EE/ACM 150 - Applications of Convex Optimization in Signal Processing and Communications Lecture 9

Andre Tkacenko

Signal Processing Research Group
Jet Propulsion Laboratory
May 1, 2012

Caltech

Outline

1 Geometric Programming

- Introduction
- Transformation into Convex Form
- Examples

2 Generalized Inequality Constraints

- Introduction
- Semidefinite Programming
- Examples

Monomials, Posynomials, and Geometric Programs

Monomial Functions:

A function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ given by

$$
f(\mathbf{x})=c x_{1}^{a_{1}} x_{2}^{a_{2}} \cdots x_{n}^{a_{n}}, \operatorname{dom}(f)=\mathbb{R}_{++}^{n}
$$

where $c>0$ and $a_{i} \in \mathbb{R}$ for $i=1, \ldots, n$ is called a monomial function or monomial. For example, $f\left(x_{1}, x_{2}\right)=1.7 x_{1}^{-0.3} x_{2}^{\sqrt{\pi}}$ is a monomial of two variables.

Posynomial Functions:

A sum of monomials, i.e., a function of the form

$$
f(\mathbf{x})=\sum_{k=1}^{K} c_{k} x_{1}^{a_{1, k}} x_{2}^{a_{2, k}} \cdots x_{n}^{a_{n, k}}, \operatorname{dom}(f)=\mathbb{R}_{++}^{n}
$$

is called a posynomial function (with K terms) or posynomial. For example, $f\left(x_{1}, x_{2}\right)=1.2 x_{1}^{-3.7} x_{2}^{e}+\pi^{2} x_{1}^{5} x_{2}^{-1.9}$ is a posynomial.

Geometric Program (GP):

An optimization problem of the form

$$
\begin{array}{ll}
\operatorname{minimize} & f_{0}(\mathbf{x}) \\
\text { subject to } & f_{i}(\mathbf{x}) \leq 1, i=1, \ldots, m \\
& h_{i}(\mathbf{x})=1, i=1, \ldots, p
\end{array}
$$

where $f_{0}, f_{1}, \ldots, f_{m}$ are posynomials and h_{1}, \ldots, h_{p} are monomials is called a geometric program (GP). Here, the domain of the problem is $\mathcal{D}=\mathbb{R}_{++}^{n}$ and the constraint $\mathbf{x} \succ \mathbf{0}$ is implicit. Note that this form of the GP as stated here is not a convex optimization problem.

Geometric Program in Convex Form

With a change of variables and a transformation of the objective and constraint functions, a GP can be converted to a convex optimization problem. For this, we change variables to $y_{i}=\log x_{i}$ (so that $x_{i}=e^{y_{i}}$) and take the logarithm of the objective and constraint functions.

■ Monomial transformation:

$$
f(\mathbf{x})=c x_{1}^{a_{1}} \cdots x_{n}^{a_{n}} \rightarrow \log f\left(e^{y_{1}}, \ldots, e^{y_{n}}\right)=\mathbf{a}^{T} \mathbf{y}+b
$$

where $b=\log c$.

- Posynomial transformation:

$$
f(\mathbf{x})=\sum_{k=1}^{K} c_{k} x_{1}^{a_{1, k}} \cdots x_{n}^{a_{n, k}} \rightarrow \log f\left(e^{y_{1}}, \ldots, e^{y_{n}}\right)=\log \left(\sum_{k=1}^{K} e^{\mathbf{a}_{k}^{T} \mathbf{y}+b_{k}}\right)
$$

where $b_{k}=\log c_{k}$ for $k=1, \ldots, K$.

- GP transformation:

The geometric program transforms to the following convex form.

$$
\begin{array}{ll}
\operatorname{minimize} & \widetilde{f}_{0}(\mathbf{y})=\log \left(\sum_{k=1}^{K_{0}} e^{\mathbf{a}_{0, k}^{T} \mathbf{y}+b_{0, k}}\right) \\
\text { subject to } & \widetilde{f}_{i}(\mathbf{y})=\log \left(\sum_{k=1}^{K_{i}} e^{\mathbf{a}_{i, k}^{T} \mathbf{y}+b_{i, k}}\right) \leq 0, i=1, \ldots, m \\
& \widetilde{h}_{i}(\mathbf{y})=\mathbf{g}_{i}^{T} \mathbf{y}+d_{i}=0, i=1, \ldots, p
\end{array}
$$

Here, the functions \widetilde{f}_{i} are convex and \widetilde{h}_{i} are affine, as desired. We refer to this as a geometric program in convex form, as opposed the original GP formulation, which we refer to as a geometric program in posynomial form.

