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Abstract—Some of the major challenges in the design of new-
generation wireless mobile systems are the suppression of mul-
tiuser interference (MUI) and inter-symbol interference (ISI)
within a single user created by the multipath propagation. Both
of these problems were addressed successfully in a recent de-
sign of A Mutually Orthogonal Usercode-Receiver (AMOUR)
for asynchronous or quasisynchronous code division multiple
access (CDMA) systems. AMOUR converts a multiuser CDMA
system into parallel single-user systems regardless of the multi-
path and guarantees ISI mitigation, irrespective of the channel
null locations. However, the noise amplification at the receiver
can be significant in some multipath channels. In this paper, we
propose to oversample the received signal as a way of improving
the performance of AMOUR systems. We design Fractionally
Spaced AMOUR (FSAMOUR) receivers with integral and ra-
tional amounts of oversampling and compare their performance
with the conventional method. An important point that is often
overlooked in the design of zero-forcing channel equalizers is
that sometimes, they are not unique. This becomes especially
significant in multiuser applications where, as we will show, the
nonuniqueness is practically guaranteed. We exploit this flexibility
in the design of AMOUR and FSAMOUR receivers and achieve
noticeable improvements in performance.

Index Terms—Code division multiaccess, fractionally spaced
equalizers, MIMO systems, multiuser channels.

I. INTRODUCTION

THE performance of the new-generation wireless mobile
systems is limited by the multiuser interference (MUI) and

inter-symbol interference (ISI) effects. The interference from
other users (MUI) has traditionally been combated by the use
of orthogonal spreading codes at the transmitter [16]; however,
this orthogonality is often destroyed after the transmitted signals
have passed through the multipath channels. Furthermore, in
the multichannel uplink scenario, exact multiuser equalization
is possible only under certain conditions on the channel matrices
[13]. The alternative approach is to suppress MUI statistically;
however, this is often less desirable.

A recent major contribution in this area is the development of
A Mutually Orthogonal Usercode-Receiver (AMOUR) by Gi-
annakis et al. [4], [22]. Their approach aims at eliminating MUI
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deterministically and, at the same time, mitigating the undesired
effects of multipath propagation for each user separately. The
former is achieved by carefully designing the spreading codes
at the transmitters and the corresponding equalization struc-
tures at the receivers. In [3] and [4], AMOUR systems were de-
signed for multiuser scenarios with uniform information rates,
whereas in [22], the idea was extended for the case when dif-
ferent users communicate at different rates. One clear advantage
of this over the previously known methods is that MUI elimi-
nation is achieved irrespective of the channel nulls. Moreover,
ISI cancellation can be achieved using one of the previously
known methods for blind channel equalization [4]. In summary,
AMOUR can be used for deterministic MUI elimination and
fading mitigation, regardless of the (possibly unknown) multi-
path uplink channels.

In this work, we consider a possible improvement of the
basic AMOUR-CDMA system described in [3]. The proposed
structure consists of a multiple-transmitter, multiple-receiver
AMOUR system with signal oversampling at the receivers.
This equalizer structure can be considered to be a fractionally
spaced equalizer (FSE) [12] and, thus, the name Fractionally
Spaced AMOUR (FSAMOUR). We consider two separate
cases: integral and rational oversampling ratios. Even though
integral oversampling can be viewed as a special case of ra-
tional oversampling, we treat them separately since the analysis
of the former is much easier. In particular, when the amount of
oversampling is a rational number, we need to impose some
additional constraints on the systems parameters in order for
the desirable channel-invariance properties of conventional
AMOUR systems to carry through. In contrast, no additional
constraints are necessary in the integral case.

An additional improvement of multiuser communication sys-
tems is achieved by exploiting the fact that zero-forcing channel
equalizers are not unique, even for fixed equalizer orders. This
nonuniqueness allows us to choose such zero forcing equalizers
(ZFEs) that will reduce the noise power at the receiver. Note
that this improvement technique is available in both AMOUR
and FSAMOUR systems. As in other areas where FSEs find
their application [12], [15], [17], the advantages over the con-
ventional symbol-spaced equalizers (SSE) are lower sensitivity
to the synchronization issues and freedom in the design of ZFEs.
We will see that the aforementioned additional freedom trans-
lates to better performance of FSAMOUR ZFEs.

