EE/ACM 150 - Applications of Convex Optimization in Signal Processing and Communications Lecture 7

Andre Tkacenko

Signal Processing Research Group Jet Propulsion Laboratory

April 24, 2012

Caltech

Outline

1 Convex Functions: Basic Properties and Examples

- Definition and Extensions
- Conditions for Differentiable Functions
- Connection between Convex Functions and Convex Sets

2 Operations that Preserve Convexity
3 The Convex Conjugate Function
4 Quasiconvex Functions

- Definition and Examples
- Properties

5 Log-Concave and Log-Convex Functions

- Definition and Examples
- Properties

6 Convexity with respect to Generalized Inequalities

Convex Functions: Definition

A function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is said to be convex if $\operatorname{dom}(f)$ is a convex set and

$$
f(\theta \mathbf{x}+(1-\theta) \mathbf{y}) \leq \theta f(\mathbf{x})+(1-\theta) f(\mathbf{y})
$$

for all $\mathbf{x}, \mathbf{y} \in \operatorname{dom}(f)$ and $0 \leq \theta \leq 1$. Geometrically, this means that the chord or line segment between any two points $(\mathbf{x}, f(\mathbf{x}))$ and $(\mathbf{y}, f(\mathbf{y}))$ lies above the graph of f.

- The function f from above is said to be strictly convex if $\operatorname{dom}(f)$ is convex and

$$
f(\theta \mathbf{x}+(1-\theta) \mathbf{y})<\theta f(\mathbf{x})+(1-\theta) f(\mathbf{y})
$$

for all $\mathbf{x}, \mathbf{y} \in \operatorname{dom}(f)$ such that $\mathbf{x} \neq \mathbf{y}$ and $0<\theta<1$.

- The function f is concave if $-f$ is convex. Similarly, f is strictly concave if $-f$ is strictly convex.
- The function f is affine if and only if f is both convex and concave, meaning we have equality in the top expression.

Convex/Concave Functions: Examples on \mathbb{R}

Convex Functions:

- Affine: $a x+b$ on \mathbb{R}, for any $a, b \in \mathbb{R}$.
- Exponential: $e^{a x}$, for any $a \in \mathbb{R}$.
- Powers: x^{α} on \mathbb{R}_{++}, for $\alpha \geq 1$ or $\alpha \leq 0$.
- Powers of absolute value: $|x|^{p}$ on \mathbb{R}, for $p \geq 1$.

■ Negative entropy: $x \log x$ on \mathbb{R}_{++}.

Concave Functions:

- Affine: $a x+b$ on \mathbb{R}, for any $a, b \in \mathbb{R}$.
- Logarithm: $\log x$ on \mathbb{R}_{++}.
- Powers: x^{α} on \mathbb{R}_{++}, for $0 \leq \alpha \leq 1$.

Convex/Concave Functions: Examples on $\mathbb{R}^{n} \& \mathbb{R}^{m \times n}$

The notion of convexity/concavity easily generalizes to functions over matrices. For example, a function $f: \mathbb{R}^{m \times n} \rightarrow \mathbb{R}$ is convex if $\operatorname{dom}(f)$ is a convex set and

$$
f(\theta \mathbf{X}+(1-\theta) \mathbf{Y}) \leq \theta f(\mathbf{X})+(1-\theta) f(\mathbf{Y})
$$

for all $\mathbf{X}, \mathbf{Y} \in \operatorname{dom}(f)$ and $0 \leq \theta \leq 1$.
All affine functions are both convex and concave. Also, all norms are convex.

Examples on \mathbb{R}^{n} :

- Affine function:

$$
f(\mathbf{x})=\mathbf{a}^{T} \mathbf{x}+b
$$

■ ℓ_{p}-norms:

$$
\|\mathbf{x}\|_{p}=\left(\sum_{k=1}^{n}\left|x_{k}\right|^{p}\right)^{1 / p} \text { for } p \geq 1 ;\|\mathbf{x}\|_{\infty}=\max _{k=1, \ldots, n}\left|x_{k}\right| .
$$

Examples on $\mathbb{R}^{m \times n}$:

- Affine function:

$$
f(\mathbf{X})=\operatorname{tr}\left(\mathbf{A}^{T} \mathbf{X}\right)+b=\sum_{k=1}^{m} \sum_{\ell=1}^{n} A_{k, \ell} X_{k, \ell}+b
$$

■ Spectral (maximum singular value) norm:

$$
f(\mathbf{X})=\|\mathbf{X}\|_{2}=\sigma_{\max }(\mathbf{X})=\sqrt{\lambda_{\max }\left(\mathbf{X}^{T} \mathbf{X}\right)} .
$$

Restriction of a Convex Function to a Line

It can be shown that $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is convex if and only if the function $g: \mathbb{R} \rightarrow \mathbb{R}$ given by

$$
g(t) \triangleq f(\mathbf{x}+t \mathbf{v}), \operatorname{dom}(g)=\{t: \mathbf{x}+t \mathbf{v} \in \operatorname{dom}(f)\}
$$

is convex (in t) for any $\mathbf{x} \in \operatorname{dom}(f), \mathbf{v} \in \mathbb{R}^{n}$.
Similarly, $f: \mathbb{R}^{m \times n} \rightarrow \mathbb{R}$ is convex if and only if the function $g(t) \triangleq f(\mathbf{X}+t \mathbf{V})$, with $\operatorname{dom}(g)=\{t: \mathbf{X}+t \mathbf{V} \in \operatorname{dom}(f)\}$ is convex in t for any $\mathbf{X} \in \operatorname{dom}(f), \mathbf{V} \in \mathbb{R}^{m \times n}$.
Hence, we can check for the convexity of f by checking the convexity of functions of one variable, namely $\{g(t)\}$.

