk1Ak1,`x` +
∑
k2 6=`

x`A`,k2xk2 +A`,`x
2
` .

Then we have
∂y

∂x`
=
∑
k1 6=`

xk1Ak1,` +
∑
k2 6=`

A`,k2xk2 + 2A`,`x` =
∑
k1

xk1Ak1,` +
∑
k2

A`,k2xk2 .

From this, it follows that
∂y

∂x`
=
[
ATx

]
`
+ [Ax]` =

[
xTA

]
`
+
[
xTAT

]
`
.

However, since by convention, dy
dx

must be a row vector here, we have

dy

dx
= xT

(
A+AT

)
.

A more traditional definition for the derivative would yield dy
dx

=
(
A+AT

)
x. However,

this will be more cumbersome to work with than the convention used here.
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Real Vector/Matrix Differentiation Differentials

Differentials and the Transposed Notation Convention
To justify the use of the transposed function argument notation convention, we need only look at
the differential of the function under consideration. Suppose y is a scalar-valued function of a
matrix X with Xk,` = [X]k,`. Then, the differential of y can be obtained by invoking the chain
rule from multivariable calculus and leads to the following:

dy =
∑
k

∑
`

[
∂y

∂Xk,`

]
dXk,` .

But recall that dXk,` is simply the (k, `)-th entry of the differential of X, denoted dX. Hence,
according to our notational convention, we have

dy =
∑
k

∑
`

[
dy

dX

]
`,k

[dX]k,` = tr

((
dy

dX

)
dX

)
.

Here, we used the identity that ∑
k

∑
`

[A]`,k [B]k,` = tr(AB) .

This allows us to easily determine the derivative of y with respect to X from the differential of y
as a function of the differential of X.

Note that if we adhered to a more traditional notational convention, then we would end up with

dy = tr

((
dy
dX

)T
dX

)
, which would be more cumbersome to work with than the formula above.
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Real Vector/Matrix Differentiation Differentials

Calculating Differentials
As mentioned above, it will be useful to calculate derivatives of functions by computing
appropriate differentials. For a scalar/vector/matrix-valued function F of a scalar/
vector/matrix-valued argument X, the differential dF(X) can be obtained by taking the
term of the difference (F(X+ dX)− F(X)) which is linear in dX. In other words,

F(X+ dX) = F(X) + linear in (dX)︸ ︷︷ ︸
dF(X)

+ higher order terms .

Examples:
dA = 0 if A is a constant.
d(αX) = α (dX).
d(X+Y) = dX+ dY.
d(tr(X)) = tr(dX).
d(XY) = (dX)Y +X (dY).
d(X⊗Y) = (dX)⊗Y +X⊗ (dY).
d(X ◦Y) = (dX) ◦Y +X ◦ (dY).
d
(
X−1

)
= −X−1 (dX)X−1.

d(det(X)) = det(X) · tr
(
X−1dX

)
.

d(log(det(X))) = tr
(
X−1dX

)
.

d
(
XT
)
= (dX)T and d(vec(X)) = vec(dX).
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Real Vector/Matrix Differentiation Differentials

Computing Differentials: Key Examples
To illustrate the use of differentials, it is worthwhile deriving a few key examples.

Example #1: Product Rule
Suppose we define the function F(X,Y) , XY. Then we have

F(X+ dX,Y + dY) = (X+ dX) (Y + dY) ,

= XY + (dX)Y +X (dY) + (dX) (dY) ,

= F(X,Y) + (dX)Y +X (dY)︸ ︷︷ ︸
linear terms

+ (dX) (dY)︸ ︷︷ ︸
higher order terms

.

From this, we conclude that d(XY) = (dX)Y +X (dY).

Example #2: Inverse Rule
To derive the expression for d

(
X−1

)
, we will use the rule for constant matrices

as well as the product rule. Note that we have the following:

0 = d(I) = d
(
X−1X

)
=
(
d
(
X−1))X+X−1 (dX) .

Thus, we get(
d
(
X−1))X = −X−1 (dX)⇐⇒ d

(
X−1) = −X−1 (dX)X−1 .
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Real Vector/Matrix Differentiation Derivatives

Relating Differentials to Derivatives
Recall from above that a scalar-valued function y of a matrix-valued argument X yielded the
following relation between differentials and derivatives:

dy = tr

((
dy

dX

)
dX

)
.