In Section II, we provide an overview of the AMOUR-CDMA
systems, as introduced by Giannakis and others. Our approach
to the system derivation provides an alternative point of view
and leads to notable simplifications, which prove essential in the
derivation of FSEs. In Section III, we design the FSAMOUR
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system with an integral amount of oversampling. The system
retains all the desired properties of conventional AMOUR and
provides additional freedom in the design of ZF solutions, which
corresponds to finding left inverses of tall matrices with excess
rows. This freedom is further exploited, and the corresponding
improvement in performance over the AMOUR system is re-
ported in the subsection with the experimental results. In Sec-
tion IV, we generalize the notion of FSAMOUR to the case of
fractional oversampling at the receiver. If the amount of over-
sampling is given by for a large integer , the
computational overhead in terms of the increased data rate at
the receiver becomes negligible. Experimental results in Sec-
tion IV-E confirm that the improvements in the equalizer per-
formance can be significant, even if the oversampling is by 6/5.

A. Notations

If not stated otherwise, all notations are as in [14]. We use
boldface letters to denote matrices. Superscripts and ,
respectively, denote the transpose and the transpose-conjugate
operations on matrices. The identity matrix of size is
denoted by . Let be the rank of a polynomial matrix in

. The normal rank is defined as the maximum value of in
the entire plane.

In a block diagram, the -fold decimation and expansion
operations will be denoted by encircled symbols and ,
respectively.

The polyphase decomposition [14] plays a significant role
in the following. If is a transfer function, then it can be
written in the Type-1 polyphase form as

(1)

where is the th Type-1 polyphase component of .
A similar expression defines the Type-2 polyphase components,
namely, .

II. AMOUR CDMA SYSTEMS

The structure in Fig. 1 describes the AMOUR-CDMA system
for users, i.e., transmitters and potential receivers. The
upper part of the figure shows the th transmitter followed by
the uplink channel corresponding to the th user, and the lower
part shows the receiver tuned to the user . The symbol stream

is first blocked into a vector signal of length .
This signal is upsampled by and passed through a
synthesis filterbank of spreading codes ; thus,
each of the transmitters introduces redundancy in the amount of

. It is intuitively clear that this redundancy serves to facili-
tate the user separation and channel equalization at the receiver.
While larger serves to reduce the bandwidth expansion ,
for any fixed , there is the minimum required (a function of

and the channel order ) for which user separation and per-
fect channel equalization is possible. It will become clear that
for large values of , the overall bandwidth expansion tends
to , i.e., its minimum value in a system with users. It is

shown in [22] that a more general system where different users
communicate at different information rates can be reduced to
the single rate system. Therefore, in the following, we consider
the case where and are fixed across different users.

The channels are considered to be finite impulse re-
sponse (FIR) of order . The th receiver is functionally
divided into three parts: filterbank for MUI can-
cellation, block , which is supposed to eliminate the effects
of and on the desired signal , and
the equalizer aimed at reducing the ISI introduced by the
multipath channel . Filters are chosen to be FIR
and are designed jointly with to filter out the signals
from the undesired users . The choice of and

is completely independent of the channels
and depends only on the maximum channel order . Therefore,
in this paper, we assume that CSI is available only at the block
equalizers . If the channels are altogether unknown, some
of the well-known blind equalization techniques [1], [2], [8],
[10] can be readily incorporated at the receiver (see [4] and [9]).
While the multiuser system described here is ultimately equiva-
lent to the one in [3], the authors believe that this design provides
a new way of looking at the problem. Furthermore, the simplifi-
cations introduced by the block notation will prove instrumental
in Sections III and IV.

In the following, we design each of the transmitter and re-
ceiver building blocks by rewriting them in a matrix form. The
banks of filters and can be represented in
terms of the corresponding and polyphase matrices

and , respectively, [14]. The th element of is
given by and the th element of by .
Note that the polyphase matrices and become constant
once we restrict the filters and to length .

The system from Fig. 1 can now be redrawn as in Fig. 2(a),
where the receiver block is defined as . The

block in Fig. 2(a), consisting of the signal unblocking,
filtering through the th channel, and blocking, can be equiv-
alently described as in Fig. 2(b). Namely, it can be shown [14]
that the corresponding LTI system is given by the fol-
lowing matrix:

(2)

Here, we denote by the full-banded lower tri-
angular Toeplitz matrix

...
...

...
. . .

...
...

. . .
...

(3)

and is the block that introduces the IBI. By choosing
the last samples of the spreading codes to be zero,

is of the form with the zero-
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Fig. 1. Discrete-time equivalent of a baseband AMOUR system.

Fig. 2. Equivalent drawings of a symbol-spaced AMOUR system.

block positioned appropriately to eliminate the IBI block .
Namely, we have

Therefore, the IBI-free equivalent scheme is shown in Fig. 2(c),
with the noise vector signal obtained by blocking the

noise from Fig. 2(a). Next, we use the fact that full-banded
Toeplitz matrices can be diagonalized by Vandermonde ma-
trices. Namely, let us choose

...
...

