
EE/ACM 150 - Applications of Convex Optimization
in Signal Processing and Communications

Lecture 8

Andre Tkacenko

Signal Processing Research Group
Jet Propulsion Laboratory

April 26, 2012

Andre Tkacenko (JPL) EE/ACM 150 - Lecture 8 April 26, 2012 1 / 27



Outline

1 Optimization Problem Principles
Definitions and Terminology
Equivalences

2 Convex Optimization Fundamentals
Properties of Convex Optimization Problems
Equivalences
Quasiconvex Optimization

3 Linear Optimization Problems
Linear Programming
Linear-Fractional Programming

4 Quadratic Optimization Problems
Quadratic Programming
Second-Order Cone Programming

Andre Tkacenko (JPL) EE/ACM 150 - Lecture 8 April 26, 2012 2 / 27



Optimization Problem Principles Definitions and Terminology

Standard Form of Optimization Problems
Most of the optimization problems we will be concerned with will be assumed to be
expressible in the following standardized form.

Standard Form of General Optimization Problem

minimize f0(x)

subject to fk(x) ≤ 0 , k = 1, . . . ,m

hk(x) = 0 , k = 1, . . . , p

.

x ∈ Rn is the optimization variable.
f0 : Rn → R is the objective or cost function.
fk : Rn → R, k = 1, . . . ,m, are the inequality constraint functions.
hk : Rn → R, k = 1, . . . , p, are the equality constraint functions.
D ,

⋂m
k=0 dom(fk) ∩

⋂p
k=1 dom(hk) is the domain of the problem.

Optimal Value:
p? = inf{f0(x) : fk(x) ≤ 0 , k = 1, . . . ,m , hk(x) = 0 , k = 1, . . . , p} .

p? =∞ if the problem is infeasible (meaning no x satisfies the constraints).
p? = −∞ if the problem is unbounded below.
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Optimization Problem Principles Definitions and Terminology

Global and Local Optimality
Feasibility: A point x is said to be feasible if x ∈ dom(f0) and it satisfies the constraints.

(Globally) Optimal Points: A feasible point x? is said to be (globally) optimal if f0(x?) = p?.
The set of all optimal points is the optimal set and is given by

Xopt , {x : fk(x) ≤ 0 , k = 1, . . . ,m , hk(x) = 0 , k = 1, . . . , p , f0(x) = p?} .

If Xopt is nonempty, we say that the optimal value is achieved and the problem is solvable.
Otherwise, the optimal value is not attained or not achieved.

A feasible point x with f0(x) ≤ p? + ε (where ε > 0) is said to be ε-suboptimal, and the set of all
ε-suboptimal points is called the ε-suboptimal set for the problem.

Locally Optimal Points: A feasible point xlo is said to be locally optimal if there exists an R > 0
such that xlo is optimal for the problem:

minimize f0(z)

subject to fk(z) ≤ 0 , k = 1, . . . ,m , hk(z) = 0 , k = 1, . . . , p ,

||z− xlo||2 ≤ R
.

Examples: (with n = 1, m = p = 0)
f0(x) = 1/x, dom(f0) = R++: p? = 0, no optimal point.
f0(x) = − log x, dom(f0) = R++: p? = −∞, no optimal point.
f0(x) = x log x, dom(f0) = R++: p? = −1/e, x = 1/e is optimal.
f0(x) = x3 − 3x, dom(f0) = R: p? = −∞, no optimal point, local optimum at x = 1.

Andre Tkacenko (JPL) EE/ACM 150 - Lecture 8 April 26, 2012 4 / 27



Optimization Problem Principles Definitions and Terminology

The Feasibility Problem
The feasibility problem is the problem of determining whether or not the
feasible set is empty. It is given by

find x

subject to fk(x) ≤ 0 , k = 1, . . . ,m

hk(x) = 0 , k = 1, . . . , p

.

The feasibility problem can be considered a special case of the general
problem with f0(x) = 0, namely

minimize 0

subject to fk(x) ≤ 0 , k = 1, . . . ,m

hk(x) = 0 , k = 1, . . . , p

.

We have p? = 0 if the constraints are feasible; any feasible x is optimal in
this case.