Design of a Cantilever Beam

It can be shown that the design of a cantilever, which is a beam anchored only at one end, can be posed as a GP.

- The beam consists of N segments with unit lengths and rectangular cross-sections of size $w_{i} \times h_{i}$ for $i=1, \ldots, N$.
\square A given vertical force F is applied at the right end of the beam.

Design Problem:

$$
\begin{array}{ll}
\text { minimize } & \text { total weight } \\
\text { subject to } & \text { upper \& lower bounds on } w_{i} \text { and } h_{i} \\
& \text { upper \& lower bounds on aspect ratios } w_{i} / h_{i} \\
& \text { upper bound on stress in each segment } \\
& \text { upper bound on vertical deflection at the end of the beam }
\end{array}
$$

with variables w_{i}, h_{i} for $i=1, \ldots, N$.
Under the assumption that the deflections are small and that the material is linearly elastic, we can pose this design problem as a GP.

Design of a Cantilever Beam (Continued)

Objective Function:

- The total weight is propotional to the total volume, which is given by

$$
w_{1} h_{1}+\cdots+w_{N} h_{N}
$$

assuming unit lengths for all the segments. Note that this is a posynomial in \mathbf{w}, \mathbf{h}.

Constraint Functions:

- The aspect ratio w_{i} / h_{i} and inverse aspect ratio h_{i} / w_{i} are monomials in \mathbf{w}, \mathbf{h}.
- The maximum stress in the i-th segment is given by $6 i F /\left(w_{i} h_{i}^{2}\right)$, which is a monomial in \mathbf{w}, \mathbf{h}.
- The vertical deflection y_{i} and slope v_{i} of the central axis at the right end of the i-th segment is given recursively as

$$
\begin{aligned}
v_{i} & =12(i-1 / 2) \frac{F}{E w_{i} h_{i}^{3}}+v_{i+1} \\
y_{i} & =6(i-1 / 3) \frac{F}{E w_{i} h_{i}^{3}}+v_{i+1}+y_{i+1}
\end{aligned}
$$

for $i=N, N-1, \ldots, 1$, with the boundary conditions $v_{N+1}=y_{N+1}=0$. Here, $E>0$ is a constant which is a measure of the stiffness of the elastic material used to make the beam known as Young's modulus. Note that v_{i} and y_{i} are posynomial functions of \mathbf{w}, \mathbf{h}.

Design of a Cantilever Beam (Continued)

Design Problem:

$$
\begin{array}{ll}
\operatorname{minimize} & w_{1} h_{1}+\cdots+w_{N} h_{N} \\
\text { subject to } & w_{\min } \leq w_{i} \leq w_{\max }, h_{\min } \leq h_{i} \leq h_{\max }, i=1, \ldots, N \\
& S_{\min } \leq w_{i} / h_{i} \leq S_{\max }, i=1, \ldots, N \\
& 6 i F /\left(w_{i} h_{i}^{2}\right) \leq \sigma_{\max }, i=1, \ldots, N \\
& y_{1} \leq y_{\max }
\end{array}
$$

Here, $w_{\min }, w_{\max }, h_{\min }$ and $h_{\max }$ denote the minimum and maximum allowable width and height of each segment, respectively, $S_{\min }$ and $S_{\max }$ denote the minimum and maximum allowable aspect ratio for each segment, respectively, $\sigma_{\max }$ denotes the maximum allowable stress in each segment, and $y_{\max }$ denotes the maximum allowable vertical deflection of the end of the beam.