Example:

- Consider $f: \mathbb{S}^{n} \rightarrow \mathbb{R}$ given by $f(\mathbf{X})=\log (\operatorname{det}(\mathbf{X}))$, with $\operatorname{dom}(f)=\mathbb{S}_{++}^{n}$. Then, we have

$$
\begin{aligned}
g(t)=\log (\operatorname{det}(\mathbf{X}+t \mathbf{V})) & =\log (\operatorname{det}(\mathbf{X}))+\log (\operatorname{det}(\mathbf{I}+t \underbrace{\mathbf{X}^{-1 / 2} \mathbf{V} \mathbf{X}^{-1 / 2}}_{\mathbf{Q} \mathbf{\Lambda Q}^{T}})) \\
& =\log (\operatorname{det}(\mathbf{X}))+\sum_{k=1}^{n} \log \left(1+t \lambda_{k}\right)
\end{aligned}
$$

where λ_{k} are the eigenvalues of $\mathbf{X}^{-1 / 2} \mathbf{V} \mathbf{X}^{-1 / 2}$. As g is concave in t (for any choice of $\mathbf{X} \succ \mathbf{0}$ and $\mathbf{V} \in \mathbb{S}^{n}$), it follows that f is concave.

Extended-Value Extensions

The extended-value extension \tilde{f} of a function f is defined as

$$
\tilde{f}(\mathbf{x}) \triangleq \begin{cases}f(\mathbf{x}), & \mathbf{x} \in \operatorname{dom}(f) \\ \infty, & \mathbf{x} \notin \operatorname{dom}(f)\end{cases}
$$

This function \tilde{f} extends f to be defined on all \mathbb{R}^{n} (or $\mathbb{R}^{m \times n}$ when applicable) and takes on values in $\mathbb{R} \cup\{\infty\}$.
It can often be used to simplify notation. For example, the condition

$$
\begin{equation*}
0 \leq \theta \leq 1 \Longrightarrow \widetilde{f}(\theta \mathbf{x}+(1-\theta) \mathbf{y}) \leq \theta \widetilde{f}(\mathbf{x})+(1-\theta) \widetilde{f}(\mathbf{y}) \tag{1}
\end{equation*}
$$

when viewed as an inequality in $\mathbb{R} \cup\{\infty\}$, is equivalent to the two conditions:

- $\operatorname{dom}(f)$ is convex,
- for $\mathbf{x}, \mathbf{y} \in \operatorname{dom}(f)$,

$$
0 \leq \theta \leq 1 \Longrightarrow f(\theta \mathbf{x}+(1-\theta) \mathbf{y}) \leq \theta f(\mathbf{x})+(1-\theta) f(\mathbf{y})
$$

In other words, f is convex if and only if (1) holds.

Jensen's Inequality

The basic definition of convexity can be used to extend it to the following form known as Jensen's inequality.

Jensen's Inequality:

Suppose \mathbf{z} is a random variable such that $\mathbf{z} \in \operatorname{dom}(f)$ with probability one. Then, f is convex if and only if $\operatorname{dom}(f)$ is a convex set and

$$
f(E[\mathbf{z}]) \leq E[f(\mathbf{z})]
$$

for any such z as described above.
In other words, for any $p(\mathbf{z}) \geq 0$ on $\mathcal{S} \subseteq \operatorname{dom}(f)$ with $\int_{\mathcal{S}} p(\mathbf{z}) d \mathbf{z}=1$, we have that f is convex if and only if $\operatorname{dom}(f)$ is a convex set and

$$
f\left(\int_{\mathcal{S}} \mathbf{z} p(\mathbf{z}) d \mathbf{z}\right) \leq \int_{\mathcal{S}} f(\mathbf{z}) p(\mathbf{z}) d \mathbf{z}
$$

The basic inequality can be recovered by setting $p(\mathbf{z})=\theta \delta(\mathbf{z}-\mathbf{x})+(1-\theta) \delta(\mathbf{z}-\mathbf{y})$, where $\delta(\mathbf{z})$ is the Dirac delta function. Using Jensen's inequality, we can also extend the basic inequality to include convex combinations of an arbitrary number of points:

$$
f\left(\theta_{1} \mathbf{x}_{1}+\cdots+\theta_{k} \mathbf{x}_{k}\right) \leq \theta_{1} f\left(\mathbf{x}_{1}\right)+\cdots+\theta_{k} f\left(\mathbf{x}_{k}\right)
$$

where $\mathbf{x}_{1}, \ldots, \mathbf{x}_{k} \in \operatorname{dom}(f), \theta_{1}, \ldots, \theta_{k} \geq 0$, and $\theta_{1}+\cdots+\theta_{k}=1$.

First-Order Condition for Convexity

Suppose that $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is differentiable, meaning that $\operatorname{dom}(f)$ is open and the gradient vector

$$
\nabla f(\mathbf{x}) \triangleq\left[\begin{array}{lll}
\frac{\partial f(\mathbf{x})}{\partial x_{1}} & \ldots & \frac{\partial f(\mathbf{x})}{\partial x_{n}}
\end{array}\right]^{T}
$$

exists at each $\mathbf{x} \in \operatorname{dom}(f)$. Then we have the following necessary and sufficient first-order condition for convexity of f.