...
for (4)
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denote by the first columns of , and define the
diagonal matrix

diag

(5)

with the argument defined as .
For any and an arbitrary set of complex numbers

, the following holds:

(6)

The choice of (which are also called signature
points) is such that eliminates MUI, as will be explained
next. It will become apparent that the signature points need to
be distinct.

Consider the interference from user . From Fig. 2(c),
it follows that the interfering signal passes through the
concatenation of matrices

where (7)

...
...

...

(8)

The first equality in (7) is a consequence of (6). From (7), we
see that in order to eliminate MUI, regardless of the channels,
it suffices to choose such that

(9)

In practice, the signature points are often chosen to be uni-
formly spaced on the unit circle

(10)

since this leads to fast Forier transform (FFT)-based AMOUR
implementations having low complexity [3].

Equations (9) define zeros of the polynomials
. In addition to this, let be such that

(11)

where the multipliers introduce a simple power control for
different users. At this point, the total number of constraints for
each of the spreading polynomials is equal to . Recalling
that the last samples of spreading codes are fixed to be zero,

the minimum spreading code length is given by .
Substituting (11) in (7) for and recalling (6), we have

...
...

...
(12)

where is the north-west submatrix of .
In order to perform the channel equalization after MUI has

been eliminated, we need to invert the matrix product
in (12), which in turn needs to be of sufficient rank. From (7),
with , we conclude that (12) can be further written as
a product of a diagonal matrix and a Vander-
monde matrix . The second matrix is invertible
as long as are distinct. The rank of can drop by
at most only if all the zeros of occur at the signature
points . Thus, the sufficient condition for the invertibility of
(12) is . In summary, the minimal system parameters
are given by

known CSI

unknown CSI and

In the limit when tends to infinity, the bandwidth expansion
becomes

BW expansion

for known CSI

unknown CSI

Since there are simultaneous transmitters in the system, this
is the minimum possible bandwidth expansion.

From Fig. 2(c), it readily follows that (ignoring the noise)

(13)

Therefore, can be chosen to eliminate the ISI in the absence
of noise, and this would be a ZFE. For more details on this and
alternative equalizers, see [3] and [4]. In the following, we con-
sider the improvement of this conventional AMOUR system ob-
tained by sampling the received continuous-time signal more
densely than at the symbol-rate given by the transmitters.

III. AMOUR WITH INTEGRAL OVERSAMPLING

Fractionally spaced equalizers (FSEs) typically show an im-
provement in performance at the expense of more computations
per unit time required at the receiver. FSEs with integral over-
sampling operate on a discrete-time signal obtained by sampling
the received continuous-time signal times faster than at the
transmission rate (thus the name fractionally spaced). Here, is
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Fig. 3. (a) Continuous-time model for the AMOUR system with integral oversampling. (b) Discrete-time equivalent drawing. (c) Polyphase representation for
q = 2.

assumed to be an integer greater than one. Our goal in this sec-
tion is to introduce the benefits of FSEs in the ISI suppression,
without violating the conditions for perfect MUI cancellation,
irrespective of the uplink channels. As will be clear shortly, this
is entirely achieved through the use of the FSAMOUR system,
introduced in the following.

In order to develop the discrete-time equivalent structure for
the AMOUR system with integral oversampling at the receiver,
we consider the continuous-time AMOUR system with an FSE
shown in Fig. 3(a). Let be defined as the symbol spacing at the
output of the transmitter [signal in Fig. 3(a)]. Working
backward, we conclude that the rate of the blocked signal
is times lower, i.e., . Since is obtained by parsing
the information sequence into blocks of length , as
shown in Fig. 2(a), we conclude that the corresponding data rate
of at the transmitter is .

Each of the transmitted discrete signals are first con-
verted into analog signals and passed through a pulse-shaping
filter. The combined effect of the reconstruction filter from the
D/A converter, the pulse shaping filter, and the continuous time
uplink channel followed by the receive filters is referred to as
the equivalent channel and is denoted by . After passing
through the equivalent channel, the signal is corrupted by the
additive noise and interference from other users. The received
waveform is sampled at times the rate at the output of the
transmitter [see Fig. 3(a)]. The sequence with rate
enters the fractionally spaced equalizer that operates at the cor-
respondingly higher rate. Accompanied with the equalization
process, some rate reduction also needs to take place at the re-
ceiver so that the sequence at the decision device has ex-
actly the same rate as the starting information sequence.

