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Relevant Sets in Convex Optimization Affine Sets

Affine Sets: Definition and Properties
A set C ∈ Rn is affine if the line between any two distinct points in C is also in C. In other words, if
x1,x2 ∈ C, then all points x of the form

x = θx + (1− θ)x2 = x2 + θ (x1 − x2) , are in C for all θ ∈ R .

x

x1

x2 θ < 0

θ = 0

0 < θ < 1

θ = 1
θ > 1

This can be generalized to more than two points. Specifically, if x1, . . . ,xk ∈ C, then C is affine if
and only if any affine combination x of the points x1, . . . ,xk is also in C, where x is given by

x = θ1x1 + · · ·+ θkxk , where θ1 + · · ·+ θk = 1 .

Properties:
Any affine set C is simply a linear subspace V shifted spatially by any offset point x0 ∈ C,
i.e., can be represented by

C = V + x0 = {v + x0 : v ∈ V} .

A set C ∈ Rn is affine if and only if it can be expressed as the solution set of a system of
linear equations, i.e., can be represented in the form

C = {x : Ax = b} , where A ∈ Rm×n and b ∈ Rm.
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Relevant Sets in Convex Optimization Affine Sets

Affine Hull, Affine Dimension, and Relative Interior
Affine Hull:
The affine hull of any set C ⊆ Rn is the set of all affine combinations of points in C and
denoted aff(C). In other words, we have

aff(C) , {θ1x1 + · · ·+ θkxk : x1, . . . ,xk ∈ C , θ1 + · · ·+ θk = 1} .
The affine hull of C is the smallest affine set that contains C. Namely, if S is any affine
set with C ⊆ S, then aff(C) ⊆ S.
Affine Dimension:
The affine dimension of a set C is the dimension of its affine hull. For example, the
affine hull of a set of coplanar points in R3 is a plane with affine dimension 2.
Relative Interior:
If the affine dimension of a set C ⊆ Rn is less than n, then C lies in an affine set
aff(C) 6= Rn. In this case, the interior of C relative to Rn is empty, but the interior
relative to the affine hull, defined as

relint(C) , {x ∈ C : B(x, r) ∩ aff(C) ⊆ C for some r > 0} ,
is in general not empty. Here, B(x, r) , {y : ||y − x|| ≤ r} is a closed ball of radius r
centered at x (corresponding to some norm ||·||). From this we can define a relative
boundary of a set C as

relbd(C) , cl(C) \ relint(C) .
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Relevant Sets in Convex Optimization Convex Sets

Convex Sets: Definitions and Examples
A set C ∈ Rn is convex if the line segment between any two distinct points in C is also in C. In
other words, if x1,x2 ∈ C, then all points x of the form

x = θx + (1− θ)x2 = x2 + θ (x1 − x2) , are in C for all θ with 0 ≤ θ ≤ 1 .

x

x1

x2

θ = 0

0 < θ < 1

θ = 1

This can be generalized to more than two points. Specifically, if x1, . . . ,xk ∈ C, then C is convex
if and only if any convex combination x of the points x1, . . . ,xk is also in C, where x is given by

x = θ1x1 + · · ·+ θkxk , where θ1 + · · ·+ θk = 1 and θ` ≥ 0 for ` = 1, . . . , k .

In the most general form, if p : Rn → R is some function which satisfies p(x) ≥ 0 for all x ∈ C
and
´
C p(x) dx = 1 (i.e., p(x) is a probability density function (pdf) for x ∈ C), then C is convex if

and only if ˆ
C
p(x)x dx = E[x] ∈ C .

Examples:

convex! nonconvex! nonconvex!
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Relevant Sets in Convex Optimization Convex Sets

Convex Hull: Definition and Examples

The convex hull of any set C ⊆ Rn is the set of all convex combinations of
points in C and denoted conv(C). In other words, we have

conv(C) , {θ1x1 + · · ·+ θkxk : x1, . . . ,xk ∈ C , θ` ≥ 0 , ` = 1, . . . , k , θ1 + · · ·+ θk = 1} .

The convex hull of C is the smallest convex set that contains C. Namely, if S is
any convex set with C ⊆ S, then conv(C) ⊆ S.