This relation followed from the chain rule from multivariable calculus. Analogous to the table
above defining the notation to use for derivatives, we have the following one relating the
differentials to the derivatives for the scalar, vector, and matrix cases.

scalar - y vector - y matrix - Y

scalar - x dy =

(
dy

dx

)
(dx) dy =

(
dy

dx

)
(dx) dY =

(
dY

dx

)
(dx)

vector - x dy =

(
dy

dx

)
(dx) dy =

(
dy

dx

)
(dx)

matrix - X dy = tr

((
dy

dX

)
(dX)

)
From this, the derivative of expressions involving vectors/matrices can be obtained in two steps:

Compute the differential of the function using rules such as those from above.
Put the differential in a canonical form as in the above table and read off the derivative.
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Real Vector/Matrix Differentiation Derivatives

Calculating Derivatives: Examples
For computing derivatives of functions of a matrix variable, one particularly useful
identity is tr(AB) = tr(BA).
Examples:

y = tr(AXB):
In this case, we have

dy = tr(d(AXB)) = tr(A (dX)B) = tr(BA (dX)) .

Thus, dy
dX

= BA.
y = tr

(
AXTBXC

)
:

Here, we have

dy = tr
(
Ad
(
XTBX

)
C
)
= tr

(
A
(
(dX)T BX+XTB (dX)

)
C
)
,

= tr

((
A (dX)T BXC

)T)
+ tr

(
AXTB (dX)C

)
,

= tr
(
CTXTBT (dX)AT

)
+ tr

(
CAXTB (dX)

)
,

= tr
((

CAXTB+ATCTXTBT
)
(dX)

)
.

Hence, dy
dX

=
(
CAXTB+ATCTXTBT

)
.
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Real Vector/Matrix Differentiation Derivatives

Calculating Derivatives: Examples (Continued)
Examples: (Continued)

y = tr
(
AX−1B

)
:

For this case, we have

dy = tr
(
A
(
d
(
X−1

))
B
)
= tr

(
A
(
−X−1 (dX)X−1

)
B
)
= tr

((
−X−1BAX−1

)
(dX)

)
,

Thus, we have dy
dX

= −X−1BAX−1.
y = det

(
XTX

)
:

In this example, we have

dy = det
(
XTX

)
· tr
((

XTX
)−1

d
(
XTX

))
,

= det
(
XTX

)
· tr
((

XTX
)−1 (

(dX)T X+XT (dX)
))

,

= det
(
XTX

)
· 2tr

((
XTX

)−1
XT (dX)

)
.

Hence, we get dy
dX

= 2det
(
XTX

)
·
(
XTX

)−1
XT .

y = f(Xz):
By definition, we have df(x) =

df(x)
dx

dx, and so

dy =
df(x)

dx

∣∣∣∣
x=Xz

d(Xz) =
df(x)

dx

∣∣∣∣
x=Xz

(dX) z = tr

((
z

(
df(x)

dx

∣∣∣∣
x=Xz

))
(dX)

)
.

Thus, we get dy
dX

= z
(

df(x)
dx

∣∣∣
x=Xz

)
.
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Real Vector/Matrix Differentiation Results for Structured Matrix Arguments

Computing Derivatives with Structured Arguments
Previously, the matrix argument X was assumed to have no structure. However, for many
practical cases, X may have some structure, such as being symmetric, diagonal, Toeplitz, etc.

When the matrix argument has structure, we must simply invoke the chain rule from multivariable
calculus in a clever way. Applying the chain rule to the partial derivative ∂y

∂X`,k
leads to[

dy

dX

]
k,`

=
∂y

∂X`,k
=
∑
m,p

∂y

∂Xm,p
·
∂Xm,p

∂X`,k
=
∑
m,p

[
dy

dX

]
p,m

[
∂X

∂X`,k

]
m,p

,

= tr

((
dy

dX

)
∂X

∂X`,k

)
= tr

((
dy

dX

)
S`,k

)
.

Here, the quantity Sk,` , dX
dXk,`

is called the structure matrix of X at the (k, `)-th entry. Any
structure in X can be captured through this quantity.