We have p? =∞ if the constraints are infeasible.
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Optimization Problem Principles Equivalences

Change of Variables and Function Transformations
Two optimization problems will be called equivalent if, from a solution of one problem, a solution
of the other is readily found, and vice versa. An appropriate change of variables or a
transformation of the objective and constraint functions yield equivalent problems.

Change of Variables:
Suppose φ : Rn → Rn is one-to-one, with φ(dom(φ)) ⊇ D. With the change of variable
x = φ(z), if we define the functions

f̃k(z) , fk(φ(z)) , k = 0, . . . ,m , h̃k(z) , hk(φ(z)) , k = 1, . . . , p ,

then the following problem is equivalent to the original standard form problem:

minimize f̃0(z)

subject to f̃k(z) ≤ 0 , k = 1, . . . ,m , h̃k(z) = 0 , k = 1, . . . , p
.

Transformation of Objective and Constraint Functions:
Suppose ψ0 : R→ R is monotone increasing, ψ1, . . . , ψm : R→ R satisfy φk(u) ≤ 0 if and only
if u ≤ 0, and ψm+1, . . . , ψm+p : R→ R satisfy φk(u) = 0 if and only if u = 0. If we define the
functions

f̃k(x) , ψk(fk(x)) , k = 0, . . . ,m , h̃k(x) , ψm+k(hk(x)) , k = 1, . . . , p ,

then the following problem is equivalent to the original standard form problem:

minimize f̃0(x)

subject to f̃k(x) ≤ 0 , k = 1, . . . ,m , h̃k(x) = 0 , k = 1, . . . , p
.
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Optimization Problem Principles Equivalences

Eliminating/Introducing Equality Constraints
Eliminating Equality Constraints:
Suppose that there is a function φ : Rk → Rn such that x satisfies hk(x) = 0 for k = 1, . . . , p, if
and only if there is some z ∈ Rk such that x = φ(z). Then, the optimization problem

minimize f̃0(z) = f0(φ(z))

subject to f̃k(z) = fk(φ(z)) ≤ 0 , k = 1, . . . ,m
,

is equivalent to the original standard form problem. The transformed problem has variable
z ∈ Rk, m inequality constraints, and no equality constraints.

Introducing Equality Constraints:
In many cases, it will actually be advantageous to introduce equality constraints and new
variables into a problem. As an example, consider the problem

minimize f0(A0x+ b0)

subject to fk(Akx+ bk) ≤ 0 , k = 1, . . . ,m , hk(x) = 0 , k = 1, . . . , p
,

where x ∈ Rn, Ak ∈ R`k×n, bk ∈ R`k , and fk : R`k → R. Introducing new variables yk ∈ R`k

and new equality constraints yk = Akx+ bk for k = 0, . . . ,m yields the equivalent problem

minimize f0(y0)

subject to fk(yk) ≤ 0 , k = 1, . . . ,m , hk(x) = 0 , k = 1, . . . , p

yk = Akx+ bk , k = 0, . . . ,m

.

This problem has `0 + · · ·+ `m new variables and `0 + · · ·+ `m equality constraints.

Andre Tkacenko (JPL) EE/ACM 150 - Lecture 8 April 26, 2012 7 / 27



Optimization Problem Principles Equivalences

Epigraph Problem Form
The epigraph form of the standard form problem is the problem

minimize t

subject to f0(x)− t ≤ 0

fk(x) ≤ 0 , k = 1, . . . ,m

hk(x) = 0 , k = 1, . . . , p

,

with variables x ∈ Rn and t ∈ R.

x

t

(x⋆, t⋆)

epi(f0)

It is easy to see that it is equivalent to the original problem; (x, t) is optimal for the
epigraph form if and only if x is optimal for the original problem and t = f0(x). Note
that the objective function for the epigraph form problem is a linear function of (x, t).
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Convex Optimization Fundamentals Properties of Convex Optimization Problems

Standard Form Convex Optimization Problem
In an abstract sense, a convex optimization problem is minimizing a convex function
over a convex set. Here, we will call a problem a convex optimization problem if it can
be expressed in the following way.

Standard Form of Convex Optimization Problem

minimize f0(x)

subject to fk(x) ≤ 0 , k = 1, . . . ,m

aT
k x = bk , k = 1, . . . , p

≡
minimize f0(x)

subject to fk(x) ≤ 0 , k = 1, . . . ,m

Ax = b

.