Examples:
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Relevant Sets in Convex Optimization Cones

Cones: Definitions and Examples

A set C is a cone if, for every x ∈ C and θ ≥ 0, we have θx ∈ C.
Similarly, a set C is said to be a convex cone if it is convex and a cone,
meaning that for any x1,x2 ∈ C and θ1, θ2 ≥ 0, we have

θ1x1 + θ2x2 ∈ C .
This can be generalized to more than two points. Specifically, if
x1, . . . ,xk ∈ C, then C is a convex cone if and only if any conic
combination x of the points x1, . . . ,xk is also in C, where x is given by

x = θ1x1 + · · ·+ θkxk , where θ` ≥ 0 for ` = 1, . . . , k .

Examples:

0 0

x1 x1

x2 x2

nonconvex cone! convex cone!
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Relevant Sets in Convex Optimization Cones

Conic Hull: Definition and Examples

The conic hull of any set C ⊆ Rn is the set of all conic combinations of
points in C and denoted conc(C). In other words, we have

conc(C) , {θ1x1 + · · ·+ θkxk : x1, . . . ,xk ∈ C , θ` ≥ 0 , ` = 1, . . . , k} .
The conic hull of C is the smallest convex cone that contains C.
Namely, if S is any convex cone with C ⊆ S, then conc(C) ⊆ S.

Examples:

0 0
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Important Example Sets

Hyperplanes and Halfspaces
A hyperplane is a set of the form {

x : aTx = b
}
,

where a ∈ Rn with a 6= 0 and b ∈ R. Here, a represents the normal vector to the hyperplane and
b determines the offset of the hyperplane from the origin. Equivalently, the hyperplane can be
expressed in the form {

x : aT (x− x0) = 0
}
,

where x0 is any point in the hyperplane (i.e., any point for which aTx0 = b). This can be
expressed in turn as {

x0 + a⊥ : a⊥ =
{
v : aTv = 0

}}
.

In other words, the hyperplane is the orthogonal complement of a offset by a vector x0.
Any hyperplane divides Rn into two halfspaces. A halfspace is a set of the form{

x : aTx ≤ b
}

(closed) ,
{
x : aTx < b

}
(open) .

Hyperplanes are affine and convex, whereas halfspaces are only convex.

x0 x0x x

a a

aTx = b aTx ≤ b

aTx ≥ b
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Important Example Sets

Euclidean Balls and Ellipsoids
A Euclidean ball in Rn with center at xc ∈ Rn and radius r > 0 is defined as

B(xc, r) ,
{
x : ||x− xc||2 ≤ r

}
=
{
x : (x− xc)T (x− xc) ≤ r2

}
.

It can be equivalently represented as

B(xc, r) =
{
xc + ru : ||u||2 ≤ 1

}
.

An ellipsoid is a set of the form

E ,
{
x : (x− xc)T P−1 (x− xc) ≤ 1

}
,

where P ∈ Sn++ (i.e., P � 0). Here, xc denotes the center of the ellipsoid E and the lengths of
the semi-axes are

√
λk, where λk are the eigenvalues of P. Another representation is given by

E =
{
xc + Au : ||u||2 ≤ 1

}
,

where A is square and nonsingular. If we allow A to be singular, we obtain a degenerate
ellipsoid for which dim(aff(E)) = rank(A).

xc

√
λ1 √

λ2

Euclidean balls, ellipsoids, and degenerate ellipsoids are all convex.

Andre Tkacenko (JPL) EE/ACM 150 - Lecture 6 April 19, 2012 10 / 25



Important Example Sets

Norm Balls and Norm Cones
A norm ball for the norm ||·|| with center xc and radius r > 0 is a set B(xc, r) of the
form

B(xc, r) = {x : ||x− xc|| ≤ r} .
By exploiting the homogeneity property and triangle inequality of norms, it can be
easily shown that B(xc, r) is always convex.
For a norm ||·|| on Rn, the norm cone associated with ||·|| is the set

C , {(x, t) : ||x|| ≤ t} ⊆ Rn+1 .

