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Convex Functions: Basic Properties and Examples Definition and Extensions

Convex Functions: Definition
A function f : Rn → R is said to be convex if dom(f) is a convex set and

f(θx + (1− θ) y) ≤ θf(x) + (1− θ) f(y) ,

for all x,y ∈ dom(f) and 0 ≤ θ ≤ 1. Geometrically, this means that the chord or line
segment between any two points (x, f(x)) and (y, f(y)) lies above the graph of f .

(x, f(x))

(y, f(y))

The function f from above is said to be strictly convex if dom(f) is convex and

f(θx + (1− θ) y) < θf(x) + (1− θ) f(y) ,

for all x,y ∈ dom(f) such that x 6= y and 0 < θ < 1.
The function f is concave if −f is convex. Similarly, f is strictly concave if −f is
strictly convex.
The function f is affine if and only if f is both convex and concave, meaning we
have equality in the top expression.
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Convex Functions: Basic Properties and Examples Definition and Extensions

Convex/Concave Functions: Examples on R

Convex Functions:

Affine: ax+ b on R, for any a, b ∈ R.

Exponential: eax, for any a ∈ R.

Powers: xα on R++, for α ≥ 1 or α ≤ 0.

Powers of absolute value: |x|p on R, for p ≥ 1.

Negative entropy: x log x on R++.
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Concave Functions:

Affine: ax+ b on R, for any a, b ∈ R.

Logarithm: log x on R++.

Powers: xα on R++, for 0 ≤ α ≤ 1.
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Convex Functions: Basic Properties and Examples Definition and Extensions

Convex/Concave Functions: Examples on Rn & Rm×n

The notion of convexity/concavity easily generalizes to functions over matrices. For example, a
function f : Rm×n → R is convex if dom(f) is a convex set and

f(θX+ (1− θ)Y) ≤ θf(X) + (1− θ) f(Y) ,

for all X,Y ∈ dom(f) and 0 ≤ θ ≤ 1.

All affine functions are both convex and concave. Also, all norms are convex.

Examples on Rn:
Affine function:

f(x) = aTx+ b .

`p-norms:

||x||p =

(
n∑
k=1

|xk|p
)1/p

for p ≥ 1 ; ||x||∞ = max
k=1,...,n

|xk| .

Examples on Rm×n:
Affine function:

f(X) = tr
(
ATX

)
+ b =

m∑
k=1

n∑
`=1

Ak,`Xk,` + b .

Spectral (maximum singular value) norm:

f(X) = ||X||2 = σmax(X) =
√
λmax(XTX) .
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Convex Functions: Basic Properties and Examples Definition and Extensions

Restriction of a Convex Function to a Line
It can be shown that f : Rn → R is convex if and only if the function g : R→ R given by

g(t) , f(x + tv) , dom(g) = {t : x + tv ∈ dom(f)} ,
is convex (in t) for any x ∈ dom(f), v ∈ Rn.

Similarly, f : Rm×n → R is convex if and only if the function g(t) , f(X + tV), with
dom(g) = {t : X + tV ∈ dom(f)} is convex in t for any X ∈ dom(f), V ∈ Rm×n.

Hence, we can check for the convexity of f by checking the convexity of functions of
one variable, namely {g(t)}.
Example:

Consider f : Sn → R given by f(X) = log(det(X)), with dom(f) = Sn++. Then,
we have

g(t) = log(det(X + tV)) = log(det(X)) + log
(

det
(

I + tX−1/2VX−1/2︸ ︷︷ ︸
QΛQT

) )
,

= log(det(X)) +

n∑
k=1

log(1 + tλk) ,

where λk are the eigenvalues of X−1/2VX−1/2. As g is concave in t (for any
choice of X � 0 and V ∈ Sn), it follows that f is concave.
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Convex Functions: Basic Properties and Examples Definition and Extensions

Extended-Value Extensions
The extended-value extension f̃ of a function f is defined as

f̃(x) ,

{
f(x) , x ∈ dom(f)

∞ , x 6∈ dom(f)
.

This function f̃ extends f to be defined on all Rn (or Rm×n when applicable)
and takes on values in R ∪ {∞}.
It can often be used to simplify notation. For example, the condition

0 ≤ θ ≤ 1 =⇒ f̃(θx+ (1− θ)y) ≤ θf̃(x) + (1− θ) f̃(y) , (1)

when viewed as an inequality in R ∪ {∞}, is equivalent to the two conditions:

dom(f) is convex,

for x,y ∈ dom(f),

0 ≤ θ ≤ 1 =⇒ f(θx+ (1− θ)y) ≤ θf(x) + (1− θ) f(y) .

