EE/ACM 150 - Applications of Convex Optimization in Signal Processing and Communications Lecture 6

Andre Tkacenko

Signal Processing Research Group Jet Propulsion Laboratory

April 19, 2012

Outline

1 Relevant Sets in Convex Optimization

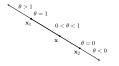
- Affine Sets
- Convex Sets
- Cones
- 2 Important Example Sets
- 3 Operations That Preserve Convexity
- 4 Generalized Inequalities
 - Proper Cones
 - Minimum and Minimal Elements
- 5 Separating and Supporting Hyperplanes
- 6 Dual Cones
 - Role in Generalized Inequalities
 - Dual Characterization of Minimum and Minimal Elements

Affine Sets

Affine Sets: Definition and Properties

A set $C \in \mathbb{R}^n$ is affine if the line between any two distinct points in C is also in C. In other words, if $\mathbf{x}_1, \mathbf{x}_2 \in \mathcal{C}$, then all points \mathbf{x} of the form

$$\mathbf{x} = \theta \mathbf{x} + (1 - \theta) \mathbf{x}_2 = \mathbf{x}_2 + \theta (\mathbf{x}_1 - \mathbf{x}_2)$$
, are in \mathcal{C} for all $\theta \in \mathbb{R}$.



This can be generalized to more than two points. Specifically, if $\mathbf{x}_1, \ldots, \mathbf{x}_k \in \mathcal{C}$, then \mathcal{C} is affine if and only if any *affine combination* \mathbf{x} of the points $\mathbf{x}_1, \ldots, \mathbf{x}_k$ is also in \mathcal{C} , where \mathbf{x} is given by

 $\mathbf{x} = \theta_1 \mathbf{x}_1 + \cdots + \theta_k \mathbf{x}_k$, where $\theta_1 + \cdots + \theta_k = 1$.

Properties:

Any affine set C is simply a linear subspace \mathcal{V} shifted spatially by any offset point $\mathbf{x}_0 \in C$. i.e., can be represented by

$$\mathcal{C} = \mathcal{V} + \mathbf{x}_0 = \{\mathbf{v} + \mathbf{x}_0 : \mathbf{v} \in \mathcal{V}\}$$
 .

A set $\mathcal{C} \in \mathbb{R}^n$ is affine if and only if it can be expressed as the solution set of a system of linear equations, i.e., can be represented in the form

$$\mathcal{C} = \{\mathbf{x} : \mathbf{A}\mathbf{x} = \mathbf{b}\}$$
, where $\mathbf{A} \in \mathbb{R}^{m \times n}$ and $\mathbf{b} \in \mathbb{R}^m$.

Affine Hull, Affine Dimension, and Relative Interior

Affine Hull:

The *affine hull* of any set $C \subseteq \mathbb{R}^n$ is the set of all affine combinations of points in C and denoted $\operatorname{aff}(C)$. In other words, we have

aff $(\mathcal{C}) \triangleq \{\theta_1 \mathbf{x}_1 + \dots + \theta_k \mathbf{x}_k : \mathbf{x}_1, \dots, \mathbf{x}_k \in \mathcal{C}, \ \theta_1 + \dots + \theta_k = 1\}$.

The affine hull of C is the smallest affine set that contains C. Namely, if S is any affine set with $C \subseteq S$, then $\operatorname{aff}(C) \subseteq S$.

Affine Dimension:

The *affine dimension* of a set C is the dimension of its affine hull. For example, the affine hull of a set of coplanar points in \mathbb{R}^3 is a plane with affine dimension 2. **Relative Interior:**

If the affine dimension of a set $C \subseteq \mathbb{R}^n$ is less than n, then C lies in an affine set $\operatorname{aff}(C) \neq \mathbb{R}^n$. In this case, the interior of C relative to \mathbb{R}^n is empty, but the interior relative to the affine hull, defined as

$$\operatorname{relint}(\mathcal{C}) \triangleq \{ \mathbf{x} \in \mathbb{C} : \mathcal{B}(\mathbf{x}, r) \cap \operatorname{aff}(\mathcal{C}) \subseteq \mathcal{C} \text{ for some } r > 0 \} ,$$

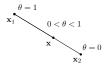
is in general not empty. Here, $\mathcal{B}(\mathbf{x}, r) \triangleq \{\mathbf{y} : ||\mathbf{y} - \mathbf{x}|| \leq r\}$ is a closed ball of radius r centered at \mathbf{x} (corresponding to some norm $|| \cdot ||$). From this we can define a *relative boundary* of a set C as

$$\operatorname{relbd}(\mathcal{C}) \triangleq \operatorname{cl}(\mathcal{C}) \setminus \operatorname{relint}(\mathcal{C}) \ .$$

Convex Sets: Definitions and Examples

A set $C \in \mathbb{R}^n$ is *convex* if the line segment between any two distinct points in C is also in C. In other words, if $\mathbf{x}_1, \mathbf{x}_2 \in C$, then all points \mathbf{x} of the form

$$\mathbf{x} = \theta \mathbf{x} + (1 - \theta) \mathbf{x}_2 = \mathbf{x}_2 + \theta (\mathbf{x}_1 - \mathbf{x}_2)$$
, are in \mathcal{C} for all θ with $0 \le \theta \le 1$.