First-Order Condition for Convexity of a Differentiable Function

A differentiable function f whose domain is a convex set is convex if and only if

$$
f(\mathbf{y}) \geq f(\mathbf{x})+(\nabla f(\mathbf{x}))^{T}(\mathbf{y}-\mathbf{x})
$$

for all $\mathbf{x}, \mathbf{y} \in \operatorname{dom}(f)$.
In other words, the first-order Taylor approximation of f is a global underestimator of f.

Second-Order Condition for Convexity

Suppose that $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is twice differentiable, meaning that $\operatorname{dom}(f)$ is open and the Hessian matrix $\nabla^{2} f(\mathbf{x}) \in \mathbb{S}^{n}$ given by

$$
\left[\nabla^{2} f(\mathbf{x})\right]_{k, \ell} \triangleq \frac{\partial^{2} f(\mathbf{x})}{\partial x_{k} \partial x_{\ell}}, k, \ell=1, \ldots, n,
$$

exists at each $\mathbf{x} \in \operatorname{dom}(f)$. Then we have the following necessary and sufficient second-order conditions for convexity and strict convexity of f.

Second-Order Conditions for Convexity of a Twice Differentiable Function

If f is a twice differentiable function whose domain is a convex set, then

- f is convex if and only if

$$
\nabla^{2} f(\mathbf{x}) \succeq \mathbf{0}, \text { for all } \mathbf{x} \in \operatorname{dom}(f) .
$$

- f is strictly convex if and only if

$$
\nabla^{2} f(\mathbf{x}) \succ \mathbf{0}, \text { for all } \mathbf{x} \in \operatorname{dom}(f) .
$$

In other words, the function f is convex (strictly convex) if and only if the Hessian matrix $\nabla^{2} f(\mathbf{x})$ is positive semidefinite (positive definite) everywhere in the domain of f.

Examples of Differentiable Convex/Concave Functions

■ Quadratic function: $f(\mathbf{x})=(1 / 2) \mathbf{x}^{T} \mathbf{P} \mathbf{x}+\mathbf{q}^{T} \mathbf{x}+r$ (with $\left.\mathbf{P} \in \mathbb{S}^{n}\right)$.

$$
\nabla f(\mathbf{x})=\mathbf{P} \mathbf{x}+\mathbf{q}, \nabla^{2} f(\mathbf{x})=\mathbf{P}
$$

This function is convex if and only if $\mathbf{P} \succeq \mathbf{0}$.

- Least-squares objective: $f(\mathbf{x})=\|\mathbf{A x}-\mathbf{b}\|_{2}^{2}$.

$$
\nabla f(\mathbf{x})=2 \mathbf{A}^{T}(\mathbf{A} \mathbf{x}-\mathbf{b}), \nabla^{2} f(\mathbf{x})=2 \mathbf{A}^{T} \mathbf{A} .
$$

This function is convex for any \mathbf{A}.

- Quadratic-over-linear: $f(x, y)=x^{2} / y$.

$$
\nabla f(x, y)=\frac{1}{y^{2}}\left[\begin{array}{c}
2 x y \\
-x^{2}
\end{array}\right], \nabla^{2} f(x, y)=\frac{2}{y^{3}}\left[\begin{array}{c}
y \\
-x
\end{array}\right]\left[\begin{array}{c}
y \\
-x
\end{array}\right]^{T}
$$

This function is convex for $y>0$.

Examples of Differentiable Convex/Concave Functions

■ Log-sum-exp: The function

$$
f(\mathbf{x})=\log \left(\sum_{k=1}^{n} e^{x_{k}}\right)
$$

on \mathbb{R}^{n} is convex. For this function, we have

$$
\nabla^{2} f(\mathbf{x})=\frac{1}{\mathbf{1}^{T} \mathbf{z}} \operatorname{diag}(\mathbf{z})-\frac{1}{\left(\mathbf{1}^{T} \mathbf{z}\right)^{2}} \mathbf{z} \mathbf{z}^{T}, \text { where } z_{k}=e^{x_{k}}
$$

To show that $\nabla^{2} f(\mathbf{x}) \succeq \mathbf{0}$, we must verify that $\mathbf{v}^{T} \nabla^{2} f(\mathbf{x}) \mathbf{v} \geq 0$ for all \mathbf{v}, i.e.,

$$
\mathbf{v}^{T} \nabla^{2} f(\mathbf{x}) \mathbf{v}=\frac{\left(\sum_{k} z_{k} v_{k}\right)\left(\sum_{k} z_{k}\right)-\left(\sum_{k} v_{k} z_{k}\right)^{2}}{\left(\sum_{k} z_{k}\right)^{2}} \geq 0
$$

But this follows from the Cauchy-Schwarz inequality $\left(\mathbf{a}^{T} \mathbf{b}\right)^{2} \leq\|\mathbf{a}\|_{2}^{2}\|\mathbf{b}\|_{2}^{2}$, with $a_{k}=v_{k} \sqrt{z_{k}}$ and $b_{k}=\sqrt{z_{k}}$.

- Geometric mean: The function

$$
f(\mathbf{x})=\left(\prod_{k=1}^{n} x_{k}\right)^{1 / n}
$$

on \mathbb{R}_{++}^{n} is concave. The proof is similar to that for the log-sum-exp function.