Formulation as a GP:

$$
\begin{array}{ll}
\operatorname{minimize} & w_{1} h_{1}+\cdots+w_{N} h_{N} \\
\text { subject to } & w_{\max }^{-1} w_{i} \leq 1, w_{\min } w_{i}^{-1} \leq 1, h_{\max }^{-1} h_{i} \leq 1, h_{\min } h_{i}^{-1} \leq 1, i=1, \ldots, N \\
& S_{\max }^{-1} w_{i} h_{i}^{-1} \leq 1, S_{\min } w_{i}^{-1} h_{i} \leq 1, i=1, \ldots, N \\
& 6 i F \sigma_{\max }^{-1} w_{i}^{-1} h_{i}^{-2} \leq 1, i=1, \ldots, N \\
& y_{\max }^{-1} y_{1} \leq 1
\end{array}
$$

Spectral Radius Minimization of a Nonnegative Matrix

If a matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$ is elementwise nonnegative (i.e., $A_{\ell, m} \geq 0$ for $\ell, m=1, \ldots, n$) and is irreducible (meaning that $(\mathbf{I}+\mathbf{A})^{n-1}$ is elementwise positive), then by the Perron-Frobenius theorem, A has a positive real eigenvalue $\lambda_{\mathrm{pf}}(\mathbf{A})$, called the Perron-Frobenius eigenvalue, which is equal to its spectral radius, i.e., $\max _{i}\left\{\left|\lambda_{i}(\mathbf{A})\right|\right\}$.
Properties of Perron-Frobenius Eigenvalue $\lambda_{\mathrm{pf}}(\mathbf{A})$:

- It determines the asymptotic growth or decay rate of $\mathbf{A}^{k}: \mathbf{A}^{k} \simeq \lambda_{\mathrm{pf}}^{k}$ as $k \rightarrow \infty$.
- It has an alternate characterization given by

$$
\lambda_{\mathrm{pf}}(\mathbf{A})=\inf \{\lambda: \mathbf{A} \mathbf{v} \preceq \lambda \mathbf{v} \text { for some } \mathbf{v} \succ \mathbf{0}\} .
$$

Minimizing Spectral Radius of Matrix of Posynomials:

- The goal is to minimize $\lambda_{\mathrm{pf}}(\mathbf{A}(\mathbf{x}))$, where the elements $A_{\ell, m}(\mathbf{x})$ are posynomials in x , subject to possible posynomial inequalities on x .
- Based on the above characterization of the Perron-Frobenius eigenvalue, this leads to the equivalent GP given below.

$$
\begin{array}{ll}
\operatorname{minimize} & \lambda \\
\text { subject to } & \sum_{m=1}^{n} A_{\ell, m}(\mathbf{x}) v_{m} /\left(\lambda v_{\ell}\right) \leq 1, \ell=1, \ldots, n, \\
& f_{i}(\mathbf{x}) \leq 1, i=1, \ldots, p
\end{array}
$$

where the optimization variables are λ, v, and x .

Design of Cascaded Amplifier Gains

The optimal selection of gain values to use for a cascaded amplifier system can be posed as a GP, as we show.

■ The amplifier gains $a_{1}, \ldots, a_{n}>0$ are chosen such that the overall gain remains fixed at some prescribed level.

- Individual amplifier saturation effects limit the maximum allowable output level.
- Noise and amplifier overload effects will limit the dynamic range of the system.

Design Problem:

> maximize dynamic range
subject to upper bounds on individual amplifier output levels upper bounds on individual amplifier gains a_{i} fixed overall gain of cascaded system
with variables a_{i} for $i=1, \ldots, n$.
Using practical modeling assumptions, we can pose this design problem as a GP.

Design of Cascaded Amplifier Gains (Continued)

Objective Function:

- The dynamic range D is given by $D=S_{\max } / N_{\text {out }}$, where $S_{\max }$ is the maximum output signal level and $N_{\text {out }}$ is the output noise level.
- The signal level at the output of the i-th amplifier, S_{i}, is given recursively as

$$
S_{0}=S_{\mathrm{in}}, S_{i}=a_{i} S_{i-1}, i=1, \ldots, n,
$$

where $S_{\text {in }}$ is the input signal level.

- The root-mean-square (RMS) noise level at the output of the i-th amplifier, denoted N_{i}, is given recursively as

$$
N_{0}=0, N_{i}=a_{i} \sqrt{N_{i-1}^{2}+\eta_{i}^{2}},
$$

where η_{i} is the input-referred RMS noise level of the i-th amplifier. We have $N_{\text {out }}=N_{n}$, i.e., the noise level of the last amplifier.