This can be generalized to more than two points. Specifically, if $\mathbf{x}_1, \ldots, \mathbf{x}_k \in C$, then C is convex if and only if any *convex combination* \mathbf{x} of the points $\mathbf{x}_1, \ldots, \mathbf{x}_k$ is also in C, where \mathbf{x} is given by

 $\mathbf{x} = \theta_1 \mathbf{x}_1 + \dots + \theta_k \mathbf{x}_k$, where $\theta_1 + \dots + \theta_k = 1$ and $\theta_\ell \ge 0$ for $\ell = 1, \dots, k$.

In the most general form, if $p : \mathbb{R}^n \to \mathbb{R}$ is some function which satisfies $p(\mathbf{x}) \ge 0$ for all $\mathbf{x} \in C$ and $\int_{\mathcal{C}} p(\mathbf{x}) d\mathbf{x} = 1$ (i.e., $p(\mathbf{x})$ is a *probability density function* (pdf) for $\mathbf{x} \in C$), then C is convex if and only if

$$\int_C p(\mathbf{x}) \, \mathbf{x} \, d\mathbf{x} = E[\mathbf{x}] \in \mathcal{C} \, .$$

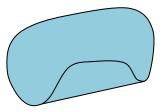
Convex Hull: Definition and Examples

The *convex hull* of any set $C \subseteq \mathbb{R}^n$ is the set of all convex combinations of points in C and denoted $\operatorname{conv}(C)$. In other words, we have

 $\operatorname{conv}(\mathcal{C}) \triangleq \{\theta_1 \mathbf{x}_1 + \dots + \theta_k \mathbf{x}_k : \mathbf{x}_1, \dots, \mathbf{x}_k \in \mathcal{C}, \ \theta_\ell \ge 0, \ell = 1, \dots, k, \ \theta_1 + \dots + \theta_k = 1\} \ .$

The convex hull of C is the smallest convex set that contains C. Namely, if S is any convex set with $C \subseteq S$, then $\operatorname{conv}(C) \subseteq S$.

Examples:



Cones: Definitions and Examples

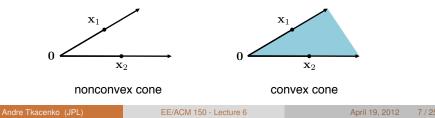
A set C is a *cone* if, for every $\mathbf{x} \in C$ and $\theta > 0$, we have $\theta \mathbf{x} \in C$. Similarly, a set C is said to be a *convex cone* if it is convex and a cone, meaning that for any $\mathbf{x}_1, \mathbf{x}_2 \in \mathcal{C}$ and $\theta_1, \theta_2 \geq 0$, we have

$$\theta_1 \mathbf{x}_1 + \theta_2 \mathbf{x}_2 \in \mathcal{C}$$
.

This can be generalized to more than two points. Specifically, if $\mathbf{x}_1, \ldots, \mathbf{x}_k \in \mathcal{C}$, then \mathcal{C} is a convex cone if and only if any *conic combination* x of the points x_1, \ldots, x_k is also in C, where x is given by

$$\mathbf{x} = \theta_1 \mathbf{x}_1 + \dots + \theta_k \mathbf{x}_k$$
, where $\theta_\ell \ge 0$ for $\ell = 1, \dots, k$.

Examples:



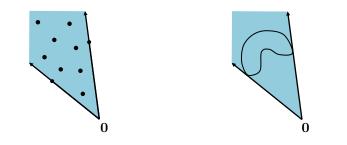
Conic Hull: Definition and Examples

The *conic hull* of any set $\mathcal{C} \subseteq \mathbb{R}^n$ is the set of all conic combinations of points in C and denoted conc(C). In other words, we have

$$\operatorname{conc}(\mathcal{C}) \triangleq \{\theta_1 \mathbf{x}_1 + \dots + \theta_k \mathbf{x}_k : \mathbf{x}_1, \dots, \mathbf{x}_k \in \mathcal{C}, \ \theta_\ell \ge 0, \ell = 1, \dots, k\} \ .$$

The conic hull of \mathcal{C} is the smallest convex cone that contains \mathcal{C} . Namely, if S is any convex cone with $C \subseteq S$, then $conc(C) \subseteq S$.