Epigraph and Sublevel Sets

The link between convex functions and convex sets comes about as a result of the epigraph of a function. This set consists of sublevel sets of a given function.

Sublevel Sets:

The α-sublevel set of a function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is defined as

$$
\mathcal{C}_{\alpha} \triangleq\{\mathbf{x} \in \operatorname{dom}(f): f(\mathbf{x}) \leq \alpha\} .
$$

The sublevel sets of convex functions are convex, however the converse is false.

Epigraph:

The epigraph of a function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is defined as

$$
\operatorname{epi}(f) \triangleq\left\{(\mathbf{x}, t) \in \mathbb{R}^{n+1}: \mathbf{x} \in \operatorname{dom}(f), f(\mathbf{x}) \leq t\right\}
$$

It turns out that f is a convex function if and only if $\operatorname{epi}(f)$ is a convex set.

For a differentiable convex function f, the vector $(\nabla f(\mathbf{x}),-1)$ defines a supporting hyperplane to the epigraph of f at \mathbf{x}.

Practical Methods for Establishing Convexity

To establish the convexity of a given function f, the following methods are typically used.
1 Verify the definition. (This is often simplified by restricting the function to a line.)
2 For twice differentiable functions, show that the Hessian matrix is positive semidefinite, i.e., $\nabla^{2} f(\mathbf{x}) \succeq \mathbf{0}$.
3 Show that f is obtained from simple convex functions by operations that preserve convexity. (In other words, apply the calculus of convex functions.) Such operations include the following:

- nonnegative weighted sum
- composition with affine function
- pointwise maximum and supremum
- composition
- minimization
- perspective

Nonnegative Weighted Sum and Affine Composition

Nonnegative Multiple:

If f is convex, then so is αf for $\alpha \geq 0$.

Summation:

If f_{1} and f_{2} are convex, then so is $f_{1}+f_{2}$. This extends to infinite sums and integrals.

Composition with Affine Function:
If f is convex, then so is $f(\mathbf{A x}+\mathbf{b})$.

Examples:

- Log barrier for linear inequalities:

$$
f(\mathbf{x})=-\sum_{k=1}^{m} \log \left(b_{k}-\mathbf{a}_{k}^{T} \mathbf{x}\right), \operatorname{dom}(f)=\left\{\mathbf{x}: \mathbf{a}_{k}^{T} \mathbf{x}<b_{k}, k=1, \ldots, m\right\} .
$$

■ Norm of an affine function:

$$
f(\mathbf{x})=\|\mathbf{A} \mathbf{x}+\mathbf{b}\| .
$$

Note that this is valid for any norm.

Pointwise Maximum

If f_{1}, \ldots, f_{m} are convex functions, then

$$
f(\mathbf{x})=\max \left\{f_{1}(\mathbf{x}), \ldots, f_{m}(\mathbf{x})\right\}
$$

is convex.

Examples:

■ Piecewise-linear function:

$$
f(\mathbf{x})=\max _{k=1, \ldots, m}\left(\mathbf{a}_{k}^{T} \mathbf{x}+b_{k}\right)
$$

is convex.
■ Sum of r largest components of $\mathrm{x} \in \mathbb{R}^{n}$:

$$
f(\mathbf{x})=x_{[1]}+\cdots+x_{[r]}
$$

is convex, where $x_{[k]}$ denotes the k-th largest component of \mathbf{x}.
The proof of this can be seen by expressing f as

$$
f(\mathbf{x})=\max \left\{x_{i_{1}}+x_{i_{2}}+\cdots+x_{i_{r}}: 1 \leq i_{r}<i_{2}<\cdots<i_{r} \leq n\right\} .
$$

In other words, $f(\mathbf{x})$ is the maximum of all possible sums of r different components of \mathbf{x}. As f is the pointwise maximum of $C(n, r)=n!/(r!(n-r)!)$ linear functions, it is convex.

Pointwise Supremum

If $f(\mathbf{x}, \mathbf{y})$ is convex in \mathbf{x} for each $\mathbf{y} \in \mathcal{A}$, then

$$
g(\mathbf{x})=\sup _{\mathbf{y} \in \mathcal{A}} f(\mathbf{x}, \mathbf{y})
$$

is convex. Note that \mathcal{A} need not be a convex set.

Examples:

■ Support function of a set \mathcal{C} :

$$
S_{\mathcal{C}}(\mathbf{x})=\sup \left\{\mathbf{x}^{T} \mathbf{y}: \mathbf{y} \in \mathcal{C}\right\}
$$

is convex.

- Distance to the farthest point in a set \mathcal{C} :

$$
f(\mathbf{x})=\sup _{\mathbf{y} \in \mathcal{C}}\|\mathbf{x}-\mathbf{y}\|
$$

is convex for any norm $\|\cdot\|$.

- Maximum eigenvalue of a symmetric matrix:

$$
\text { For } \mathbf{X} \in \mathbb{S}^{n}, \lambda_{\max }(\mathbf{X})=\sup _{\|\mathbf{y}\|_{2}=1} \mathbf{y}^{T} \mathbf{X} \mathbf{y}
$$

is convex.