The objective function f0 and inequality constraint functions f1, . . . , fm are
convex.

The equality constraints, characterized by ak ∈ Rn and bk ∈ R for k = 1, . . . , p,
or A ∈ Rp×n and b ∈ Rp, are affine.

Important Property:

The feasible set of a convex optimization problem is convex.
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Convex Optimization Fundamentals Properties of Convex Optimization Problems

Local and Global Optimality

Locally Optimal Points are Globally Optimal:

Any locally optimal point of a convex optimization problem is also (globally) optimal.

Proof: (By Contradiction)

Suppose x is locally optimal and y is optimal with f0(y) < f0(x). As x is locally
optimal, this means that there is an R > 0 such that

z is feasible , ||z− x||2 ≤ R =⇒ f0(z) ≥ f0(x) .

Consider z = (1− θ) x + θy with θ = R/
(
2 ||y − x||2

)
. Then, we have the following.

As ||y − x||2 > R, we have 0 < θ < 1/2.

Since z is a convex combination of two feasible points x and y, it is also feasible.

We have ||z− x||2 = R/2 < R.

By the convexity of f0, we have

f0(z) ≤ (1− θ) f0(x) + θf0(y) < f0(x) ,

which contradicts our assumption that x is locally optimal.
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Convex Optimization Fundamentals Properties of Convex Optimization Problems

Optimality Criterion for Differentiable Objectives
A point x is optimal if and only if it is feasible and

(∇f0(x))T (y − x) ≥ 0 ,

for all feasible y. If nonzero, −∇f0(x) defines a supporting hyperplane to the feasible set X at x.

X x

−∇f0(x)

Unconstrained problem: minimize f0(x).
A point x is optimal if and only if

x ∈ dom(f0) , ∇f0(x) = 0 .

Equality constrained problem: minimize f0(x) subject to Ax = b.
A point x is optimal if and only if there exists a ν such that

x ∈ dom(f0) , Ax = b , ∇f0(x) +AT ν = 0 .

Minimization over nonnegative orthant: minimize f0(x) subject to x � 0.
A point x is optimal if and only if

x ∈ dom(f0) , x � 0 ,

{
[∇f0(x)]k ≥ 0 , xk = 0

[∇f0(x)]k = 0 , xk > 0
.

Andre Tkacenko (JPL) EE/ACM 150 - Lecture 8 April 26, 2012 11 / 27



Convex Optimization Fundamentals Equivalences

Equivalent Convex Problems
Eliminating equality constraints:

minimize f0(x)

subject to fk(x) ≤ 0 , k = 1, . . . ,m

Ax = b

is equivalent to

minimize (over z) f0(Fz+ x0)

subject to fk(Fz+ x0) ≤ 0 , k = 1, . . . ,m
,

where F and x0 are such that

Ax = b⇐⇒ x = Fz+ x0 .

In other words, R(F) = N (A) and x0 is a particular solution to Ax = b.

Introducing equality constraints:
minimize f0(A0x+ b0)

subject to fk(Akx+ bk) ≤ 0 , k = 1, . . . ,m
,

is equivalent to

minimize (over x,yk) f0(y0)

subject to fk(yk) ≤ 0 , k = 1, . . . ,m

yk = Akx+ bk , k = 0, 1, . . . ,m

.
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Convex Optimization Fundamentals Equivalences

Equivalent Convex Problems (Continued)
Introducing slack variables for linear inequalities:

minimize f0(x)

subject to aT
k x ≤ bk , k = 1, . . . ,m

is equivalent to

minimize (over x, s) f0(x)

subject to aT
k x+ sk = bk , k = 1, . . . ,m , sk ≥ 0 , k = 1, . . . ,m

.

Epigraph form: The standard form convex problem is equivalent to

minimize (over x, t) t

subject to f0(x)− t ≤ 0 , fk(x) ≤ 0 , k = 1, . . . ,m , Ax = b
.

Minimizing over some variables:

minimize f0(x1,x2)

subject to fk(x1) ≤ 0 , k = 1, . . . ,m

is equivalent to
minimize f̃0(x1)

subject to fk(x1) ≤ 0 , k = 1, . . . ,m
,

where f̃0(x1) = infx2{f0(x1,x2)}.
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Convex Optimization Fundamentals Quasiconvex Optimization

Quasiconvex Optimization Problems
The following is the standard form of a quasiconvex optimization problem.