In other words, f is convex if and only if (1) holds.
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Convex Functions: Basic Properties and Examples Definition and Extensions

Jensen’s Inequality
The basic definition of convexity can be used to extend it to the following form known
as Jensen’s inequality.

Jensen’s Inequality:
Suppose z is a random variable such that z ∈ dom(f) with probability one. Then, f is
convex if and only if dom(f) is a convex set and

f(E[z]) ≤ E[f(z)] ,

for any such z as described above.

In other words, for any p(z) ≥ 0 on S ⊆ dom(f) with
´
S p(z) dz = 1, we have that f is

convex if and only if dom(f) is a convex set and

f

(ˆ
S

z p(z) dz

)
≤
ˆ
S
f(z) p(z) dz .

The basic inequality can be recovered by setting p(z) = θδ(z− x) + (1− θ) δ(z− y),
where δ(z) is the Dirac delta function. Using Jensen’s inequality, we can also extend
the basic inequality to include convex combinations of an arbitrary number of points:

f(θ1x1 + · · ·+ θkxk) ≤ θ1f(x1) + · · ·+ θkf(xk) ,

where x1, . . . ,xk ∈ dom(f), θ1, . . . , θk ≥ 0, and θ1 + · · ·+ θk = 1.
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Convex Functions: Basic Properties and Examples Conditions for Differentiable Functions

First-Order Condition for Convexity
Suppose that f : Rn → R is differentiable, meaning that dom(f) is open and the
gradient vector

∇f(x) ,

[
∂f(x)

∂x1
· · · ∂f(x)

∂xn

]T
,

exists at each x ∈ dom(f). Then we have the following necessary and sufficient
first-order condition for convexity of f .

First-Order Condition for Convexity of a Differentiable Function

A differentiable function f whose domain is a convex set is convex if and only if

f(y) ≥ f(x) + (∇f(x))T (y − x) ,

for all x,y ∈ dom(f).

In other words, the first-order Taylor approximation of f is a global underestimator of f .

(x, f(x))

f(y)

f(x) + (∇f(x))
T
(y − x)
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Convex Functions: Basic Properties and Examples Conditions for Differentiable Functions

Second-Order Condition for Convexity
Suppose that f : Rn → R is twice differentiable, meaning that dom(f) is open and the
Hessian matrix ∇2f(x) ∈ Sn given by[

∇2f(x)
]
k,`

,
∂2f(x)

∂xk∂x`
, k, ` = 1, . . . , n ,

exists at each x ∈ dom(f). Then we have the following necessary and sufficient
second-order conditions for convexity and strict convexity of f .

Second-Order Conditions for Convexity of a Twice Differentiable Function

If f is a twice differentiable function whose domain is a convex set, then

f is convex if and only if

∇2f(x) � 0 , for all x ∈ dom(f) .

f is strictly convex if and only if

∇2f(x) � 0 , for all x ∈ dom(f) .

In other words, the function f is convex (strictly convex) if and only if the Hessian
matrix∇2f(x) is positive semidefinite (positive definite) everywhere in the domain of f .
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Convex Functions: Basic Properties and Examples Conditions for Differentiable Functions

Examples of Differentiable Convex/Concave Functions

Quadratic function: f(x) = (1/2) xTPx + qTx + r (with P ∈ Sn).

∇f(x) = Px + q , ∇2f(x) = P .

This function is convex if and only if P � 0.
Least-squares objective: f(x) = ||Ax− b||22.

∇f(x) = 2AT (Ax− b) , ∇2f(x) = 2ATA .

This function is convex for any A.
Quadratic-over-linear: f(x, y) = x2/y.

∇f(x, y) =
1

y2

[
2xy

−x2

]
, ∇2f(x, y) =

2

y3

[
y

−x

][
y

−x

]T
.

This function is convex for y > 0.
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Convex Functions: Basic Properties and Examples Conditions for Differentiable Functions

Examples of Differentiable Convex/Concave Functions

Log-sum-exp: The function

f(x) = log

(
n∑
k=1

exk

)
,

on Rn is convex. For this function, we have

∇2f(x) =
1

1T z
diag(z)− 1

(1T z)2
zzT , where zk = exk .