Composition with Scalar Functions

The composition $f=h \circ g$ of $g: \mathbb{R}^{n} \rightarrow \mathbb{R}$ and $h: \mathbb{R} \rightarrow \mathbb{R}$ is given by

$$
f(\mathbf{x})=h(g(\mathbf{x})) .
$$

We have the following:
f is convex if $\left\{\begin{array}{l}g \text { is convex, } h \text { is convex, and } \widetilde{h} \text { is nondecreasing } \\ g \text { is concave, } h \text { is convex, and } \widetilde{h} \text { is nonincreasing }\end{array}\right.$
Here, \widetilde{h} is the extended-value extension of h. Note that monotonicity of \widetilde{h} must hold on all of \mathbb{R}.
Proof: (for $n=1$ and differentiable g, h)
Note that

$$
f^{\prime \prime}(x)=h^{\prime \prime}(g(x))\left(g^{\prime}(x)\right)^{2}+h^{\prime}(g(x)) g^{\prime \prime}(x) .
$$

From this, the conditions for the convexity of f are clear.

Examples:

$\square e^{g(x)}$ is convex if g is convex.

- $1 / g(x)$ is convex if g is concave and positive.

Vector Composition

The composition $f=h \circ \mathrm{~g}$ of $\mathrm{g}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{k}$ and $h: \mathbb{R}^{k} \rightarrow \mathbb{R}$ is given by

$$
f(\mathbf{x})=h(\mathbf{g}(\mathbf{x}))=h\left(g_{1}(\mathbf{x}), \ldots, g_{k}(\mathbf{x})\right) .
$$

We have the following:
f is convex if $\left\{\begin{array}{l}g_{i} \text { is convex, } h \text { is convex, and } \widetilde{h} \text { is nondecreasing in each argument } \\ g_{i} \text { is concave, } h \text { is convex, and } \widetilde{h} \text { is nonincreasing in each argument }\end{array}\right.$
As before, \widetilde{h} is the extended-value extension of h. Note that monotonicity of \widetilde{h} must hold in each argument on all of \mathbb{R}.
Proof: (for $n=1$ and differentiable \mathbf{g}, h)
Note that

$$
f^{\prime \prime}(x)=\left(\mathbf{g}^{\prime}(x)\right)^{T}\left(\nabla^{2} h(\mathbf{g}(x))\right)\left(\mathbf{g}^{\prime}(x)\right)+(\nabla h(\mathbf{g}(x)))^{T}\left(\mathbf{g}^{\prime \prime}(x)\right) .
$$

From this, the conditions for the convexity of f are clear.

Examples:

■ $\sum_{i=1}^{m} \log g_{i}(\mathbf{x})$ is concave if g_{i} is concave and positive for every i.

- $\log \left(\sum_{i=1}^{m} \exp g_{i}(\mathbf{x})\right)$ is convex if g_{i} is convex for every i.

Minimization

If $f(\mathbf{x}, \mathbf{y})$ is convex in (\mathbf{x}, \mathbf{y}) and \mathcal{C} is a convex set, then

$$
g(\mathbf{x})=\inf _{\mathbf{y} \in \mathcal{C}} f(\mathbf{x}, \mathbf{y})
$$

is convex. Note that \mathcal{C} need be a convex set.
Examples:
■ $f(\mathbf{x}, \mathbf{y})=\mathbf{x}^{T} \mathbf{A} \mathbf{x}+2 \mathbf{x}^{T} \mathbf{B y}+\mathbf{y}^{T} \mathbf{C y}$ with

$$
\left[\begin{array}{cc}
\mathbf{A} & \mathbf{B} \\
\mathbf{B}^{T} & \mathbf{C}
\end{array}\right] \succeq \mathbf{0}
$$

Minimizing over y gives

$$
g(\mathbf{x})=\inf _{\mathbf{y}} f(\mathbf{x}, \mathbf{y})=\mathbf{x}^{T}\left(\mathbf{A}-\mathbf{B C} \mathbf{B}^{\#} \mathbf{B}^{T}\right) \mathbf{x}
$$

Since g is convex, the Schur complement is positive semidefinite, i.e., $\left(\mathbf{A}-\mathbf{B C}{ }^{\#} \mathbf{B}^{T}\right) \succeq \mathbf{0}$.

- Distance to a set: The distance between a point x and set \mathcal{S} is defined as

$$
\operatorname{dist}(\mathbf{x}, \mathcal{S}) \triangleq \inf _{\mathbf{y} \in \mathcal{S}}\|\mathbf{x}-\mathbf{y}\|
$$

and is convex if \mathcal{S} is a convex set.

Perspective

The perspective of a function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is the function $g: \mathbb{R}^{n} \times \mathbb{R} \rightarrow \mathbb{R}$ given by

$$
g(\mathbf{x}, t) \triangleq t f(\mathbf{x} / t), \operatorname{dom}(g)=\{(\mathbf{x}, t): \mathbf{x} / t \in \operatorname{dom}(f), t>0\} .
$$

It can be shown that g is convex if f is convex.

Examples:

- Perspective of Euclidean norm squared:

The function $f(\mathbf{x})=\mathbf{x}^{T} \mathbf{x}$ is convex, and so $g(\mathbf{x}, t)=\mathbf{x}^{T} \mathbf{x} / t$ is convex for $t>0$.

- Relative entropy:

The negative logarithm $f(x)=-\log x$ is convex. Thus, the relative entropy
function $g(x, t)=t \log t-t \log x$ is convex on \mathbb{R}_{++}^{2}. This function plays a role in
the Kullback-Leibler divergence between $\mathbf{u}, \mathbf{v} \in \mathbb{R}_{++}^{n}$, given by

$$
D_{\mathrm{kl}}(\mathbf{u}, \mathbf{v}) \triangleq \sum_{k=1}^{n}\left(u_{k} \log \left(u_{k} / v_{k}\right)-u_{k}+v_{k}\right) .
$$

It is convex, since it is the relative entropy plus a linear function of (\mathbf{u}, \mathbf{v}).