Constraint Functions:

- Each amplifier has a maximum allowable output level $M_{i}>0$. Thus, we require $S_{i} \leq M_{i}$.
■ Each amplifier has a maximum gain value given by $A_{i}^{\max }>0$. Hence, we require $a_{i} \leq A_{i}^{\max }$.
- The overall gain of the system $a_{1} a_{2} \cdots a_{n}$ must be fixed at some level given by $A^{\text {tot }}$. So, we require $a_{1} \cdots a_{n}=A^{\text {tot }}$.

Design of Cascaded Amplifier Gains (Continued)

Note that for the signal levels, we have

$$
S_{i}=S_{\mathrm{in}} \prod_{m=1}^{i} a_{m} \leq M_{i}, i=1, \ldots, n \Longrightarrow S_{\mathrm{in}, \max }=\min _{i=1, \ldots, n} \frac{M_{i}}{\prod_{m=1}^{i} a_{m}}
$$

Since $S_{n}=A^{\text {tot }} S_{\text {in }}$, we have

$$
S_{\max }=A^{\mathrm{tot}} S_{\mathrm{in}, \max }=\min _{i=1, \ldots, n} M_{i} \prod_{m=i+1}^{n} a_{m}
$$

Regarding noise levels, we have

$$
N_{0}^{2}=0, N_{i}^{2}=a_{i}^{2}\left(N_{i-1}^{2}+\eta_{i}^{2}\right), i=1, \ldots, n \Longrightarrow N_{\mathrm{out}}^{2}=\sum_{\ell=1}^{n} \prod_{k=\ell}^{n} a_{k}^{2} \eta_{\ell}^{2}
$$

Therefore, the dynamic range is given by

$$
D=\frac{\min _{i} M_{i} \prod_{m=i+1}^{n} a_{m}}{\left(\sum_{\ell=1}^{n} \prod_{k=\ell}^{n} a_{k}^{2} \eta_{\ell}^{2}\right)^{1 / 2}}
$$

To maximize D, we can equivalently minimize $1 / D^{2}$. Using an epigraph form of the problem, we obtain the following, which is essentially a GP.

$$
\begin{array}{ll}
\operatorname{minimize} & t \\
\text { subject to } & \sum_{\ell=1}^{n} \prod_{k=\ell}^{n} a_{k}^{2} \eta_{\ell}^{2} \leq t M_{i}^{2} \prod_{m=i+1}^{n} a_{m}^{2}, i=1, \ldots, n \\
& a_{i} \leq A_{i}^{\max }, i=1, \ldots, n \\
& \prod_{k=1}^{n} a_{k}=A^{\mathrm{tot}}
\end{array}
$$

Problems with Generalized Inequality Constraints

One useful generalization of the standard form convex optimization problem is to allow the inequality constraint functions to be vector-valued and use generalized inequalities in the constraints. This yields the following generalization of the convex optimization problem.

$$
\begin{array}{ll}
\operatorname{minimize} & f_{0}(\mathbf{x}) \\
\text { subject to } & \mathbf{f}_{i}(\mathbf{x}) \preceq_{\mathcal{K}_{i}} \mathbf{0}, i=1, \ldots, m \\
& \mathbf{A x}=\mathbf{b}
\end{array}
$$

Here, $f_{0}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is convex, while $\mathbf{f}_{i}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{k_{i}}$ is \mathcal{K}_{i}-convex with respect to the proper cone \mathcal{K}_{i} for $i=1, \ldots, m$. Also, $\mathbf{A} \in \mathbb{R}^{p \times n}$ and $\mathbf{b} \in \mathbb{R}^{p}$.
This generalization has many of the same properties as the standard convex problem including the following.

■ The feasible set, any sublevel set, and the optimal set are convex.

- Any locally optimal point for the problem is also globally optimal.
- The optimality condition for differentiable f_{0} holds without any change.

Conic Form Problem:

The special case with an affine objective and constraints is referred to as a conic form problem and is given by the following.

$$
\begin{array}{ll}
\operatorname{minimize} & \mathbf{c}^{T} \mathbf{x} \\
\text { subject to } & \mathbf{F x}+\mathbf{g} \preceq \mathcal{K}^{\mathbf{0}} \\
& \mathbf{A x}=\mathbf{b}
\end{array}
$$

This extends linear programming (the case in which $\mathcal{K}=\mathbb{R}_{+}^{m}$) to nonpolyhedral cones.