Examples:



Hyperplanes and Halfspaces

A hyperplane is a set of the form

$$\left\{ \mathbf{x} : \mathbf{a}^T \mathbf{x} = b \right\}$$
,

where $\mathbf{a} \in \mathbb{R}^n$ with $\mathbf{a} \neq \mathbf{0}$ and $b \in \mathbb{R}$. Here, \mathbf{a} represents the *normal vector* to the hyperplane and b determines the offset of the hyperplane from the origin. Equivalently, the hyperplane can be expressed in the form

$$\left\{ \mathbf{x} : \mathbf{a}^T \left(\mathbf{x} - \mathbf{x}_0 \right) = 0 \right\} \,,$$

where \mathbf{x}_0 is any point in the hyperplane (i.e., any point for which $\mathbf{a}^T \mathbf{x}_0 = b$). This can be expressed in turn as

$$\left\{ \mathbf{x}_0 + \mathbf{a}^\perp : \mathbf{a}^\perp = \left\{ \mathbf{v} : \mathbf{a}^T \mathbf{v} = 0 \right\} \right\}$$
.

In other words, the hyperplane is the orthogonal complement of a offset by a vector \mathbf{x}_0 . Any hyperplane divides \mathbb{R}^n into two *halfspaces*. A halfspace is a set of the form

$$\left\{\mathbf{x}: \mathbf{a}^T \mathbf{x} \leq b\right\}$$
 (closed) , $\left\{\mathbf{x}: \mathbf{a}^T \mathbf{x} < b\right\}$ (open) .

Hyperplanes are affine and convex, whereas halfspaces are only convex.

Euclidean Balls and Ellipsoids

A Euclidean ball in \mathbb{R}^n with center at $\mathbf{x}_c \in \mathbb{R}^n$ and radius r > 0 is defined as

$$\mathcal{B}(\mathbf{x}_c, r) \triangleq \left\{ \mathbf{x} : ||\mathbf{x} - \mathbf{x}_c||_2 \le r \right\} = \left\{ \mathbf{x} : (\mathbf{x} - \mathbf{x}_c)^T (\mathbf{x} - \mathbf{x}_c) \le r^2 \right\}.$$

It can be equivalently represented as

$$\mathcal{B}(\mathbf{x}_c, r) = \left\{ \mathbf{x}_c + r\mathbf{u} : ||\mathbf{u}||_2 \le 1 \right\} \,.$$

An *ellipsoid* is a set of the form

$$\mathcal{E} \triangleq \left\{ \mathbf{x} : (\mathbf{x} - \mathbf{x}_c)^T \mathbf{P}^{-1} (\mathbf{x} - \mathbf{x}_c) \le 1 \right\} \,,$$

where $\mathbf{P} \in \mathbb{S}^n_{++}$ (i.e., $\mathbf{P} \succ \mathbf{0}$). Here, \mathbf{x}_c denotes the center of the ellipsoid \mathcal{E} and the lengths of the semi-axes are $\sqrt{\lambda_k}$, where λ_k are the eigenvalues of \mathbf{P} . Another representation is given by

$$\mathcal{E} = \left\{ \mathbf{x}_c + \mathbf{A}\mathbf{u} : ||\mathbf{u}||_2 \le 1 \right\} \,,$$

where A is square and nonsingular. If we allow A to be singular, we obtain a *degenerate ellipsoid* for which $\dim(\operatorname{aff}(\mathcal{E})) = \operatorname{rank}(A)$.

Euclidean balls, ellipsoids, and degenerate ellipsoids are all convex.

Andre Tkacenko (JPL)

EE/ACM 150 - Lecture 6

Norm Balls and Norm Cones

A norm ball for the norm $||\cdot||$ with center \mathbf{x}_c and radius r > 0 is a set $\mathcal{B}(\mathbf{x}_c, r)$ of the form

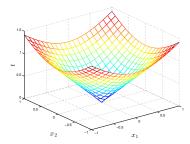
 $\mathcal{B}(\mathbf{x}_c, r) = \{\mathbf{x} : ||\mathbf{x} - \mathbf{x}_c|| \le r\}$.

By exploiting the homogeneity property and triangle inequality of norms, it can be easily shown that $\mathcal{B}(\mathbf{x}_c, r)$ is always convex.

For a norm $||\cdot||$ on \mathbb{R}^n , the *norm cone* associated with $||\cdot||$ is the set

$$\mathcal{C} \triangleq \{(\mathbf{x}, t) : ||\mathbf{x}|| \le t\} \subseteq \mathbb{R}^{n+1}.$$

Any norm cone is a convex cone. A norm cone based off of the Euclidean norm is called the *second-order cone* and is shown below for \mathbb{R}^3 .