To show that ∇2f(x) � 0, we must verify that vT∇2f(x) v ≥ 0 for all v, i.e.,

vT∇2f(x) v =

(∑
k zkvk

) (∑
k zk

)
−
(∑

k vkzk
)2(∑

k zk
)2 ≥ 0 .

But this follows from the Cauchy-Schwarz inequality
(
aTb

)2 ≤ ||a||22 ||b||22, with
ak = vk

√
zk and bk =

√
zk.

Geometric mean: The function

f(x) =

(
n∏
k=1

xk

)1/n

,

on Rn++ is concave. The proof is similar to that for the log-sum-exp function.
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Convex Functions: Basic Properties and Examples Connection between Convex Functions and Convex Sets

Epigraph and Sublevel Sets
The link between convex functions and convex sets comes about as a result of the
epigraph of a function. This set consists of sublevel sets of a given function.
Sublevel Sets:
The α-sublevel set of a function f : Rn → R is defined as

Cα , {x ∈ dom(f) : f(x) ≤ α} .

The sublevel sets of convex functions are convex, however the converse is false.
Epigraph:
The epigraph of a function f : Rn → R is defined as

epi(f) ,
{

(x, t) ∈ Rn+1 : x ∈ dom(f) , f(x) ≤ t
}
.

It turns out that f is a convex function if and only if epi(f) is a convex set.

f

epi(f )
epi(f)

(x, f(x))

(∇f(x) ,−1)

For a differentiable convex function f , the vector (∇f(x) ,−1) defines a supporting
hyperplane to the epigraph of f at x.
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Operations that Preserve Convexity

Practical Methods for Establishing Convexity

To establish the convexity of a given function f , the following methods
are typically used.

1 Verify the definition. (This is often simplified by restricting the
function to a line.)

2 For twice differentiable functions, show that the Hessian matrix is
positive semidefinite, i.e., ∇2f(x) � 0.

3 Show that f is obtained from simple convex functions by
operations that preserve convexity. (In other words, apply the
calculus of convex functions.) Such operations include the
following:

nonnegative weighted sum
composition with affine function
pointwise maximum and supremum
composition
minimization
perspective
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Operations that Preserve Convexity

Nonnegative Weighted Sum and Affine Composition
Nonnegative Multiple:
If f is convex, then so is αf for α ≥ 0.

Summation:
If f1 and f2 are convex, then so is f1 + f2. This extends to infinite sums and
integrals.

Composition with Affine Function:
If f is convex, then so is f(Ax+ b).

Examples:

Log barrier for linear inequalities:

f(x) = −
m∑

k=1

log
(
bk − aTk x

)
, dom(f) =

{
x : aTk x < bk , k = 1, . . . ,m

}
.

Norm of an affine function:

f(x) = ||Ax+ b|| .
Note that this is valid for any norm.
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Operations that Preserve Convexity

Pointwise Maximum
If f1, . . . , fm are convex functions, then

f(x) = max {f1(x) , . . . , fm(x)}

is convex.

Examples:
Piecewise-linear function:

f(x) = max
k=1,...,m

(
aTk x + bk

)
is convex.
Sum of r largest components of x ∈ Rn:

f(x) = x[1] + · · ·+ x[r]

is convex, where x[k] denotes the k-th largest component of x.
The proof of this can be seen by expressing f as

f(x) = max {xi1 + xi2 + · · ·+ xir : 1 ≤ ir < i2 < · · · < ir ≤ n} .

In other words, f(x) is the maximum of all possible sums of r different
components of x. As f is the pointwise maximum of C(n, r) = n!/ (r! (n− r)!)
linear functions, it is convex.
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Operations that Preserve Convexity

Pointwise Supremum
If f(x,y) is convex in x for each y ∈ A, then

g(x) = sup
y∈A

f(x,y)

is convex. Note that A need not be a convex set.

Examples:

Support function of a set C:
SC(x) = sup

{
xTy : y ∈ C

}
is convex.

Distance to the farthest point in a set C:
f(x) = sup

y∈C
||x− y||

is convex for any norm ||·||.
Maximum eigenvalue of a symmetric matrix:

For X ∈ Sn, λmax(X) = sup
||y||2=1

yTXy

is convex.
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Operations that Preserve Convexity

Composition with Scalar Functions
The composition f = h ◦ g of g : Rn → R and h : R→ R is given by

f(x) = h(g(x)) .