Any norm cone is a convex cone. A norm cone based off of the Euclidean norm is
called the second-order cone and is shown below for R3.
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Important Example Sets

Polyhedra
A polyhedron P ∈ Rn is the solution set of a finite number of linear inequalities and equalities of
the form

P = {x : Ax � b,Cx = d} ,
where A ∈ Rm×n, b ∈ Rm, C ∈ Rp×n, and d ∈ Rp. Here, � denotes componentwise
inequality, i.e., u � v means [u]k ≤ [v]k for all k. As any polyhedron is the intersection of a finite
number of halfspaces and hyperplanes, it is convex.

a1
a2

a3

a4

a5

P

A special type of polyhedra are simplexes. If v0, . . . ,vk ∈ Rn are affinely independent, meaning
v1 − v0, . . . ,vk − v0 are linearly independent, the simplex S determined be them is given by

S , conv({v0, . . . ,vk}) =
{
θ0v0 + · · ·+ θkvk : θ � 0,1T θ = 1

}
.

The most common simplex is the probability simplex given by

Sprob =
{
x : x � 0,1Tx = 1

}
.
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Important Example Sets

Positive Semidefinite Cone
One important cone is the positive semidefinite cone Sn

+ defined as

Sn
+ , {X ∈ Sn : X � 0} .

This can be easily shown to be a convex cone. To do this, suppose θ1, θ2 ≥ 0 and
A,B ∈ Sn

+. Then we have, for any x ∈ Rn,

xT (θ1A + θ2B)x = θ1x
TAx + θ2x

TBx ≥ 0 ,

and so the conic combination (θ1A + θ2B) ∈ Sn
+.

Example: For S2
+, we have

X =

[
x y

y z

]
∈ S2

+ ⇐⇒ x ≥ 0 , z ≥ 0 , xz ≥ y2 .

The boundary of this cone is shown below as plotted in R3.
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Operations That Preserve Convexity

The Calculus of Convex Sets

In most cases, determining whether or not a set C is convex can be quite
cumbersome if we try to do so using the definition:

x1,x2 ∈ C =⇒ θx1 + (1− θ)x2 ∈ C , 0 ≤ θ ≤ 1 .

Typically, what is done in a practical sense is to see if C can be represented in
terms of simple convex sets (such as hyperplanes, halfspaces, norm balls,
etc.) using operations that preserve convexity. These operations lead to a
calculus of convex sets, which can be used, in many cases, to easily
determine whether or not a given set is convex.

Convexity Preserving Operations:

intersection

affine functions

perspective and linear-fractional functions
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Operations That Preserve Convexity

Intersection
The intersection of any number (finite or infinite) of convex sets is convex. Mathematically, if I is
any index set with finite or infinite cardinality, and Si is convex for every i ∈ I, then the set
S ,

⋂
i∈I Si is convex.

Examples:
Any polyhedron is the intersection of a finite number of halfspaces and hyperplanes and as
such is convex.
Consider the set

S ,
{
x ∈ Rm : |p(t)| ≤ 1 for |t| ≤

π

3

}
, where p(t) =

m∑
k=1

xk cos(kt) .

This set can be expressed as the intersection of an infinite number of slabs:

S =
⋂
|t|≤π

3

St , where St =
{
x : −1 ≤

[
cos(t) · · · cos(mt)

]T
x ≤ 1

}
.

For m = 2, we have the following plots.
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Operations That Preserve Convexity

Affine Functions
Suppose f : Rn → Rm is an affine function, i.e., it is of the form f(x) = Ax + b, where
A ∈ Rm×n and b ∈ Rm. Then, we have the following:

The image of a convex set under f is convex:
S ⊆ Rn is convex =⇒ f(S) , {f(x) : x ∈ S} is convex .

The inverse image of a convex set under f is convex:
C ⊆ Rm is convex =⇒ f−1(C) , {x ∈ Rn : f(x) ∈ C} is convex .