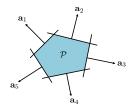


Polyhedra

A polyhedron $\mathcal{P} \in \mathbb{R}^n$ is the solution set of a finite number of linear inequalities and equalities of the form

$$\mathcal{P} = \{\mathbf{x} : \mathbf{A}\mathbf{x} \preceq \mathbf{b}, \mathbf{C}\mathbf{x} = \mathbf{d}\},\$$

where $\mathbf{A} \in \mathbb{R}^{m \times n}$, $\mathbf{b} \in \mathbb{R}^m$, $\mathbf{C} \in \mathbb{R}^{p \times n}$, and $\mathbf{d} \in \mathbb{R}^p$. Here, \leq denotes *componentwise inequality*, i.e., $\mathbf{u} \leq \mathbf{v}$ means $[\mathbf{u}]_k \leq [\mathbf{v}]_k$ for all k. As any polyhedron is the intersection of a finite number of halfspaces and hyperplanes, it is convex.



A special type of polyhedra are *simplexes*. If $\mathbf{v}_0, \ldots, \mathbf{v}_k \in \mathbb{R}^n$ are *affinely independent*, meaning $\mathbf{v}_1 - \mathbf{v}_0, \ldots, \mathbf{v}_k - \mathbf{v}_0$ are linearly independent, the simplex S determined be them is given by

$$\mathcal{S} \triangleq \operatorname{conv}(\{\mathbf{v}_0, \dots, \mathbf{v}_k\}) = \left\{ \theta_0 \mathbf{v}_0 + \dots + \theta_k \mathbf{v}_k : \boldsymbol{\theta} \succeq \mathbf{0}, \mathbf{1}^T \boldsymbol{\theta} = 1 \right\} \,.$$

The most common simplex is the probability simplex given by

$$S_{\text{prob}} = \left\{ \mathbf{x} : \mathbf{x} \succeq \mathbf{0}, \mathbf{1}^T \mathbf{x} = 1 \right\}$$
.

Andre Tkacenko (JPL)

EE/ACM 150 - Lecture 6

Positive Semidefinite Cone

One important cone is the *positive semidefinite cone* \mathbb{S}^n_+ defined as

 $\mathbb{S}^n_+ \triangleq \{ \mathbf{X} \in \mathbb{S}^n : \mathbf{X} \succeq \mathbf{0} \}$.

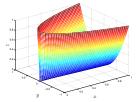
This can be easily shown to be a convex cone. To do this, suppose $\theta_1, \theta_2 \ge 0$ and $\mathbf{A}, \mathbf{B} \in \mathbb{S}^n_+$. Then we have, for any $\mathbf{x} \in \mathbb{R}^n$,

$$\mathbf{x}^{T} \left(\theta_{1} \mathbf{A} + \theta_{2} \mathbf{B} \right) \mathbf{x} = \theta_{1} \mathbf{x}^{T} \mathbf{A} \mathbf{x} + \theta_{2} \mathbf{x}^{T} \mathbf{B} \mathbf{x} \ge 0 \,,$$

and so the conic combination $(\theta_1 \mathbf{A} + \theta_2 \mathbf{B}) \in \mathbb{S}_+^n$. Example: For \mathbf{S}_+^2 , we have

$$\mathbf{X} = \begin{bmatrix} x & y \\ y & z \end{bmatrix} \in \mathbb{S}^2_+ \iff x \ge 0 \,, \ z \ge 0 \,, \ xz \ge y^2 \,.$$

The boundary of this cone is shown below as plotted in \mathbb{R}^3 .



The Calculus of Convex Sets

In most cases, determining whether or not a set C is convex can be quite cumbersome if we try to do so using the definition:

 $\mathbf{x}_1, \mathbf{x}_2 \in \mathcal{C} \Longrightarrow \theta \mathbf{x}_1 + (1 - \theta) \mathbf{x}_2 \in \mathcal{C}, \ 0 \le \theta \le 1.$

Typically, what is done in a practical sense is to see if C can be represented in terms of simple convex sets (such as hyperplanes, halfspaces, norm balls, etc.) using operations that preserve convexity. These operations lead to a *calculus of convex sets*, which can be used, in many cases, to easily determine whether or not a given set is convex.

Convexity Preserving Operations:

- intersection
- affine functions
- perspective and linear-fractional functions

Intersection

The *intersection* of any number (finite or infinite) of convex sets is convex. Mathematically, if \mathcal{I} is any index set with finite or infinite cardinality, and \mathcal{S}_i is convex for every $i \in \mathcal{I}$, then the set $\mathcal{S} \triangleq \bigcap_{i \in \mathcal{I}} \mathcal{S}_i$ is convex.