- Affine function of perspective of affine function:

If f is convex, then

$$
g(\mathbf{x})=\left(\mathbf{c}^{T} \mathbf{x}+d\right) f\left((\mathbf{A} \mathbf{x}+\mathbf{b}) /\left(\mathbf{c}^{T} \mathbf{x}+d\right)\right)
$$

is convex on $\left\{\mathbf{x}: \mathbf{c}^{T} \mathbf{x}+d>0,(\mathbf{A} \mathbf{x}+\mathbf{b}) /\left(\mathbf{c}^{T} \mathbf{x}+d\right) \in \operatorname{dom}(f)\right\}$.

Convex Conjugate: Definition and Properties

The convex conjugate or Legendre-Fenchel transformation of a function f is denoted f^{\circledast} and defined as

$$
f^{\circledast}(\mathbf{y}) \triangleq \sup _{\mathbf{x} \in \operatorname{dom}(f)}\{\operatorname{Re}[\langle\mathbf{x}, \mathbf{y}\rangle]-f(\mathbf{x})\}
$$

Properties:

- The conjugate f^{\circledast} is always convex, even if f is not.
- The conjugate of the conjugate always satisfies $f^{\oplus \oplus} \leq f$ for any f.
- The conjugate of the conjugate satisfies $f^{\oplus \otimes}=f$ if and only if f is a proper, lower semi-continuous, convex function or f is identically $\pm \infty$.
- The conjugate f^{\circledast} will play a role in duality when we come to the Lagrange dual problem.

Convex Conjugate: Examples

- Negative logarithm: $f(x)=-\log x$.

$$
\begin{aligned}
f^{\circledast}(y) & =\sup _{x>0}\{x y+\log x\}, \\
& = \begin{cases}-1-\log (-y), & y<0 \\
\infty, & y \geq 0\end{cases}
\end{aligned}
$$

- Strictly convex quadratic: $f(\mathbf{x})=(1 / 2) \mathbf{x}^{T} \mathbf{Q} \mathbf{x}$ with $\mathbf{Q} \in \mathbb{S}_{++}^{n}$.

$$
f^{\circledast}(\mathbf{y})=\sup _{\mathbf{x}}\left\{\mathbf{y}^{T} \mathbf{x}-(1 / 2) \mathbf{x}^{T} \mathbf{Q} \mathbf{x}\right\}=(1 / 2) \mathbf{y}^{T} \mathbf{Q}^{-1} \mathbf{y} .
$$

■ Log-determinant: $f(\mathbf{X})=\log \operatorname{det} \mathbf{X}^{-1}$ on \mathbb{S}_{++}^{n}.

$$
\begin{aligned}
f^{\circledast}(\mathbf{Y}) & =\sup _{\mathbf{X} \succ \mathbf{0}}\{\operatorname{tr}(\mathbf{Y} \mathbf{X})+\log \operatorname{det} \mathbf{X}\}, \\
& =\log \operatorname{det}\left((-\mathbf{Y})^{-1}\right)-n, \text { with } \operatorname{dom}\left(f^{\circledast}\right)=-\mathbb{S}_{++}^{n} .
\end{aligned}
$$

- Indicator function: The indicator function $I_{\mathcal{C}}(\mathbf{x})$ of a set \mathcal{C} is defined to be 0 if $\mathrm{x} \in \mathcal{C}$ and ∞ if $\mathrm{x} \notin \mathcal{C}$. Its convex conjugate is given by

$$
I_{\mathcal{C}}^{\circledast}(\mathbf{y})=\sup _{\mathbf{x} \in \mathcal{C}} \mathbf{y}^{T} \mathbf{x},
$$

which is the support function of the set \mathcal{C}.

Quasiconvex Functions: Definition

A function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is quasiconvex if $\operatorname{dom}(f)$ is convex and the sublevel sets

$$
\mathcal{S}_{\alpha} \triangleq\{\mathbf{x} \in \operatorname{dom}(f): f(\mathbf{x}) \leq \alpha\}
$$

are convex for all α.

- f is said to be quasiconcave if $-f$ is quasiconvex.
$\square f$ is said to be quasilinear if it is quasiconvex and quasiconcave.

Quasiconvex Functions: Examples

- $\sqrt{|x|}$ is quasiconvex on \mathbb{R}.
$\square \operatorname{ceil}(x)=\lceil x\rceil=\inf \{z \in \mathbb{Z}: z \geq x\}$ and floor $(x)=\lfloor x\rfloor=\sup \{z \in \mathbb{Z}: z \leq x\}$ are quasilinear.
- $\log x$ is quasilinear on \mathbb{R}_{++}.
- $f\left(x_{1}, x_{2}\right)=x_{1} x_{2}$ is quasiconcave on \mathbb{R}_{++}^{2}.
- The linear-fractional function

$$
f(\mathbf{x})=\frac{\mathbf{a}^{T} \mathbf{x}+b}{\mathbf{c}^{T} \mathbf{x}+d}, \operatorname{dom}(f)=\left\{\mathbf{x}: \mathbf{c}^{T} \mathbf{x}+d>0\right\}
$$

is quasilinear.