Semidefinite Programs

When $\mathcal{K}=\mathbb{S}_{+}^{k}$, the associated conic form problem is referred to as a semidefinite program (SDP). This has the following form.

$$
\begin{array}{ll}
\operatorname{minimize} & \mathbf{c}^{T} \mathbf{x} \\
\text { subject to } & x_{1} \mathbf{F}_{1}+x_{2} \mathbf{F}_{2}+\cdots+x_{n} \mathbf{F}_{n}+\mathbf{G} \preceq \mathbf{0} \\
& \mathbf{A x}=\mathbf{b}
\end{array}
$$

Here, $\mathbf{c} \in \mathbb{R}^{n}, \mathbf{F}_{i} \in \mathbb{S}^{k}$ for $i=1, \ldots, n, \mathbf{G} \in \mathbb{S}^{k}, \mathbf{A} \in \mathbb{R}^{p \times n}$, and $\mathbf{b} \in \mathbb{R}^{p}$. The inequality constraint is referred to as a linear matrix inequality (LMI).

Multiple LMIs and Linear Inequalities:

Consider a problem with a linear objective, several LMI constraints, along with linear inequality and equality constraints, of the form:
minimize $\quad \mathbf{c}^{T} \mathbf{x}$
subject to $\quad \mathbf{F}^{(i)}(\mathbf{x})=x_{1} \mathbf{F}_{1}^{(i)}+x_{2} \mathbf{F}_{2}^{(i)}+\cdots+x_{n} \mathbf{F}_{n}^{(i)}+\mathbf{G}^{(i)} \preceq \mathbf{0}, i=1, \ldots, K$.

$$
\mathbf{G x} \preceq \mathbf{h}, \mathbf{A x}=\mathbf{b}
$$

All inequality constraints can be encompassed into one LMI and the problem can be recast as the SDP:

$$
\begin{array}{ll}
\operatorname{minimize} & \mathbf{c}^{T} \mathbf{x} \\
\text { subject to } & \operatorname{diag}\left(\mathbf{G} \mathbf{x}-\mathbf{h}, \mathbf{F}^{(1)}(\mathbf{x}), \ldots, \mathbf{F}^{(K)}(\mathbf{x})\right) \preceq \mathbf{0} . \\
& \mathbf{A x}=\mathbf{b}
\end{array}
$$

LPs and SOCPs as SDPs

LP and Equivalent SDP:

LP: minimize $\mathbf{c}^{T} \mathbf{x} \quad$ SDP: minimize $\mathbf{c}^{T} \mathbf{x}$ subject to $\quad \mathbf{A x} \preceq \mathbf{b} \quad$ subject to $\operatorname{diag}(\mathbf{A x}-\mathbf{b}) \preceq \mathbf{0}$

Note the different interpretation of the generalized inequality \preceq. For the LP, \preceq denotes componentwise inequality, whereas for the SDP, \preceq denotes the usual matrix inequality.

SOCP and Equivalent SDP:

$$
\begin{array}{ll}
\text { SOCP: } & \text { minimize } \mathbf{f}^{T} \mathbf{x} \\
& \text { subject to }\left\|\mathbf{A}_{i} \mathbf{x}+\mathbf{b}_{i}\right\|_{2} \leq \mathbf{c}_{i}^{T} \mathbf{x}+d_{i}, i=1, \ldots, m
\end{array}
$$

SDP: minimize $\mathbf{f}^{T} \mathbf{x}$
subject to $\left[\begin{array}{ll}\left(\mathbf{c}_{i}^{T} \mathbf{x}+d_{i}\right) \mathbf{I} & \left(\mathbf{A}_{i} \mathbf{x}+\mathbf{b}_{i}\right) \\ \left(\mathbf{A}_{i} \mathbf{x}+\mathbf{b}_{i}\right)^{T} & \left(\mathbf{c}_{i}^{T} \mathbf{x}+d_{i}\right)\end{array}\right] \succeq \mathbf{0}, i=1, \ldots, m$
The SDP formulation of the SOCP arises through the use of a Schur complement.