Examples:

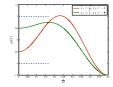
- Any polyhedron is the intersection of a finite number of halfspaces and hyperplanes and as such is convex.
- Consider the set

$$\mathcal{S} \triangleq \left\{ \mathbf{x} \in \mathbb{R}^m : |p(t)| \le 1 \text{ for } |t| \le \frac{\pi}{3} \right\}$$
, where $p(t) = \sum_{k=1}^m x_k \cos(kt)$.

This set can be expressed as the intersection of an infinite number of *slabs*:

$$\mathcal{S} = \bigcap_{|t| \le \frac{\pi}{3}} \mathcal{S}_t \text{, where } \mathcal{S}_t = \left\{ \mathbf{x} : -1 \le \begin{bmatrix} \cos(t) & \cdots & \cos(mt) \end{bmatrix}^T \mathbf{x} \le 1 \right\}$$

For m = 2, we have the following plots.



Affine Functions

Suppose $\mathbf{f} : \mathbb{R}^n \to \mathbb{R}^m$ is an *affine function*, i.e., it is of the form $\mathbf{f}(\mathbf{x}) = \mathbf{A}\mathbf{x} + \mathbf{b}$, where $\mathbf{A} \in \mathbb{R}^{m \times n}$ and $\mathbf{b} \in \mathbb{R}^m$. Then, we have the following:

The *image* of a convex set under **f** is convex:

 $\mathcal{S} \subseteq \mathbb{R}^n \text{ is convex} \Longrightarrow \mathbf{f}(\mathcal{S}) \triangleq \{\mathbf{f}(\mathbf{x}) : \mathbf{x} \in \mathcal{S}\} \text{ is convex} \,.$

■ The *inverse image* of a convex set under f is convex:

 $\mathcal{C} \subseteq \mathbb{R}^m \text{ is convex} \Longrightarrow \mathbf{f}^{-1}(\mathcal{C}) \triangleq \{\mathbf{x} \in \mathbb{R}^n : \mathbf{f}(\mathbf{x}) \in \mathcal{C}\} \text{ is convex} \,.$

Examples:

Scaling and translation:

If S is convex, then so are $\alpha S \triangleq \{\alpha \mathbf{x} : \mathbf{x} \in S\}$ and $S + \mathbf{a} \triangleq \{\mathbf{x} + \mathbf{a} : \mathbf{x} \in S\}$.

Projection:

The projection of a convex set onto some of its coordinates is convex. Namely if $\mathcal{L} \subseteq \mathbb{R}^m$ with $\mathcal{T} \subseteq \mathbb{R}^m$

 $S \subseteq \mathbb{R}^m \times \mathbb{R}^n$ is convex, then $\mathcal{T} \triangleq \{\mathbf{x}_1 \in \mathbb{R}^m : (\mathbf{x}_1, \mathbf{x}_2) \in S \text{ for some } \mathbf{x}_2 \in \mathbb{R}^n\}$ is convex. Solution set to a linear matrix inequality (LMI):

An LMI is of the following form

$$\mathbf{A}(\mathbf{x}) = x_1 \mathbf{A}_1 + \dots + x_n \mathbf{A}_n \preceq \mathbf{B},$$

where $\mathbf{A}_k, \mathbf{B} \in \mathbb{S}^m$. The solution set of the LMI, namely $\{\mathbf{x} : \mathbf{A}(\mathbf{x}) \leq \mathbf{B}\}$, is convex as it is the inverse image of the positive semidefinite cone \mathbb{S}^m_+ under the affine function $\mathbf{f} : \mathbb{R}^n \to \mathbb{S}^m$ given by $\mathbf{f}(\mathbf{x}) = \mathbf{B} - \mathbf{A}(\mathbf{x})$.

Hyperbolic cone:

The set $\{\mathbf{x} : \mathbf{x}^T \mathbf{P} \mathbf{x} \leq (\mathbf{c}^T \mathbf{x})^2, \mathbf{c}^T \mathbf{x} \geq 0\}$, where $\mathbf{P} \in \mathbb{S}^n_+$ and $\mathbf{c} \in \mathbb{R}^n$ is convex as it is the inverse image of the second-order cone under the affine function $\mathbf{f}(\mathbf{x}) = (\mathbf{P}^{\frac{1}{2}}\mathbf{x}, \mathbf{c}^T \mathbf{x})$.