- The distance ratio function given by

$$
f(\mathbf{x})=\frac{\|\mathbf{x}-\mathbf{a}\|_{2}}{\|\mathbf{x}-\mathbf{b}\|_{2}}, \operatorname{dom}(f)=\left\{\mathbf{x}:\|\mathbf{x}-\mathbf{a}\|_{2} \leq\|\mathbf{x}-\mathbf{b}\|_{2}\right\}
$$

is quasiconvex.

Quasiconvex Functions: Various Properties

Modified Jensen's Inequality: A function f is quasiconvex if and only if $\operatorname{dom}(f)$ is convex and for any $\mathbf{x}, \mathbf{y} \in \operatorname{dom}(f)$ and $0 \leq \theta \leq 1$, we have

$$
f(\theta \mathbf{x}+(1-\theta) \mathbf{y}) \leq \max \{f(\mathbf{x}), f(\mathbf{y})\}
$$

First-Order Condition: If f is differentiable, then f is quasiconvex if and only if $\operatorname{dom}(f)$ is convex and for all $\mathbf{x}, \mathbf{y} \in \operatorname{dom}(f)$, we have

$$
f(\mathbf{y}) \leq f(\mathbf{x}) \Longrightarrow(\nabla f(\mathbf{x}))^{T}(\mathbf{y}-\mathbf{x}) \leq 0 .
$$

Second-Order Condition: If f is quasiconvex, then for all $\mathbf{x} \in \operatorname{dom}(f)$ and all $\mathbf{y} \in \mathbb{R}^{n}$, we have

$$
\mathbf{y}^{T}(\nabla f(\mathbf{x}))=0 \Longrightarrow \mathbf{y}^{T}\left(\nabla^{2} f(\mathbf{x})\right) \mathbf{y} \geq 0
$$

Operations that Preserve Quasiconvexity

- Nonnegative Weighted Maximum: If $w_{k} \geq 0$ and f_{k} are quasiconvex functions for $k=1, \ldots, m$, then

$$
f=\max \left\{w_{1} f_{1}, \ldots, w_{m} f_{m}\right\}
$$

is quasiconvex. This also extends to the general pointwise supremum

$$
f(\mathbf{x})=\sup _{\mathbf{y} \in \mathcal{A}}\{w(\mathbf{y}) g(\mathbf{x}, \mathbf{y})\}
$$

where $w(\mathbf{y}) \geq 0$ and $g(\mathbf{x}, \mathbf{y})$ is quasiconvex in \mathbf{x} for each $\mathbf{y} \in \mathcal{A}$.
\square Composition: If $g: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is quasiconvex and $h: \mathbb{R} \rightarrow \mathbb{R}$ is nondecreasing, then $f=h \circ g=h(g(\mathbf{x}))$ is quasiconvex.
\square Minimization: If $f(\mathbf{x}, \mathbf{y})$ is jointly quasiconvex in \mathbf{x} and \mathbf{y} and \mathcal{C} is a convex set, then

$$
g(\mathbf{x})=\inf _{\mathbf{y} \in \mathcal{C}} f(\mathbf{x}, \mathbf{y})
$$

is quasiconvex.
In general, the conditions guaranteeing quasiconvexity are weaker than those guaranteeing convexity. For example, sums of quasiconvex functions are not necessarily quasiconvex.

Log-Concave/Convex Functions

A positive function f is said to be \log-concave if $\log f$ is concave. Equivalently, such a function is log-concave if and only if

$$
f(\theta \mathbf{x}+(1-\theta) \mathbf{y}) \geq f(\mathbf{x})^{\theta} f(\mathbf{y})^{(1-\theta)} \text { for } 0 \leq \theta \leq 1 .
$$

Analogously, a function f is said to be log-convex if $\log f$ is convex.

Examples:

- Powers: x^{a} on \mathbb{R}_{++}is log-convex for $a \leq 0$ and log-concave for $a \geq 0$.
- Common probability density functions (pdfs): Several pdfs, such as that for the normal (or Gaussian) distribution ($\mathbf{x} \sim \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$) given by

$$
f_{\mathbf{x}}(\boldsymbol{x})=\frac{1}{\sqrt{(2 \pi)^{n} \operatorname{det}(\boldsymbol{\Sigma})}} e^{-\frac{1}{2}(\boldsymbol{x}-\boldsymbol{\mu})^{T} \boldsymbol{\Sigma}^{-1}(\boldsymbol{x}-\boldsymbol{\mu})},
$$

are log-concave.

- Cumulative distribution function (cdf) of the standard normal distribution: If $\mathrm{x} \sim \mathcal{N}(0,1)$, then the cdf of x given by

$$
\Phi(x)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{x} e^{-u^{2} / 2} d u
$$

is log-concave.

Fundamental Properties of Log-Concave Functions

- Twice Differentiable Log-Concave/Convex Functions:

If f is twice differentiable with a convex domain, then f is log-concave/convex if and only if

$$
\begin{array}{ll}
f(\mathbf{x}) \nabla^{2} f(\mathbf{x}) & \preceq \quad \nabla f(\mathbf{x}) \nabla f(\mathbf{x})^{T} \quad \text { (log-concave) }, \\
f(\mathbf{x}) \nabla^{2} f(\mathbf{x}) \succeq \nabla f(\mathbf{x}) \nabla f(\mathbf{x})^{T} \quad \text { (log-convex) }
\end{array}
$$

for all $x \in \operatorname{dom}(f)$. For the log-convex case, an equivalent condition is

$$
\left[\begin{array}{cc}
\nabla^{2} f(\mathbf{x}) & \nabla f(\mathbf{x}) \\
\nabla f(\mathbf{x})^{T} & f(\mathbf{x})
\end{array}\right] \succeq \mathbf{0},
$$

for all $x \in \operatorname{dom}(f)$, as $f(\mathbf{x})>0$ in this region.