We have the following:

f is convex if

{
g is convex, h is convex, and h̃ is nondecreasing

g is concave, h is convex, and h̃ is nonincreasing
.

Here, h̃ is the extended-value extension of h. Note that monotonicity of h̃
must hold on all of R.

Proof: (for n = 1 and differentiable g, h)
Note that

f ′′(x) = h′′(g(x)) (g′(x))
2
+ h′(g(x)) g′′(x) .

From this, the conditions for the convexity of f are clear.

Examples:

eg(x) is convex if g is convex.

1/g(x) is convex if g is concave and positive.
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Operations that Preserve Convexity

Vector Composition
The composition f = h ◦ g of g : Rn → Rk and h : Rk → R is given by

f(x) = h(g(x)) = h(g1(x) , . . . , gk(x)) .

We have the following:

f is convex if

{
gi is convex, h is convex, and h̃ is nondecreasing in each argument

gi is concave, h is convex, and h̃ is nonincreasing in each argument
.

As before, h̃ is the extended-value extension of h. Note that monotonicity of h̃ must
hold in each argument on all of R.

Proof: (for n = 1 and differentiable g, h)
Note that

f ′′(x) =
(
g′(x)

)T (∇2h(g(x))
) (

g′(x)
)

+ (∇h(g(x)))T
(
g′′(x)

)
.

From this, the conditions for the convexity of f are clear.

Examples:∑m
i=1 log gi(x) is concave if gi is concave and positive for every i.

log
(∑m

i=1 exp gi(x)
)

is convex if gi is convex for every i.
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Operations that Preserve Convexity

Minimization
If f(x,y) is convex in (x,y) and C is a convex set, then

g(x) = inf
y∈C

f(x,y)

is convex. Note that C need be a convex set.

Examples:

f(x,y) = xTAx+ 2xTBy + yTCy with[
A B

BT C

]
� 0 .

Minimizing over y gives
g(x) = inf

y
f(x,y) = xT

(
A−BC#BT

)
x .

Since g is convex, the Schur complement is positive semidefinite, i.e.,(
A−BC#BT

)
� 0.

Distance to a set: The distance between a point x and set S is defined as
dist(x,S) , inf

y∈S
||x− y|| ,

and is convex if S is a convex set.
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Operations that Preserve Convexity

Perspective
The perspective of a function f : Rn → R is the function g : Rn × R→ R given by

g(x, t) , tf(x/t) , dom(g) = {(x, t) : x/t ∈ dom(f) , t > 0} .
It can be shown that g is convex if f is convex.

Examples:
Perspective of Euclidean norm squared:
The function f(x) = xTx is convex, and so g(x, t) = xTx/t is convex for t > 0.
Relative entropy:
The negative logarithm f(x) = − log x is convex. Thus, the relative entropy
function g(x, t) = t log t− t log x is convex on R2

++. This function plays a role in
the Kullback-Leibler divergence between u,v ∈ Rn++, given by

Dkl(u,v) ,
n∑
k=1

(uk log(uk/vk)− uk + vk) .

It is convex, since it is the relative entropy plus a linear function of (u,v).
Affine function of perspective of affine function:
If f is convex, then

g(x) =
(
cTx + d

)
f
(

(Ax + b) /
(
cTx + d

))
is convex on

{
x : cTx + d > 0 , (Ax + b) /

(
cTx + d

)
∈ dom(f)

}
.

Andre Tkacenko (JPL) EE/ACM 150 - Lecture 7 April 24, 2012 21 / 32



The Convex Conjugate Function

Convex Conjugate: Definition and Properties
The convex conjugate or Legendre-Fenchel transformation of a function f is denoted
f� and defined as

f�(y) , sup
x∈dom(f)

{Re[〈x,y〉]− f(x)} .

(0,−f∗(y))

f(x) xy

x

Properties:
The conjugate f� is always convex, even if f is not.
The conjugate of the conjugate always satisfies f�� ≤ f for any f .
The conjugate of the conjugate satisfies f�� = f if and only if f is a proper,
lower semi-continuous, convex function or f is identically ±∞.
The conjugate f� will play a role in duality when we come to the Lagrange dual
problem.
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The Convex Conjugate Function

Convex Conjugate: Examples
Negative logarithm: f(x) = − log x.

f�(y) = sup
x>0
{xy + log x} ,

=

{
−1− log(−y) , y < 0

∞ , y ≥ 0
.