Perspective and Linear-Fractional Functions

The Perspective Function:

The *perspective function* scales or normalizes a given vector so that its last component is unity and then drops the last component. More specifically, the perspective function $\mathbf{P} : \mathbb{R}^{n+1} \to \mathbb{R}^n$ is defined as

$$\mathbf{P}(\mathbf{x},t) = rac{\mathbf{x}}{t}$$
, dom $(\mathbf{P}) = \{(\mathbf{x},t) : \mathbf{x} \in \mathbb{R}^n, t > 0\}$.

It can be shown that the images and inverse images of convex sets under the perspective function are convex. The intuition is that a convex object, when viewed through a pin-hole camera, yields a convex image.

Linear-Fractional Functions:

A *linear-fractional function* is formed by the composition of the perspective function with an affine function. More specifically, a linear-fractional function $\mathbf{f} : \mathbb{R}^n \to \mathbb{R}^m$ is of the form

$$\mathbf{f}(\mathbf{x}) = \frac{\mathbf{A}\mathbf{x} + \mathbf{b}}{\mathbf{c}^T \mathbf{x} + d}, \ \mathrm{dom}(\mathbf{f}) = \left\{\mathbf{x} : \mathbf{c}^T \mathbf{x} + d > 0\right\}.$$

Here, $\mathbf{A} \in \mathbb{R}^{m \times n}$, $\mathbf{b} \in \mathbb{R}^{m}$, $\mathbf{c} \in \mathbb{R}^{n}$, and $d \in \mathbb{R}$. Images and inverse images of convex sets under linear-fractional functions are convex.

Proper Cones: Definition and Examples

A cone $\mathcal{K} \subseteq \mathbb{R}^n$ is a *proper cone* if the following hold true:

- \blacksquare ${\cal K}$ is convex and closed (meaning it contains its boundary).
- \blacksquare \mathcal{K} is solid (meaning it has a nonempty interior).
- \mathcal{K} is pointed (meaning it contains no line).

Examples:

Nonnegative orthant:

The set of vectors in \mathbb{R}^n whose components are nonnegative, given by

$$\mathcal{K} = \mathbb{R}^n_+ = \{ \mathbf{x} \in \mathbb{R}^n : x_k \ge 0, \ k = 1, \dots, n \} ,$$

is a proper cone.

- Positive semidefinite cone: The set K = Sⁿ₊ is a proper cone.
- Nonnegative polynomials on [0, 1]: The set defined as

$$\mathcal{K} \triangleq \left\{ \mathbf{c} \in \mathbb{R}^n : c_1 + c_2 t + c_3 t^2 + \dots + c_n t^n \ge 0 \text{ for } t \in [0,1] \right\} \,,$$

is a proper cone.

Proper Cones and Generalized Inequalities

A proper cone can be used to define a *generalized inequality*, which is a partial ordering similar to the standard ordering on \mathbb{R} . Specifically, for a proper cone \mathcal{K} , nonstrict and strict generalized inequalities $\leq_{\mathcal{K}}$ and $\prec_{\mathcal{K}}$, respectively, are defined as follows:

$$\mathbf{x} \preceq_{\mathcal{K}} \mathbf{y} \Longleftrightarrow \mathbf{y} - \mathbf{x} \in \mathcal{K}, \ \mathbf{x} \prec_{\mathcal{K}} \mathbf{y} \Longleftrightarrow \mathbf{y} - \mathbf{x} \in \operatorname{int}(\mathcal{K}).$$

Examples:

Componentwise inequality $(\mathcal{K} = \mathbb{R}^n_+)$:

$$\mathbf{x} \preceq_{\mathbb{R}^n_\perp} \mathbf{y} \iff x_k \leq y_k, \ k = 1, \dots, n, .$$

Matrix inequality ($\mathcal{K} = \mathbb{S}^n_+$):

 $\mathbf{X} \preceq_{\mathbb{S}^n_+} \mathbf{Y} \Longleftrightarrow \mathbf{Y} - \mathbf{X} \text{ is positive semidefinite }.$

These two types are the so common that the subscripts is typically dropped in $\leq_{\mathcal{K}}$. **Properties:**

If
$$\mathbf{x} \preceq_{\mathcal{K}} \mathbf{y}$$
 and $\mathbf{u} \preceq_{\mathcal{K}} \mathbf{v}$, then $\mathbf{x} + \mathbf{u} \preceq_{\mathcal{K}} \mathbf{y} + \mathbf{v}$.

