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Geometric Programming Introduction

Monomials, Posynomials, and Geometric Programs
Monomial Functions:
A function f : Rn → R given by

f(x) = cxa11 xa22 · · ·x
an
n , dom(f) = Rn++ ,

where c > 0 and ai ∈ R for i = 1, . . . , n is called a monomial function or monomial. For example,
f(x1, x2) = 1.7x−0.3

1 x
√
π

2 is a monomial of two variables.

Posynomial Functions:
A sum of monomials, i.e., a function of the form

f(x) =
K∑
k=1

ckx
a1,k
1 x

a2,k
2 · · ·xan,k

n , dom(f) = Rn++ ,

is called a posynomial function (with K terms) or posynomial. For example,
f(x1, x2) = 1.2x−3.7

1 xe2 + π2x51x
−1.9
2 is a posynomial.

Geometric Program (GP):
An optimization problem of the form

minimize f0(x)

subject to fi(x) ≤ 1 , i = 1, . . . ,m

hi(x) = 1 , i = 1, . . . , p

,

where f0, f1, . . . , fm are posynomials and h1, . . . , hp are monomials is called a geometric
program (GP). Here, the domain of the problem is D = Rn++ and the constraint x � 0 is implicit.
Note that this form of the GP as stated here is not a convex optimization problem.
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Geometric Programming Transformation into Convex Form

Geometric Program in Convex Form
With a change of variables and a transformation of the objective and constraint functions, a GP
can be converted to a convex optimization problem. For this, we change variables to yi = log xi
(so that xi = eyi ) and take the logarithm of the objective and constraint functions.

Monomial transformation:
f(x) = cxa11 · · ·x

an
n → log f(ey1 , . . . , eyn ) = aTy + b ,

where b = log c.
Posynomial transformation:

f(x) =
K∑
k=1

ckx
a1,k
1 · · ·xan,k

n → log f(ey1 , . . . , eyn ) = log

(
K∑
k=1

ea
T
k y+bk

)
,

where bk = log ck for k = 1, . . . ,K.
GP transformation:
The geometric program transforms to the following convex form.

minimize f̃0(y) = log
(∑K0

k=1 e
aT
0,ky+b0,k

)
subject to f̃i(y) = log

(∑Ki
k=1 e

aT
i,ky+bi,k

)
≤ 0 , i = 1, . . . ,m

h̃i(y) = gTi y + di = 0 , i = 1, . . . , p

,

Here, the functions f̃i are convex and h̃i are affine, as desired. We refer to this as a
geometric program in convex form, as opposed the original GP formulation, which we refer
to as a geometric program in posynomial form.
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Geometric Programming Examples

Design of a Cantilever Beam
It can be shown that the design of a cantilever, which is a beam anchored only at one end, can
be posed as a GP.

xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx

F

segment 4! segment 3! segment 2! segment 1!

The beam consists of N segments with unit lengths and rectangular cross-sections of size
wi × hi for i = 1, . . . , N .
A given vertical force F is applied at the right end of the beam.

Design Problem:
minimize total weight
subject to upper & lower bounds on wi and hi

upper & lower bounds on aspect ratios wi/hi
upper bound on stress in each segment
upper bound on vertical deflection at the end of the beam

,

with variables wi, hi for i = 1, . . . , N .
Under the assumption that the deflections are small and that the material is linearly elastic, we
can pose this design problem as a GP.
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Geometric Programming Examples

Design of a Cantilever Beam (Continued)
Objective Function:

The total weight is propotional to the total volume, which is given by
w1h1 + · · ·+ wNhN ,

assuming unit lengths for all the segments. Note that this is a posynomial in w,h.
Constraint Functions:

The aspect ratio wi/hi and inverse aspect ratio hi/wi are monomials in w,h.
The maximum stress in the i-th segment is given by 6iF/

(
wih

2
i

)
, which is a

monomial in w,h.
The vertical deflection yi and slope vi of the central axis at the right end of the
i-th segment is given recursively as

vi = 12 (i− 1/2)
F

Ewih3
i

+ vi+1

yi = 6 (i− 1/3)
F

Ewih3
i

+ vi+1 + yi+1

,

for i = N,N − 1, . . . , 1, with the boundary conditions vN+1 = yN+1 = 0. Here,
E > 0 is a constant which is a measure of the stiffness of the elastic material
used to make the beam known as Young’s modulus. Note that vi and yi are
posynomial functions of w,h.
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Geometric Programming Examples

Design of a Cantilever Beam (Continued)
Design Problem:

minimize w1h1 + · · ·+ wNhN
subject to wmin ≤ wi ≤ wmax , hmin ≤ hi ≤ hmax , i = 1, . . . , N

Smin ≤ wi/hi ≤ Smax , i = 1, . . . , N

6iF/
(
wih

2
i

)
≤ σmax , i = 1, . . . , N

y1 ≤ ymax

.