Strictly convex quadratic: f(x) = (1/2) xTQx with Q ∈ Sn++.

f�(y) = sup
x

{
yTx− (1/2) xTQx

}
= (1/2) yTQ−1y .

Log-determinant: f(X) = log det X−1 on Sn++.

f�(Y) = sup
X�0
{tr(YX) + log det X} ,

= log det
(
(−Y)−1)− n , with dom

(
f�) = −Sn++ .

Indicator function: The indicator function IC(x) of a set C is defined to be 0 if
x ∈ C and∞ if x 6∈ C. Its convex conjugate is given by

I�
C (y) = sup

x∈C
yTx ,

which is the support function of the set C.
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Quasiconvex Functions Definition and Examples

Quasiconvex Functions: Definition

A function f : Rn → R is quasiconvex if dom(f) is convex and the
sublevel sets

Sα , {x ∈ dom(f) : f(x) ≤ α}
are convex for all α.

α

β

a b c

f is said to be quasiconcave if −f is quasiconvex.
f is said to be quasilinear if it is quasiconvex and quasiconcave.
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Quasiconvex Functions Definition and Examples

Quasiconvex Functions: Examples√
|x| is quasiconvex on R.

ceil(x) = dxe = inf {z ∈ Z : z ≥ x} and floor(x) = bxc = sup {z ∈ Z : z ≤ x} are
quasilinear.
log x is quasilinear on R++.
f(x1, x2) = x1x2 is quasiconcave on R2

++.
The linear-fractional function

f(x) =
aTx + b

cTx + d
, dom(f) =

{
x : cTx + d > 0

}
,

is quasilinear.
The distance ratio function given by

f(x) =
||x− a||2
||x− b||2

, dom(f) =
{
x : ||x− a||2 ≤ ||x− b||2

}
,

is quasiconvex.
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Quasiconvex Functions Properties

Quasiconvex Functions: Various Properties
Modified Jensen’s Inequality: A function f is quasiconvex if and only if dom(f) is
convex and for any x,y ∈ dom(f) and 0 ≤ θ ≤ 1, we have

f(θx + (1− θ) y) ≤ max {f(x) , f(y)} .
First-Order Condition: If f is differentiable, then f is quasiconvex if and only if
dom(f) is convex and for all x,y ∈ dom(f), we have

f(y) ≤ f(x) =⇒ (∇f(x))T (y − x) ≤ 0 .

x

∇f(x)

Second-Order Condition: If f is quasiconvex, then for all x ∈ dom(f) and all y ∈ Rn,
we have

yT (∇f(x)) = 0 =⇒ yT
(
∇2f(x)

)
y ≥ 0 .
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Quasiconvex Functions Properties

Operations that Preserve Quasiconvexity

Nonnegative Weighted Maximum: If wk ≥ 0 and fk are quasiconvex functions
for k = 1, . . . ,m, then

f = max {w1f1, . . . , wmfm}
is quasiconvex. This also extends to the general pointwise supremum

f(x) = sup
y∈A
{w(y) g(x,y)} ,

where w(y) ≥ 0 and g(x,y) is quasiconvex in x for each y ∈ A.

Composition: If g : Rn → R is quasiconvex and h : R→ R is nondecreasing,
then f = h ◦ g = h(g(x)) is quasiconvex.

Minimization: If f(x,y) is jointly quasiconvex in x and y and C is a convex set,
then

g(x) = inf
y∈C

f(x,y) ,

is quasiconvex.

In general, the conditions guaranteeing quasiconvexity are weaker than those
guaranteeing convexity. For example, sums of quasiconvex functions are not
necessarily quasiconvex.
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Log-Concave and Log-Convex Functions Definition and Examples

Log-Concave/Convex Functions
A positive function f is said to be log-concave if log f is concave. Equivalently, such a
function is log-concave if and only if

f(θx + (1− θ) y) ≥ f(x)θ f(y)(1−θ) for 0 ≤ θ ≤ 1 .

Analogously, a function f is said to be log-convex if log f is convex.