- Multiplication, Addition, and Integration:
- The product of log-concave functions is log-concave.
- The sum of log-concave functions is not always log-concave.

■ If $f: \mathbb{R}^{n} \times \mathbb{R}^{m} \rightarrow \mathbb{R}$ is log-concave, then

$$
g(\mathbf{x})=\int f(\mathbf{x}, \mathbf{y}) d \mathbf{y}
$$

is log-concave.

Consequences of Integration Property

- The convolution $f * g$ given by

$$
(f * g)(\mathbf{x})=\int f(\mathbf{x}-\mathbf{y}) g(\mathbf{y}) d \mathbf{y}
$$

of two log-concave functions f, g is log-concave.

- If $\mathcal{C} \subseteq \mathbb{R}^{n}$ is convex and \mathbf{y} is a random variable with log-concave pdf, then

$$
f(\mathbf{x}) \triangleq \operatorname{Pr}\{\mathbf{x}+\mathbf{y} \in \mathcal{C}\}
$$

is a log-concave function.
The proof of this follows by expressing $f(\mathbf{x})$ is an integral of the product of two log-concave functions. Specifically, if $p(\mathbf{y})$ denotes the pdf of \mathbf{y} and we define $g(\mathbf{u})$ as

$$
g(\mathbf{u}) \triangleq \begin{cases}1, & \mathbf{u} \in \mathcal{C} \\ 0, & \mathbf{u} \notin \mathcal{C}\end{cases}
$$

then we have

$$
f(\mathbf{x})=\int g(\mathbf{x}+\mathbf{y}) \mathbf{p}(\mathbf{y}) d \mathbf{y}
$$

As $g(\mathbf{u})$ and $p(\mathbf{y})$ are log-concave, so too is $f(\mathbf{x})$.

Yield Function Example

In a manufacturing process, the yield function measures the likelihood of meeting an acceptable value of yield given a nominal or target operating point. It is given by

$$
Y(\mathbf{x})=\operatorname{Pr}\{\mathbf{x}+\mathbf{w} \in \mathcal{S}\}
$$

where we have
$\square \mathbf{x} \in \mathbb{R}^{n}$: nominal parameter values for product,
■ $\mathbf{w} \in \mathbb{R}^{n}$: random variations of parameters in manufactured product,
$\square \mathcal{S}$: set of acceptable values.
If \mathcal{S} is convex and w has a log-concave pdf, then
$\square Y$ is log-concave,
\square yield regions $\{\mathbf{x}: Y(\mathbf{x}) \geq \alpha\}$ are convex.

Convexity with respect to a Generalized Inequality

If $\mathcal{K} \subseteq \mathbb{R}^{m}$ is a proper cone with an associated generalized inequality $\preceq_{\mathcal{K}}$, then we say that $\mathbf{f}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is \mathcal{K}-convex if $\operatorname{dom}(\mathbf{f})$ is convex and

$$
\mathbf{f}(\theta \mathbf{x}+(1-\theta) \mathbf{y}) \preceq_{\mathcal{K}} \theta \mathbf{f}(\mathbf{x})+(1-\theta) \mathbf{f}(\mathbf{y}),
$$

for all $\mathbf{x}, \mathbf{y} \in \operatorname{dom}(\mathbf{f})$ and $0 \leq \theta \leq 1$. Similarly, we say that \mathbf{f} is strictly \mathcal{K}-convex if

$$
\mathbf{f}(\theta \mathbf{x}+(1-\theta) \mathbf{y}) \prec_{\mathcal{K}} \theta \mathbf{f}(\mathbf{x})+(1-\theta) \mathbf{f}(\mathbf{y}),
$$

for all $\mathbf{x} \neq \mathbf{y}$ and $0<\theta<1$.

Example:

Suppose $\mathbf{F}: \mathbb{R}^{m \times n} \rightarrow \mathbb{S}_{+}^{n}$ is given by $\mathbf{F}(\mathbf{X})=\mathbf{X}^{T} \mathbf{X}$, where $\mathcal{K}=\mathbb{S}_{+}^{n}$. Then we can show that \mathbf{F} is \mathbb{S}_{+}^{n}-convex.
Proof: For fixed $\mathbf{z} \in \mathbb{R}^{n}$, the function $f(\mathbf{X}) \triangleq \mathbf{z}^{T} \mathbf{X}^{T} \mathbf{X} \mathbf{z}=\|\mathbf{X} \mathbf{z}\|_{2}^{2}$ is a convex quadratic function of the components of \mathbf{X}. From this, it follows that $\mathbf{F}(\mathbf{X})$ is \mathbb{S}_{+}^{n}-convex.
As a result, we conclude that for any $\mathbf{X}, \mathbf{Y} \in \mathbb{R}^{m \times n}$, we have

$$
(\theta \mathbf{X}+(1-\theta) \mathbf{Y})^{T}(\theta \mathbf{X}+(1-\theta) \mathbf{Y}) \preceq \theta \mathbf{X}^{T} \mathbf{X}+(1-\theta) \mathbf{Y}^{T} \mathbf{Y} .
$$