If X has no structure, then Sk,` = Jk,`, where Jk,` is the single-entry matrix with a one in the
(k, `)-th entry and zero otherwise. On the other hand, if X is symmetric, then we have

Sk,` = Jk,` + J`,k − Jk,`J`,k .

In this case, we have

dy

dX
=

(
dy

dX

)
+

(
dy

dX

)T

− diag

(
dy

dX

)
=

(
dy

dX

)
+

(
dy

dX

)T

−
((

dy

dX

)
◦ I
)

,

where it is understood that X should be regarded as symmetric on the left hand side and
unstructured on the right hand side.
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Real Vector/Matrix Differentiation Results for Structured Matrix Arguments

Derivatives with Symmetric Arguments

Examples:
y = tr(AXB):
Recall that when X is unstructured, we have dy

dX = BA. Thus, we
get

dy

dX
= BA+ (BA)T − diag(BA) = BA+ (BA)T − (BA ◦ I) .

If B = AT , then we have

d

dX
tr
(
AXAT

)
= 2ATA− diag

(
ATA

)
= 2ATA−

(
ATA ◦ I

)
.

y = log(det(X)):
Recall that when X is unstructured, we have dy

dX = X−1. Hence,
we have
dy

dX
=

d

dX
log(det(X)) = 2X−1 − diag

(
X−1

)
= 2X−1 −

(
X−1 ◦ I

)
.
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Complex Vector/Matrix Differentiation Introduction

Introduction to Complex Differentiation

In many cases, we will want to differentiate a function of a complex
variable whose output may be real or complex. For this case, we will
always want to express the given function in terms of the complex
variable and its conjugate. As an example, consider

f(z, z∗) , |z|2 = z∗z.

The key to handling complex differentiation is to view the complex
variable and its conjugate as linearly independent variables. Once this
is accomplished, the differentiation can proceed in much the same way
as was done for the real case. For the example above, we have here

∂f

∂z
= z∗ ,

∂f

∂z∗
= z .
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Complex Vector/Matrix Differentiation Complex Differentials

Defining Complex Differentials

As with the real case, the complex differential of a scalar/vector/
matrix-valued function F of a pair of complex scalar/vector/
matrix-valued arguments Z1 and Z2 can be obtained by taking the
terms of the difference F(Z1 + dZ1,Z2 + dZ2)− F(Z1,Z2) which are
linear in dZ1 and dZ2. In other words,

F(Z1 + dZ1,Z2 + dZ2)− F(Z1,Z2) = linear in (dZ1) and (dZ2)︸ ︷︷ ︸
dF(Z1,Z2)

+ higher order terms .

This leads to the same properties for complex differentials as for real
ones. Two new properties are as follows:

d(Z∗) = (dZ)∗.
d
(
Z†
)
= (dZ)†.

By setting Z1 = Z and Z2 = Z∗, we can proceed in much the same
way as before for the real case.
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Complex Vector/Matrix Differentiation Complex Differentials

Linear Independence of Conjugate Differentials
Assuming linear independence of real and imaginary differentials

Decomposing Z and Z∗ into real and imaginary parts as

Z = Re[Z] + jIm[Z] , Z∗ = Re[Z]− jIm[Z] ,

then, assuming that the differentials of the real and imaginary parts d(Re[Z]) and
d(Im[Z]), respectively, are linearly independent, then so too are dZ and d(Z∗).

To show this, consider the conditions under which

A1 (d(vec(Z))) +A2 (d(vec(Z
∗))) = 0 .

This leads to

(A1 +A2)︸ ︷︷ ︸
B1

(d(vec(Re[Z]))) + (j (A1 −A2))︸ ︷︷ ︸
B2

(d(vec(Im[Z]))) = 0 .