- If $\mathbf{x} \preceq_{\mathcal{K}} \mathbf{y}$ and $\mathbf{y} \preceq_{\mathcal{K}} \mathbf{z}$, then $\mathbf{x} \preceq_{\mathcal{K}} \mathbf{z}$.
- If $\mathbf{x} \preceq_{\mathcal{K}} \mathbf{y}$ and $\mathbf{y} \preceq_{\mathcal{K}} \mathbf{x}$, then $\mathbf{x} = \mathbf{y}$.
- $\blacksquare \ \text{ If } \mathbf{x} \prec_{\mathcal{K}} \mathbf{y} \text{ and } \mathbf{u} \preceq_{\mathcal{K}} \mathbf{v} \text{, then } \mathbf{x} + \mathbf{u} \prec_{\mathcal{K}} \mathbf{y} + \mathbf{v}.$

Minimum/Minimal Elements: Definition and Examples

The generalized inequality $\leq_{\mathcal{K}}$ is not a *linear ordering* in general. Namely, we can have both $\mathbf{x} \leq_{\mathcal{K}} \mathbf{y}$ and $\mathbf{y} \leq_{\mathcal{K}} \mathbf{x}$, so that \mathbf{x} and \mathbf{y} are not *comparable*. However, we can define the notion of the *minimum* element and a *minimal* element.

Minimum element:

For some set S, we say that $\mathbf{x} \in S$ is *the minimum element* of S with respect to $\preceq_{\mathcal{K}}$ if

$$\mathbf{y} \in \mathcal{S} \Longrightarrow \mathbf{x} \preceq_{\mathcal{K}} \mathbf{y}$$
.

In other words, \mathbf{x} is the minimum element if it beats all other points in \mathcal{S} with respect to $\preceq_{\mathcal{K}}$. **Minimal element:**

For some set S, we say that $\mathbf{x} \in S$ is a minimal element of S with respect to $\preceq_{\mathcal{K}}$ if

$$\mathbf{y} \in \mathcal{S}, \ \mathbf{y} \preceq_{\mathcal{K}} \mathbf{x} \Longrightarrow \mathbf{y} = \mathbf{x}.$$

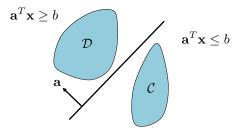
In other words, \mathbf{x} is a minimal element if no other points in S beat it with respect to $\leq_{\mathcal{K}}$. **Example:**

Separating Hyperplane Theorem

If ${\mathcal C}$ and ${\mathcal D}$ are disjoint convex sets, then there exists an ${\bf a} \neq {\bf 0}, b$ such that

$$\mathbf{a}^T \mathbf{x} \leq b \text{ for } \mathbf{x} \in \mathcal{C} \,, \ \mathbf{a}^T \mathbf{x} \geq b \text{ for } \mathbf{x} \in \mathcal{D} \,.$$

In other words, the hyperplane $\mathcal{H} \triangleq \{\mathbf{x} : \mathbf{a}^T \mathbf{x} = b\}$ separates \mathcal{C} and \mathcal{D} .



The separating hyperplane theorem can be used to develop a *theorem of alternatives* for strict linear inequalities. Specifically, if $\mathbf{A} \in \mathbb{R}^{m \times n}$ and $\mathbf{b} \in \mathbb{R}^m$ represent some data, then exactly one of the following systems is solvable.

A $\mathbf{x} \prec \mathbf{b}$, where $\mathbf{x} \in \mathbb{R}^n$.

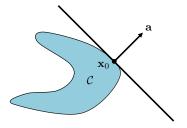
$$\lambda \neq \mathbf{0}, \boldsymbol{\lambda} \succeq \mathbf{0}, \mathbf{A}^T \boldsymbol{\lambda} = \mathbf{0}, \boldsymbol{\lambda}^T \mathbf{b} \le 0, \text{ where } \boldsymbol{\lambda} \in \mathbb{R}^m.$$

Supporting Hyperplane Theorem

A supporting hyperplane \mathcal{H} to a set \mathcal{C} at a boundary point \mathbf{x}_0 is one for which

$$\mathcal{H} = \left\{ \mathbf{x} : \mathbf{a}^T \mathbf{x} = \mathbf{a}^T \mathbf{x}_0
ight\} \,,$$

where $\mathbf{a} \neq \mathbf{0}$ and $\mathbf{a}^T \mathbf{x} \leq \mathbf{a}^T \mathbf{x}_0$ for all $\mathbf{x} \in \mathcal{C}$.



The *supporting hyperplane theorem* states that if C is convex, then there exists a supporting hyperplane at every boundary point of C.

Dual Cones and Generalized Inequalities

The dual cone $\mathcal{K}^{\circledast}$ of a cone \mathcal{K} is defined as follows:

 $\mathcal{K}^{\circledast} \triangleq \{\mathbf{y} : \operatorname{Re}[\langle \mathbf{x}, \mathbf{y} \rangle] \ge 0 \text{ for all } \mathbf{x} \in \mathcal{K} \} \ .$

The dual cone is always a convex cone, even if the primal cone \mathcal{K} is not. If \mathcal{K} is a closed, convex cone, then $\mathcal{K}^{\circledast \circledast} = \mathcal{K}$.