Examples:
Scaling and translation:
If S is convex, then so are αS , {αx : x ∈ S} and S + a , {x + a : x ∈ S}.
Projection:
The projection of a convex set onto some of its coordinates is convex. Namely if
S ⊆ Rm×Rn is convex, then T , {x1 ∈ Rm : (x1,x2) ∈ S for some x2 ∈ Rn} is convex.
Solution set to a linear matrix inequality (LMI):
An LMI is of the following form

A(x) = x1A1 + · · ·+ xnAn � B ,

where Ak,B ∈ Sm. The solution set of the LMI, namely {x : A(x) � B}, is convex as it is
the inverse image of the positive semidefinite cone Sm+ under the affine function
f : Rn → Sm given by f(x) = B−A(x).
Hyperbolic cone:
The set

{
x : xTPx ≤

(
cTx

)2
, cTx ≥ 0

}
, where P ∈ Sn+ and c ∈ Rn is convex as it is

the inverse image of the second-order cone under the affine function f(x) =
(
P

1
2 x, cTx

)
.
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Operations That Preserve Convexity

Perspective and Linear-Fractional Functions

The Perspective Function:
The perspective function scales or normalizes a given vector so that its last
component is unity and then drops the last component. More specifically, the
perspective function P : Rn+1 → Rn is defined as

P(x, t) =
x

t
, dom(P) = {(x, t) : x ∈ Rn, t > 0} .

It can be shown that the images and inverse images of convex sets under the
perspective function are convex. The intuition is that a convex object, when viewed
through a pin-hole camera, yields a convex image.

Linear-Fractional Functions:
A linear-fractional function is formed by the composition of the perspective function
with an affine function. More specifically, a linear-fractional function f : Rn → Rm is of
the form

f(x) =
Ax + b

cTx + d
, dom(f) =

{
x : cTx + d > 0

}
.

Here, A ∈ Rm×n, b ∈ Rm, c ∈ Rn, and d ∈ R. Images and inverse images of convex
sets under linear-fractional functions are convex.
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Generalized Inequalities Proper Cones

Proper Cones: Definition and Examples
A cone K ⊆ Rn is a proper cone if the following hold true:

K is convex and closed (meaning it contains its boundary).

K is solid (meaning it has a nonempty interior).

K is pointed (meaning it contains no line).

Examples:

Nonnegative orthant:
The set of vectors in Rn whose components are nonnegative, given by

K = Rn
+ = {x ∈ Rn : xk ≥ 0 , k = 1, . . . , n} ,

is a proper cone.

Positive semidefinite cone:
The set K = Sn

+ is a proper cone.

Nonnegative polynomials on [0, 1]:
The set defined as

K ,
{
c ∈ Rn : c1 + c2t+ c3t

2 + · · ·+ cnt
n ≥ 0 for t ∈ [0, 1]

}
,

is a proper cone.
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Generalized Inequalities Proper Cones

Proper Cones and Generalized Inequalities
A proper cone can be used to define a generalized inequality, which is a partial
ordering similar to the standard ordering on R. Specifically, for a proper cone K,
nonstrict and strict generalized inequalities �K and ≺K, respectively, are defined as
follows:

x �K y⇐⇒ y − x ∈ K , x ≺K y⇐⇒ y − x ∈ int(K) .

Examples:
Componentwise inequality (K = Rn

+):

x �Rn+ y⇐⇒ xk ≤ yk , k = 1, . . . , n, .

Matrix inequality (K = Sn
+):

X �Sn+ Y ⇐⇒ Y −X is positive semidefinite .

These two types are the so common that the subscripts is typically dropped in �K.
Properties:

If x �K y and u �K v, then x + u �K y + v.
If x �K y and y �K z, then x �K z.
If x �K y and y �K x, then x = y.
If x ≺K y and u �K v, then x + u ≺K y + v.
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Generalized Inequalities Minimum and Minimal Elements

Minimum/Minimal Elements: Definition and Examples
The generalized inequality �K is not a linear ordering in general. Namely, we can have both
x 6�K y and y 6�K x, so that x and y are not comparable. However, we can define the notion of
the minimum element and a minimal element.
Minimum element:
For some set S, we say that x ∈ S is the minimum element of S with respect to �K if

y ∈ S =⇒ x �K y .

In other words, x is the minimum element if it beats all other points in S with respect to �K.
Minimal element:
For some set S, we say that x ∈ S is a minimal element of S with respect to �K if

y ∈ S , y �K x =⇒ y = x .