Here, wmin, wmax, hmin and hmax denote the minimum and maximum allowable width
and height of each segment, respectively, Smin and Smax denote the minimum and
maximum allowable aspect ratio for each segment, respectively, σmax denotes the
maximum allowable stress in each segment, and ymax denotes the maximum
allowable vertical deflection of the end of the beam.

Formulation as a GP:

minimize w1h1 + · · ·+ wNhN
subject to w−1

maxwi ≤ 1 , wminw
−1
i ≤ 1 , h−1

maxhi ≤ 1 , hminh
−1
i ≤ 1 , i = 1, . . . , N

S−1
maxwih

−1
i ≤ 1 , Sminw

−1
i hi ≤ 1 , i = 1, . . . , N

6iFσ−1
maxw

−1
i h−2

i ≤ 1 , i = 1, . . . , N

y−1
maxy1 ≤ 1

.
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Geometric Programming Examples

Spectral Radius Minimization of a Nonnegative Matrix
If a matrix A ∈ Rn×n is elementwise nonnegative (i.e., A`,m ≥ 0 for `,m = 1, . . . , n)
and is irreducible (meaning that (I+A)n−1 is elementwise positive), then by the
Perron-Frobenius theorem, A has a positive real eigenvalue λpf(A), called the
Perron-Frobenius eigenvalue, which is equal to its spectral radius, i.e., maxi {|λi(A)|}.
Properties of Perron-Frobenius Eigenvalue λpf(A):

It determines the asymptotic growth or decay rate of Ak: Ak ' λkpf as k →∞.
It has an alternate characterization given by

λpf(A) = inf {λ : Av � λv for some v � 0} .

Minimizing Spectral Radius of Matrix of Posynomials:
The goal is to minimize λpf(A(x)), where the elements A`,m(x) are posynomials
in x, subject to possible posynomial inequalities on x.
Based on the above characterization of the Perron-Frobenius eigenvalue, this
leads to the equivalent GP given below.

minimize λ

subject to
∑n
m=1A`,m(x) vm/ (λv`) ≤ 1 , ` = 1, . . . , n

fi(x) ≤ 1 , i = 1, . . . , p

,

where the optimization variables are λ, v, and x.
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Geometric Programming Examples

Design of Cascaded Amplifier Gains
The optimal selection of gain values to use for a cascaded amplifier system can be
posed as a GP, as we show.

· · ·a1 a2 an

The amplifier gains a1, . . . , an > 0 are chosen such that the overall gain remains
fixed at some prescribed level.

Individual amplifier saturation effects limit the maximum allowable output level.

Noise and amplifier overload effects will limit the dynamic range of the system.

Design Problem:

maximize dynamic range
subject to upper bounds on individual amplifier output levels

upper bounds on individual amplifier gains ai
fixed overall gain of cascaded system

,

with variables ai for i = 1, . . . , n.

Using practical modeling assumptions, we can pose this design problem as a GP.
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Geometric Programming Examples

Design of Cascaded Amplifier Gains (Continued)
Objective Function:

The dynamic range D is given by D = Smax/Nout, where Smax is the maximum
output signal level and Nout is the output noise level.
The signal level at the output of the i-th amplifier, Si, is given recursively as

S0 = Sin , Si = aiSi−1 , i = 1, . . . , n ,

where Sin is the input signal level.
The root-mean-square (RMS) noise level at the output of the i-th amplifier,
denoted Ni, is given recursively as

N0 = 0 , Ni = ai

√
N2
i−1 + η2i ,

where ηi is the input-referred RMS noise level of the i-th amplifier. We have
Nout = Nn, i.e., the noise level of the last amplifier.

Constraint Functions:
Each amplifier has a maximum allowable output level Mi > 0. Thus, we require
Si ≤Mi.
Each amplifier has a maximum gain value given by Amax

i > 0. Hence, we require
ai ≤ Amax

i .
The overall gain of the system a1a2 · · · an must be fixed at some level given by
Atot. So, we require a1 · · · an = Atot.
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Geometric Programming Examples

Design of Cascaded Amplifier Gains (Continued)
Note that for the signal levels, we have

Si = Sin
∏i
m=1am ≤Mi , i = 1, . . . , n =⇒ Sin,max = min

i=1,...,n

Mi∏i
m=1 am

.

Since Sn = AtotSin, we have

Smax = AtotSin,max = min
i=1,...,n

Mi
∏n
m=i+1am .

Regarding noise levels, we have

N2
0 = 0 , N2

i = a2i
(
N2
i−1 + η2i

)
, i = 1, . . . , n =⇒ N2

out =
∑n
`=1

∏n
k=`a

2
kη

2
` .

Therefore, the dynamic range is given by

D =
miniMi

∏n
m=i+1 am(∑n

`=1

∏n
k=` a

2
kη

2
`

)1/2 .
To maximize D, we can equivalently minimize 1/D2. Using an epigraph form of the problem, we
obtain the following, which is essentially a GP.

minimize t

subject to
∑n
`=1

∏n
k=` a

2
kη

2
` ≤ tM

2
i

∏n
m=i+1 a

2
m , i = 1, . . . , n

ai ≤ Amax
i , i = 1, . . . , n∏n

k=1 ak = Atot

.
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Generalized Inequality Constraints Introduction

Problems with Generalized Inequality Constraints
One useful generalization of the standard form convex optimization problem is to allow the
inequality constraint functions to be vector-valued and use generalized inequalities in the
constraints. This yields the following generalization of the convex optimization problem.

minimize f0(x)

subject to fi(x) �Ki
0 , i = 1, . . . ,m

Ax = b

.