Standard Form of Quasiconvex Optimization Problem

minimize f0(x)

subject to fk(x) ≤ 0 , k = 1, . . . ,m

Ax = b

.

The objective function f0 : Rn → R is quasiconvex.
The inequality constraint functions f1, . . . , fm are convex.
The equality constraints, characterized by ak ∈ Rn and bk ∈ R for k = 1, . . . , p,
or A ∈ Rp×n and b ∈ Rp, are affine.

(x, f0(x))

Problems of this nature can have locally optimal points that are not (globally) optimal.
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Convex Optimization Fundamentals Quasiconvex Optimization

Convex Representation of Objective Sublevel Sets
If f0 is quasiconvex, there exists a family of functions φt such that:

φt(x) is convex in x for fixed t,

the t-sublevel set of f0 is the 0-sublevel set of φt, i.e.,

f0(x) ≤ t⇐⇒ φt(x) ≤ 0 .

Example:
Suppose f0 is given by

f0(x) =
p(x)

q(x)
,

where p is convex and q is concave with p(x) ≥ 0 and q(x) > 0 on dom(f0).
Then, if we take

φt(x) = p(x)− tq(x) ,
we have the following:

for t ≥ 0, φt is convex in x,

p(x) /q(x) ≤ t if and only if φt(x) ≤ 0.
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Convex Optimization Fundamentals Quasiconvex Optimization

Bisection Method for Quasiconvex Problems
Using a convex representation of the sublevel sets of a quasiconvex objective, we can solve a
quasiconvex optimization problem via a series of convex feasibility problems. Each of these
feasibility problems is of the following form.

find x

subject to φt(x) ≤ 0

fk(x) ≤ 0 , k = 1, . . . ,m

Ax = b

. (1)

For fixed t, this is a convex feasibility problem in x.
If feasible, we can conclude that t ≥ p?; if infeasible, then t ≤ p?.

This leads to the following bisection method for solving quasiconvex optimization problems.

Bisection Method for Solving Quasiconvex Optimization Problems:

Given l ≤ p?, u ≥ p?, tolerance ε > 0.
Repeat

1 t := (l + u) /2.

2 Solve the convex feasibility problem (1).

3 If (1) is feasible, then u := t; else l := t.

Until u− l ≤ ε.
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Linear Optimization Problems Linear Programming

Linear Programs
When the objective and constraint functions are all affine, the problem is
called a linear program (LP). A general LP has the following form:

minimize cTx + d

subject to Gx � h

Ax = b

,

where c ∈ Rn, d ∈ R, G ∈ Rm×n, h ∈ Rm, A ∈ Rp×n, and b ∈ Rp.

P

−c

x⋆

The feasible set is always a polyhedron.

One of the vertices of the polyhedron is always an optimal point.
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Linear Optimization Problems Linear Programming

Examples of LPs
Piecewise-linear minimization:

minimize max
k=1,...,m

(
aT
k x+ bk

)
,

is equivalent to the LP

minimize t

subject to aT
k x+ bk ≤ t , k = 1, . . . ,m

.

Chebyshev inequalities:
Consider a discrete random variable x on a set {u1, . . . , un} ⊆ R. The probability mass
function (pmf) is a vector p ∈ Rn with pk = Pr{x = uk} and satisfies p � 0 and 1Tp = 1.
For any function f , we have

E[f(x)] =
n∑

k=1

pkf(uk) = fTp , where f ,
[
f(u1) · · · f(un)

]T
,

which is linear in p. In the Chebyshev inequality problem, we do not know p, but we are
given upper and lower bounds on expected values of some functions of x. From this
information, we wish to calculate the upper and lower bounds of the expected value of
some target function E[f0(x)] = aT

0 p. This leads to the following two LPs.

minimize/maximize aT
0 p

subject to p � 0 , 1Tp = 1 , αk ≤ aT
k p ≤ βk , k = 1, . . . ,m

.
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Linear Optimization Problems Linear Programming

Examples of LPs (Continued)