Examples:

$$\begin{split} & \mathcal{K} = \mathbb{R}_{+}^{n}, \mathcal{K}^{\circledast} = \mathbb{R}_{+}^{n}. \\ & \mathcal{K} = \mathbb{S}_{+}^{n}, \mathcal{K}^{\circledast} = \mathbb{S}_{+}^{n}. \\ & \mathcal{K} = \left\{ (\mathbf{x}, t) : ||\mathbf{x}||_{2} \leq t \right\}, \mathcal{K}^{\circledast} = \left\{ (\mathbf{x}, t) : ||\mathbf{x}||_{2} \leq t \right\}. \\ & \mathcal{K} = \left\{ (\mathbf{x}, t) : ||\mathbf{x}||_{1} \leq t \right\}, \mathcal{K}^{\circledast} = \left\{ (\mathbf{x}, t) : ||\mathbf{x}||_{\infty} \leq t \right\}. \\ & \mathcal{K} = \left\{ (\mathbf{x}, t) : ||\mathbf{x}|| \leq t \right\}, \mathcal{K}^{\circledast} = \left\{ (\mathbf{x}, t) : ||\mathbf{x}||_{\circledast} \leq t \right\}. \end{split}$$

The first three examples are *self-dual* cones and are the most commonly encountered.

If \mathcal{K} is a proper cone, then so is $\mathcal{K}^{\circledast}$ and thus they both induce generalized inequalities $\preceq_{\mathcal{K}}$ and $\preceq_{\mathcal{K}^{\circledast}}$, respectively.

Properties relating a generalized inequality to its dual:

- $\mathbf{x} \preceq_{\mathcal{K}} \mathbf{y}$ if and only if $\operatorname{Re}[\langle \mathbf{x}, \boldsymbol{\lambda} \rangle] \leq \operatorname{Re}[\langle \mathbf{y}, \boldsymbol{\lambda} \rangle]$ for all $\boldsymbol{\lambda} \succeq_{\mathcal{K}^{\circledast}} \mathbf{0}$.
- $\quad \ \ \, \mathbf{x}\prec_{\mathcal{K}}\mathbf{y} \text{ if and only if } \operatorname{Re}[\langle\mathbf{x},\boldsymbol{\lambda}\rangle]<\operatorname{Re}[\langle\mathbf{y},\boldsymbol{\lambda}\rangle] \text{ for all } \boldsymbol{\lambda}\succeq_{\mathcal{K}^{\circledast}}\mathbf{0}, \boldsymbol{\lambda}\neq\mathbf{0}.$
- Since $\mathcal{K}^{\circledast} = \mathcal{K}$, the above properties hold if \mathcal{K} and $\mathcal{K}^{\circledast}$ are swapped.

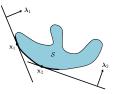
Minimum and Minimal Elements Via Dual Inequalities

The minimum element and minimal elements of a set S with respect to the generalized inequality $\preceq_{\mathcal{K}}$ can be elegantly expressed in terms of the dual inequality $\preceq_{\mathcal{K}}_{\otimes}$.

Minimum element:

A point x is the minimum element of S if and only if for all $\lambda \succ_{\mathcal{K}^{\circledast}} 0$, x is the unique minimizer of $\lambda^T z$ over S.

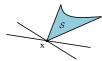
If x minimizes $\lambda^T z$ over S for some $\lambda \succ_{K^{\otimes}} 0$, then x is minimal.



If x is a minimal element of a convex set S, then there exists a nonzero $\lambda \succeq_{\mathcal{K}^{\circledast}} 0$ such that x minimizes $\lambda^T z$ over S.

Andre Tkacenko (JPL)

EE/ACM 150 - Lecture 6

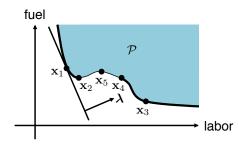


Pareto Optimal/Efficient Production Frontier

To illustrate the concepts of minimal elements and the interpretation with respect to dual generalized inequalities, we consider its use in determining efficient production methods for a particular good. We consider a product which requires n resources (such as labor, fuel, electricity, etc.) to manufacture. This leads to the following:

- Different production methods require different amounts of resources $\mathbf{x} \in \mathbb{R}^n$.
- The production set \mathcal{P} is the set of all resource vectors \mathbf{x} for all production methods.
- Those resource vectors x that are minimal with respect to Rⁿ₊ and said to be Pareto optimal or Pareto efficient.

Example:



Here, x_1 , x_2 , and x_3 are efficient, whereas x_4 and x_5 are not.