As d(vec(Re[Z])) and d(vec(Im[Z])) are linearly independent, the above condition
holds if and only if B1 = B2 = 0. But that is equivalent to saying that A1 = A2 = 0.
Hence, d(vec(Z)) and d(vec(Z∗)) are linearly independent.
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Complex Vector/Matrix Differentiation Complex Differentials

Relating Complex Differentials to Derivatives

As with the real case, it is useful to calculate derivatives through the use of
differentials. Similar to the table above relating real differentials to derivatives,
we have the following table for complex differentials and complex functions.

scalar - f vector - f matrix - F

scalar - z, z∗
df =

(
∂f

∂z

)
(dz)

+

(
∂f

∂z∗

) (
dz

∗)
df =

(
∂f

∂z

)
(dz)

+

(
∂f

∂z∗

) (
dz

∗)
dF =

(
∂F

∂z

)
(dz)

+

(
∂F

∂z∗

) (
dz

∗)

vector - z, z∗
df =

(
∂f

∂z

)
(dz)

+

(
∂f

∂z∗

) (
dz

∗)
df =

(
∂f

∂z

)
(dz)

+

(
∂f

∂z∗

) (
dz

∗)

matrix - Z,Z∗
df = tr

((
∂f

∂Z

)
(dZ)

)
+ tr

((
∂f

∂Z∗

) (
dZ

∗))
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Complex Vector/Matrix Differentiation Conditions for Stationarity

Stationarity of a Real Function of Complex Arguments

Suppose Z,Z∗ ∈ Cm×n and f(Z,Z∗) is a real function, i.e.,
f : Cm×n × Cm×n → R. Decomposing Z into real and imaginary parts
as Z = X+ jY (so that Z∗ = X+ jY), allows us to express f(Z,Z∗) as

f(Z,Z∗) = g(X,Y) ,

where g : Rm×n × Rm×n → R. Assuming that X = Re[Z] ∈ Rm×n and
Y = Im[Z] ∈ Rm×n consist of independent variables, it can be shown
that the following conditions for stationarity are equivalent.

∂g

∂X
= 0n×m,

∂g

∂Y
= 0n×m. (two n×m real equations)

∂f

∂Z
= 0n×m. (one n×m complex equation)

∂f

∂Z∗
= 0n×m. (one n×m complex equation)

This justifies a conjugate gradient approach for finding stationary points.
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Second-Order Approximations of Scalar Functions of Vectors Gradient Vector & Hessian Matrix

Second-Order Approximations of Real Functions
Many functions which appear in optimization consist of real-valued scalar functions of
real-valued column vectors. As an example, we might be interested in analyzing the
behavior of f(x), where x ∈ Rn and f(x) ∈ R. For this reason, it is convenient to
define a column-based gradient vector and a column/row-based Hessian matrix as
follows.

Gradient Vector:

∇f(x) ,
(
df

dx

)T

=
df

dxT
∈ Rn .

Hessian Matrix:

∇2f(x) ,

(
d2f

dxT dx

)T

=
d2f

dx dxT
=

d

dx

(
df

dxT

)
∈ Rn×n .

Then, the second-order Taylor approximation of f at x is given by f̂(x+ v), where

f̂(x+ v) = f(x) + (∇f(x))T v +
1

2
vT (∇2f(x)

)
v .

Note that the approximation is exact for f(x) = xTAx+ bTx+ c, where A ∈ Rn×n,
b ∈ Rn, and c ∈ R.
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Second-Order Approximations of Scalar Functions of Vectors Gradient Vector & Hessian Matrix

Second-Order Approximations of Complex Functions
In addition to focusing on real-valued vector arguments, it is also worthwhile
considering real-valued scalar functions of complex-valued column vectors. As an
example, we might be interested in analyzing the behavior of f(z), where z ∈ Cn and
f(z) ∈ R. Analogous to the real-valued argument case, it is convenient to define a
complex-valued column-based gradient vector and a complex-valued
column/row-based Hessian matrix as follows.

Gradient Vector:

∇f(z) ,
(
∂f

∂z∗

)T

=
∂f

∂z†
∈ Cn .

Hessian Matrix:

∇2f(z) ,

(
∂2f

∂zT ∂z∗

)T

=
∂2f

∂z ∂z†
=

∂

∂z

(
∂f

∂z†

)
∈ Cn×n .

Then, the second-order Taylor approximation of f at z is given by f̂(z+ v), where

f̂(z+ v) = f(z) + 2Re
[
(∇f(z))† v

]
+ v†

(
∇2f(z)

)
v .

Note that the approximation is exact for f(z) = z†Az+ 2Re
[
b†z
]
+ c, where A ∈ Hn,

b ∈ Cn, and c ∈ R. To make the Taylor approximation look more like the real case,
sometimes the gradient and Hessian are defined to be twice the value given above.
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