Here, f0 : Rn → R is convex, while fi : Rn → Rki is Ki-convex with respect to the proper cone
Ki for i = 1, . . . ,m. Also, A ∈ Rp×n and b ∈ Rp.
This generalization has many of the same properties as the standard convex problem including
the following.

The feasible set, any sublevel set, and the optimal set are convex.
Any locally optimal point for the problem is also globally optimal.
The optimality condition for differentiable f0 holds without any change.

Conic Form Problem:
The special case with an affine objective and constraints is referred to as a conic form problem
and is given by the following.

minimize cTx

subject to Fx+ g �K 0

Ax = b

.

This extends linear programming (the case in which K = Rm+ ) to nonpolyhedral cones.
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Generalized Inequality Constraints Semidefinite Programming

Semidefinite Programs
When K = Sk+, the associated conic form problem is referred to as a semidefinite program
(SDP). This has the following form.

minimize cTx

subject to x1F1 + x2F2 + · · ·+ xnFn +G � 0

Ax = b

.

Here, c ∈ Rn, Fi ∈ Sk for i = 1, . . . , n, G ∈ Sk, A ∈ Rp×n, and b ∈ Rp. The inequality
constraint is referred to as a linear matrix inequality (LMI).

Multiple LMIs and Linear Inequalities:
Consider a problem with a linear objective, several LMI constraints, along with linear inequality
and equality constraints, of the form:

minimize cTx

subject to F(i)(x) = x1F
(i)
1 + x2F

(i)
2 + · · ·+ xnF

(i)
n +G(i) � 0 , i = 1, . . . ,K

Gx � h , Ax = b

.

All inequality constraints can be encompassed into one LMI and the problem can be recast as
the SDP:

minimize cTx

subject to diag
(
Gx− h,F(1)(x) , . . . ,F(K)(x)

)
� 0

Ax = b

.
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Generalized Inequality Constraints Semidefinite Programming

LPs and SOCPs as SDPs

LP and Equivalent SDP:

LP: minimize cTx SDP: minimize cTx

subject to Ax � b subject to diag(Ax− b) � 0

Note the different interpretation of the generalized inequality �. For the LP, � denotes
componentwise inequality, whereas for the SDP, � denotes the usual matrix inequality.

SOCP and Equivalent SDP:

SOCP: minimize fTx

subject to ||Aix+ bi||2 ≤ cTi x+ di , i = 1, . . . ,m

SDP: minimize fTx

subject to


(
cTi x+ di

)
I (Aix+ bi)

(Aix+ bi)
T

(
cTi x+ di

)
 � 0 , i = 1, . . . ,m

The SDP formulation of the SOCP arises through the use of a Schur complement.
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Generalized Inequality Constraints Semidefinite Programming

Eigenvalue / Matrix Norm Minimization
Eigenvalue Minimization:

minimize λmax(A(x)) ,

where A(x) = A0 + x1A1 + · · ·+ xnAn (with given Ai ∈ Sk).

Equivalent SDP: minimize t

subject to A(x) � tI
.

Variables are x ∈ Rn, t ∈ R.
Constraint follows from

λmax(A) ≤ t⇐⇒ A � tI .
Matrix Norm Minimization:

minimize
(
λmax

(
A(x)TA(x)

))1/2
,

where A(x) = A0 + x1A1 + · · ·+ xnAn (with given Ai ∈ Rp×q).

Equivalent SDP: minimize t

subject to

[
tI A(x)

A(x)T tI

]
� 0

.

Variables are x ∈ Rn, t ∈ R.
Constraint follows from

||A||2 ≤ t⇐⇒ ATA � t2I , t ≥ 0⇐⇒
[

tI A

AT tI

]
� 0 .
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Generalized Inequality Constraints Semidefinite Programming

Condition Number Minimization
Optimization Problem Statement:

minimize κ(A(x)) ,
λmax(A(x))

λmin(A(x))
,

where A(x) = A0 + x1A1 + · · ·+ xnAn (with given Ai ∈ Sm). The domain is
{x : A(x) � 0}.
Equivalent Form:

minimize λ/γ

subject to γI � A(x) � λI
,

where the domain of the objective is {(γ, λ) : γ > 0}.
Quasiconvex Formulation:

find γ, λ,x

subject to λ ≤ αγ , γI � A(x) � λI , γ > 0
,

SDP Formulation:
With the change of variables s = 1/γ, t = λ/γ, and y = x/γ, we get

minimize t

subject to I � sA0 + y1A1 + · · ·+ ynAn � tI
s ≥ 0

.
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