Eigenvalue / Matrix Norm Minimization

Eigenvalue Minimization:

minimize $\lambda_{\max }(\mathbf{A}(\mathbf{x}))$,
where $\mathbf{A}(\mathbf{x})=\mathbf{A}_{0}+x_{1} \mathbf{A}_{1}+\cdots+x_{n} \mathbf{A}_{n}$ (with given $\mathbf{A}_{i} \in \mathbb{S}^{k}$).
Equivalent SDP:
minimize t
subject to $\quad \mathbf{A}(\mathbf{x}) \preceq t \mathbf{I}$

- Variables are $\mathbf{x} \in \mathbb{R}^{n}, t \in \mathbb{R}$.
- Constraint follows from

$$
\lambda_{\max }(\mathbf{A}) \leq t \Longleftrightarrow \mathbf{A} \preceq t \mathbf{I} .
$$

Matrix Norm Minimization:

$$
\operatorname{minimize} \quad\left(\lambda_{\max }\left(\mathbf{A}(\mathbf{x})^{T} \mathbf{A}(\mathbf{x})\right)\right)^{1 / 2}
$$

where $\mathbf{A}(\mathbf{x})=\mathbf{A}_{0}+x_{1} \mathbf{A}_{1}+\cdots+x_{n} \mathbf{A}_{n}$ (with given $\mathbf{A}_{i} \in \mathbb{R}^{p \times q}$).
Equivalent SDP:
minimize t

$$
\text { subject to }\left[\begin{array}{cc}
t \mathbf{I} & \mathbf{A}(\mathbf{x}) \\
\mathbf{A}(\mathbf{x})^{T} & t \mathbf{I}
\end{array}\right] \succeq \mathbf{0}
$$

- Variables are $\mathbf{x} \in \mathbb{R}^{n}, t \in \mathbb{R}$.
- Constraint follows from

$$
\|\mathbf{A}\|_{2} \leq t \Longleftrightarrow \mathbf{A}^{T} \mathbf{A} \preceq t^{2} \mathbf{I}, t \geq 0 \Longleftrightarrow\left[\begin{array}{cc}
t \mathbf{I} & \mathbf{A} \\
\mathbf{A}^{T} & t \mathbf{I}
\end{array}\right] \succeq \mathbf{0}
$$

Condition Number Minimization

Optimization Problem Statement:

$$
\operatorname{minimize} \quad \kappa(\mathbf{A}(\mathbf{x})) \triangleq \frac{\lambda_{\max }(\mathbf{A}(\mathbf{x}))}{\lambda_{\min }(\mathbf{A}(\mathbf{x}))}
$$

where $\mathbf{A}(\mathbf{x})=\mathbf{A}_{0}+x_{1} \mathbf{A}_{1}+\cdots+x_{n} \mathbf{A}_{n}$ (with given $\mathbf{A}_{i} \in \mathbb{S}^{m}$). The domain is $\{\mathbf{x}: \mathbf{A}(\mathbf{x}) \succ \mathbf{0}\}$.

Equivalent Form:

minimize $\quad \lambda / \gamma$
subject to $\quad \gamma \mathbf{I} \preceq \mathbf{A}(\mathbf{x}) \preceq \lambda \mathbf{I}$
where the domain of the objective is $\{(\gamma, \lambda): \gamma>0\}$.
Quasiconvex Formulation:

$$
\begin{array}{ll}
\text { find } & \gamma, \lambda, \mathbf{x} \\
\text { subject to } & \lambda \leq \alpha \gamma, \gamma \mathbf{I} \preceq \mathbf{A}(\mathbf{x}) \preceq \lambda \mathbf{I}, \gamma>0
\end{array}
$$

SDP Formulation:
With the change of variables $s=1 / \gamma, t=\lambda / \gamma$, and $\mathbf{y}=\mathbf{x} / \gamma$, we get

$$
\begin{array}{ll}
\operatorname{minimize} & t \\
\text { subject to } & \mathbf{I} \preceq s \mathbf{A}_{0}+y_{1} \mathbf{A}_{1}+\cdots+y_{n} \mathbf{A}_{n} \preceq t \mathbf{I} \\
& s \geq 0
\end{array}
$$