Chebyshev center of a polyhedron:
The Chebyshev center of

P =
{

x : aT
k x ≤ bk , k = 1, . . . ,m

}
is the center xc of the largest inscribed ball (with radius r) given by

B = {xc + u : ||u|| ≤ r} .
Note that aT

k x ≤ bk for all x ∈ B if and only if

sup
{
aT
k (xc + u) : ||u|| ≤ r

}
= aT

k xc + r ||ak||� ≤ bk .
Hence, xc and r can be determined by solving the LP

maximize r

subject to aT
k xc + r ||ak||� ≤ bk , k = 1, . . . ,m

.

x⋆
c

r⋆P B
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Linear Optimization Problems Linear-Fractional Programming

Linear-Fractional Programs
The problem of minimizing a ratio of affine functions over a polyhedron is called a
linear-fractional program and is given by

minimize f0(x)

subject to Gx � h , Ax = b
,

where the objective function is

f0(x) =
cTx + d

eTx + f
, dom(f0) =

{
x : eTx + f > 0

}
.

The objective is quasilinear, and so the problem is a quasiconvex optimization
problem. It can be solved by bisection.
With the transformation

y =
x

eTx + f
, z =

1

eTx + f
,

the problem can be shown to be equivalent to the following LP:

minimize cTy + dz

subject to Gy � hz , Ay = bz

eTy + fz = 1 , z ≥ 0

.
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Linear Optimization Problems Linear-Fractional Programming

Generalized Linear-Fractional Programs
A generalization of the linear-fractional program, called the generalized
linear-fractional program, occurs when the objective is given by

f0(x) = max
k=1,...,r

cT
k x + dk

eT
k x + fk

, dom(f0) =
{

x : eT
k x + fk > 0 , k = 1, . . . , r

}
.

The objective function in this case is quasiconvex, and so the problem is quasiconvex.
It can be solved by bisection.

Example: Von Neumann model of a growing economy

maximize (over x,x+) min
k=1,...,n

x+k
xk

subject to x+ � 0 , Bx+ � Ax

.

x,x+ ∈ Rn: activity levels of n sectors of an economy, in the current and next
period, respectively.
[Ax]k ,

[
Bx+

]
k
: amounts of k-th good produced and consumed, respectively.

x+k /xk: growth rate of k-th sector.
The objective is to allocate activity to maximize the growth rate of the slowest growing
sector.
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Quadratic Optimization Problems Quadratic Programming

Quadratic Programs
When the objective is convex and quadratic and the constraint functions are all affine,
the problem is called a quadratic program (QP). A general QP has the following form:

minimize (1/2) xTPx + qTx + r

subject to Gx � h ,Ax = b
,

where P ∈ Sn
+, q ∈ Rn, r ∈ R, G ∈ Rm×n, h ∈ Rm, A ∈ Rp×n, and b ∈ Rp. Here, we

minimize a convex quadratic function over a polyhedron.

P
x⋆

−∇f0(x
⋆)

If the objective and constraints are convex quadratic functions, we get a quadratically
constrained quadratic program (QCQP). This is given by

minimize (1/2) xTP0x + qT
0 x + r0

subject to (1/2) xTPkx + qT
k x + rk ≤ 0 , k = 1, . . . ,m , Ax = b

,

where Pk ∈ Sn
+, qk ∈ Rn, and rk ∈ R for k = 0, 1, . . . ,m, A ∈ Rp×n, and b ∈ Rp.

Here, we minimize a convex quadratic function over a polyhedron.
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Quadratic Optimization Problems Quadratic Programming

Examples of QPs

Least squares:
minimize ||Ax− b||22 .

This has an analytic solution given by x? = A#b.
We can add linear constraints, such as l � x � u (box constraints).

Linear program with random cost:

minimize cTx + γxTΣx = E
[
cTx

]
+ γVar

(
cTx

)
subject to Gx � h , Ax = b

.

Here, c is a random vector with mean c and covariance Σ.
Thus, cTx is a random variable with mean cTx and variance xTΣx.
The quantity γ > 0 is a risk aversion parameter in that it controls the
trade-off between the expected cost and the variance or risk.
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Quadratic Optimization Problems Quadratic Programming

Examples of QPs (Continued)

Distance between polyhedra:
The Euclidean distance between the polyhedra P1 = {x : A1x � b1} and
P2 = {x : A2x � b2} is given by

dist(P1,P2) = inf
{
||x1 − x2||2 : x1 ∈ P1 , x2 ∈ P2

}
,

and can be found by solving the QP
minimize ||x1 − x2||22
subject to A1x1 � b1 , A2x2 = b2

.