In other words, x is a minimal element if no other points in S beat it with respect to �K.
Example:

x1

x2S1

S2

the minimum element! a minimal element!
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Separating and Supporting Hyperplanes

Separating Hyperplane Theorem
If C and D are disjoint convex sets, then there exists an a 6= 0, b such that

aTx ≤ b for x ∈ C , aTx ≥ b for x ∈ D .

In other words, the hyperplane H ,
{
x : aTx = b

}
separates C and D.

C

D

a

aTx ≥ b

aTx ≤ b

The separating hyperplane theorem can be used to develop a theorem of alternatives
for strict linear inequalities. Specifically, if A ∈ Rm×n and b ∈ Rm represent some
data, then exactly one of the following systems is solvable.

Ax ≺ b, where x ∈ Rn.
λ 6= 0, λ � 0, ATλ = 0, λTb ≤ 0, where λ ∈ Rm.
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Separating and Supporting Hyperplanes

Supporting Hyperplane Theorem

A supporting hyperplane H to a set C at a boundary point x0 is one for
which

H =
{
x : aTx = aTx0

}
,

where a 6= 0 and aTx ≤ aTx0 for all x ∈ C.

a

x0

C

The supporting hyperplane theorem states that if C is convex, then
there exists a supporting hyperplane at every boundary point of C.

Andre Tkacenko (JPL) EE/ACM 150 - Lecture 6 April 19, 2012 22 / 25



Dual Cones Role in Generalized Inequalities

Dual Cones and Generalized Inequalities
The dual cone K� of a cone K is defined as follows:

K� , {y : Re[〈x,y〉] ≥ 0 for all x ∈ K} .

The dual cone is always a convex cone, even if the primal cone K is not. If K is a closed, convex
cone, then K�� = K.

Examples:
K = Rn

+, K� = Rn
+.

K = Sn+, K� = Sn+.

K =
{

(x, t) : ||x||2 ≤ t
}

, K� =
{

(x, t) : ||x||2 ≤ t
}

.

K =
{

(x, t) : ||x||1 ≤ t
}

, K� =
{

(x, t) : ||x||∞ ≤ t
}

.

K = {(x, t) : ||x|| ≤ t}, K� =
{

(x, t) : ||x||� ≤ t
}

.

The first three examples are self-dual cones and are the most commonly encountered.

If K is a proper cone, then so is K� and thus they both induce generalized inequalities �K and
�K� , respectively.

Properties relating a generalized inequality to its dual:
x �K y if and only if Re[〈x,λ〉] ≤ Re[〈y,λ〉] for all λ �K� 0.
x ≺K y if and only if Re[〈x,λ〉] < Re[〈y,λ〉] for all λ �K� 0, λ 6= 0.
Since K�� = K, the above properties hold if K and K� are swapped.
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Dual Cones Dual Characterization of Minimum and Minimal Elements

Minimum and Minimal Elements Via Dual Inequalities
The minimum element and minimal elements of a set S with respect to the generalized inequality
�K can be elegantly expressed in terms of the dual inequality �K� .

Minimum element:
A point x is the minimum element of S if and only if for all λ �K� 0, x is the unique minimizer of
λT z over S.

S

x

Minimal element:
If x minimizes λT z over S for some λ �K� 0, then x is minimal.

x1

x2

S

λ1

λ2

If x is a minimal element of a convex set S, then there exists a nonzero λ �K� 0 such that
x minimizes λT z over S.
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Dual Cones Dual Characterization of Minimum and Minimal Elements

Pareto Optimal/Efficient Production Frontier
To illustrate the concepts of minimal elements and the interpretation with respect to dual
generalized inequalities, we consider its use in determining efficient production methods for a
particular good. We consider a product which requires n resources (such as labor, fuel,
electricity, etc.) to manufacture. This leads to the following:

Different production methods require different amounts of resources x ∈ Rn.

The production set P is the set of all resource vectors x for all production methods.

Those resource vectors x that are minimal with respect to Rn
+ and said to be Pareto

optimal or Pareto efficient.

Example:

labor!

fuel!

λ

P
x1

x2

x3

x4
x5

Here, x1, x2, and x3 are efficient, whereas x4 and x5 are not.
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