Examples:
Powers: xa on R++ is log-convex for a ≤ 0 and log-concave for a ≥ 0.
Common probability density functions (pdfs): Several pdfs, such as that for the
normal (or Gaussian) distribution (x ∼ N (µ,Σ)) given by

fx(x) =
1√

(2π)n det(Σ)
e−

1
2
(x−µ)T Σ−1(x−µ) ,

are log-concave.
Cumulative distribution function (cdf) of the standard normal distribution: If
x ∼ N (0, 1), then the cdf of x given by

Φ(x) =
1√
2π

ˆ x

−∞
e−u

2/2 du ,

is log-concave.
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Log-Concave and Log-Convex Functions Properties

Fundamental Properties of Log-Concave Functions

Twice Differentiable Log-Concave/Convex Functions:
If f is twice differentiable with a convex domain, then f is log-concave/convex if
and only if

f(x)∇2f(x) � ∇f(x)∇f(x)T (log-concave) ,

f(x)∇2f(x) � ∇f(x)∇f(x)T (log-convex) ,

for all x ∈ dom(f). For the log-convex case, an equivalent condition is[
∇2f(x) ∇f(x)

∇f(x)T f(x)

]
� 0 ,

for all x ∈ dom(f), as f(x) > 0 in this region.

Multiplication, Addition, and Integration:
The product of log-concave functions is log-concave.
The sum of log-concave functions is not always log-concave.
If f : Rn × Rm → R is log-concave, then

g(x) =

ˆ
f(x,y) dy

is log-concave.
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Log-Concave and Log-Convex Functions Properties

Consequences of Integration Property

The convolution f ∗ g given by

(f ∗ g)(x) =

ˆ
f(x− y) g(y) dy ,

of two log-concave functions f, g is log-concave.

If C ⊆ Rn is convex and y is a random variable with log-concave pdf, then

f(x) , Pr{x + y ∈ C} ,

is a log-concave function.
The proof of this follows by expressing f(x) is an integral of the product of two
log-concave functions. Specifically, if p(y) denotes the pdf of y and we define
g(u) as

g(u) ,

{
1 , u ∈ C
0 , u 6∈ C

,

then we have
f(x) =

ˆ
g(x + y) p(y) dy .

As g(u) and p(y) are log-concave, so too is f(x).

Andre Tkacenko (JPL) EE/ACM 150 - Lecture 7 April 24, 2012 30 / 32



Log-Concave and Log-Convex Functions Properties

Yield Function Example

In a manufacturing process, the yield function measures the likelihood
of meeting an acceptable value of yield given a nominal or target
operating point. It is given by

Y (x) = Pr {x+w ∈ S} ,

where we have
x ∈ Rn: nominal parameter values for product,
w ∈ Rn: random variations of parameters in manufactured
product,
S: set of acceptable values.

If S is convex and w has a log-concave pdf, then
Y is log-concave,
yield regions {x : Y (x) ≥ α} are convex.
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Convexity with respect to Generalized Inequalities

Convexity with respect to a Generalized Inequality
If K ⊆ Rm is a proper cone with an associated generalized inequality �K,
then we say that f : Rn → Rm is K-convex if dom(f) is convex and

f(θx+ (1− θ)y) �K θf(x) + (1− θ) f(y) ,
for all x,y ∈ dom(f) and 0 ≤ θ ≤ 1. Similarly, we say that f is strictly K-convex
if

f(θx+ (1− θ)y) ≺K θf(x) + (1− θ) f(y) ,
for all x 6= y and 0 < θ < 1.

Example:
Suppose F : Rm×n → Sn+ is given by F(X) = XTX, where K = Sn+. Then we
can show that F is Sn+-convex.
Proof: For fixed z ∈ Rn, the function f(X) , zTXTXz = ||Xz||22 is a convex
quadratic function of the components of X. From this, it follows that F(X) is
Sn+-convex.
As a result, we conclude that for any X,Y ∈ Rm×n, we have

(θX+ (1− θ)Y)
T
(θX+ (1− θ)Y) � θXTX+ (1− θ)YTY .

Andre Tkacenko (JPL) EE/ACM 150 - Lecture 7 April 24, 2012 32 / 32


	Convex Functions: Basic Properties and Examples
	Definition and Extensions
	Conditions for Differentiable Functions
	Connection between Convex Functions and Convex Sets

	Operations that Preserve Convexity
	The Convex Conjugate Function
	Quasiconvex Functions
	Definition and Examples
	Properties

	Log-Concave and Log-Convex Functions
	Definition and Examples
	Properties

	Convexity with respect to Generalized Inequalities