Bounding variance:
As an extension to the Chebyshev inequalities considered above, suppose we
want to bound the variance σ2 of a function f of a discrete random variable x:

σ2 = E
[
f2(x)

]
− (E[f(x)])2 =

n∑
k=1

f2
kpk −

(
n∑

k=1

fkpk

)2

,

with fk , f(uk). This is a concave quadratic function of p. So, we can maximize
the variance of f(x), subject to the given prior information, by solving the QP

minimize
∑n

k=1 f
2
kpk −

(∑n
k=1 fkpk

)2
subject to p � 0 , 1Tp = 1 , αk ≤ aT

k p ≤ βk , k = 1, . . . ,m
.
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Quadratic Optimization Problems Second-Order Cone Programming

Second-Order Cone Programs

A problem closely related to quadratic programming is the
second-order cone program (SOCP) given by

minimize fTx

subject to ||Akx + bk||2 ≤ cTk x + dk , k = 1, . . . ,m

Fx = g

,

where f ∈ Rn, for k = 1, . . . ,m we have Ak ∈ Rnk×n, bk ∈ Rnk ,
ck ∈ Rn, and dk ∈ R, and finally F ∈ Rp×n and g ∈ Rp.

The inequalities are called second-order cone (SOC) constraints,
since we have(

Akx + bk, c
T
k x + dk

)
∈ second-order cone in Rnk+1 .

If nk = 0 for k = 1 . . . ,m, it reduces to an LP. Similarly, if ck = 0
for k = 1, . . . ,m, it reduces to a QCQP.
It is more general than LPs and QCQPs.
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Quadratic Optimization Problems Second-Order Cone Programming

Robust Linear Programming: Deterministic Case
Parameters in optimization problems often come with some uncertainty. For example, in an LP

minimize cTx

subject to aT
k x ≤ bk , k = 1, . . . ,m

,

there may be uncertainty in c, ak, or bk. For example, suppose c and bk are fixed, and each
vector ak is uncertain, but can be deterministically bounded to lie with within a given ellipsoid Ek
(called the uncertainty ellipsoid). Namely, we have

ak ∈ Ek =
{
ak +Pku : ||u||2 ≤ 1

}
,

where ak ∈ Rn is the center of the ellipsoid and the singular values/vectors of P ∈ Rn×n dictate
the semi-axis length/orientations of the ellipsoid, respectively. This leads to the robust LP:

minimize cTx

subject to aT
k x ≤ bk , ak ∈ Ek , k = 1, . . . ,m

.

Since sup||u||2≤1

{
(ak +Pku)

T x
}

= aT
k x+

∣∣∣∣PT
k x
∣∣∣∣
2
, the robust LP above is equivalent to

the SOCP
minimize cTx

subject to aT
k x+

∣∣∣∣∣∣PT
k x
∣∣∣∣∣∣
2
≤ bk , ak ∈ Ek , k = 1, . . . ,m

.
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Quadratic Optimization Problems Second-Order Cone Programming

Robust Linear Programming: Stochastic Case
Here, we assume that ak is now a random vector. Specifically, we assume ak is
Gaussian with mean ak and covariance Σk (i.e., ak ∼ N (ak,Σk)).
As such, aT

k x is a Gaussian random variable with mean aT
k x and variance

xTΣkx. Hence, we have

Pr
{

aT
k x ≤ bk

}
= Φ

 bk − aT
k x∣∣∣∣∣∣Σ1/2

k x
∣∣∣∣∣∣

2

 ,

where Φ(x) =
(
1/
√

2π
) ´ x
−∞ e

−t2/2 dt is the cumulative distribution function (cdf)
of the standard normal distribution N (0, 1).
This leads to the robust LP

minimize cTx

subject to Pr
{

aT
k x ≤ bk

}
≥ η , k = 1, . . . ,m

,

where η is a confidence parameter.
When η ≥ 1/2, this is equivalent to the SOCP

minimize cTx

subject to aTk x + Φ−1(η)
∣∣∣∣∣∣Σ1/2

k x
∣∣∣∣∣∣

2
≤ bk , k = 1, . . . ,m

.
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