Now, we derive the discrete-time equivalent of the oversam-
pled system from Fig. 3(a). Consider the received sequence

in the absence of noise and MUI. We can see that

(14)

Defining the discrete time sequence ,
which is nothing but the waveform sampled times more
densely than at integers, we have

(15)

This is shown in Fig. 3(b), where the noise and MUI, which
were continuous functions of time in Fig. 3(a), now need to be
modified (by appropriate sampling). Notice that although the
discrete-time equivalent structure incorporates the upsampling
by at the output of the transmitters, this does not result in any
bandwidth expansion since the physical structure is still given
in Fig. 3(a). Our goal in this section is to design the block in
Fig. 3(b) labeled “equalization and rate reduction.” In the fol-
lowing, we introduce one possible solution that preserves the
MUI cancellation property, as it was described in Section II, yet
provides additional flexibility when it comes to the ISI elimi-
nation part. For simplicity, in what follows, we assume ;
however, it is easy to show that a similar design procedure fol-
lows through for any integer .

Oversampling by . First, we redraw the structure in
Fig. 3(b), as shown in Fig. 3(c). Here, and
are the Type-1 polyphase components [14] of the oversampled
filter . In other words

(16)

In Fig. 3(c), we also moved the additive noise and interference
past the delay and upsamplers by splitting them into appropriate
polyphase components in a fashion similar to (16). Before we
proceed with the design of the FSAMOUR receiver, we recall
that the construction of the spreading codes and the
receive filters in Section II ensured the elimination
of MUI, regardless of the propagation channels, as long as their
delay spreads are bounded by . Returning to Fig. 3(c) in view
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Fig. 4. Proposed form of the equalizer with rate reduction.

of (16), we notice that is nothing but the original in-
teger-sampled channel . In addition, each of the subchan-
nels can have the order at most equal to the order of

, i.e., the maximum order of is . Moreover,
each of the polyphase components of MUI shown in Fig. 3(c)
is obtained by passing the interfering signals through the
corresponding channel polyphase components . From
the discussion in Section II, we know how to eliminate each of
these MUI components separately. Therefore, our approach in
the equalizer design will be to keep these polyphase channels
separate, perform the MUI cancellation in each of them, and
combine the results to obtain the MUI-free signal received from
user . This is achieved by the structure shown in Fig. 4.

The received oversampled signal is first divided into the
Type-2 polyphase components (a total of polyphase compo-
nents for oversampling by ). This operation assures that in
each of the equalizer branches the symbol rate is equal to .
At the same time, each branch contains only one polyphase
component of the desired signal and MUI from Fig. 3(c).
These polyphase components are next passed through a system
that resembles the conventional AMOUR receiver structure
from Fig. 2(a). Notice one difference: While the matrices
and are kept the same as before, the matrices for ISI
mitigation are different in each branch, and their outputs
are combined, forming the information signal estimate .
Careful observation confirms that the output symbol rate is
equal to , precisely as desired.

In order to further investigate the properties of the proposed
solution, we show the complete FSAMOUR system in terms
of the equivalent matrix building blocks in Fig. 5(a). The ef-
fect of the oversampling followed by the receiver structure with

branches is equivalent to receiving copies of each trans-
mitted signal but after going through different multipath fading
channels . This temporal diversity in the received signal
is obviously beneficial for the equalization process, as will be
demonstrated in Section III-A. As mentioned previously, MUI
elimination in AMOUR systems does not depend on the uplink
channels as long as their order is upper bounded by , and this is
why the proposed FSAMOUR system eliminates MUI in each
branch of Fig. 5(a). Notice that the length restrictions on and

for MUI elimination remain the same as in Section II.

Repeating the matrix manipulations similar to those demon-
strated in Section II, but this time in each branch separately, we
conclude that the equivalent FSAMOUR system is shown in
Fig. 5(b). Lower triangular Toeplitz matrices here corre-
spond to different polyphase components of the oversampled
channel. Noise vectors are obtained by appropriately
blocking and filtering the noise from Fig. 5(a). As in [3] and
[4], the equalizer can be constructed as a

RAKE, zero-forcing, or MMSE receiver corresponding to the
transmitter :

pseudo-inverse

(17)

where and represent the autocorrelation matrices of
the signal and noise processes,
respectively. See Fig. 5(b).

The improvement in performance over the conventional
AMOUR system comes as a result of having more degrees
of freedom in the construction of equalizers, namely
more rows than columns in FSAMOUR compared to in
AMOUR. Another way to appreciate this additional freedom
in the ZFE design is as follows. In the AMOUR systems, the
construction of ZFEs amounts to finding , as in (13), such
that ; in other words, is a left inverse of .
On the other hand, referring to Fig. 5(b), we conclude that the
ZFEs in the FSAMOUR systems need to satisfy

thus providing more possibilities for the design of . In addi-
tion to all this, the performance of the zero-forcing solutions can
be further improved by noticing that left inverses of are not
unique. In the following subsection, we derive the best ZFE for
a given FSAMOUR system with the oversampling factor . This
optimal solution corresponds to taking advantage of the
degrees of freedom present in the equalizer design.

A. Optimal FSAMOUR ZFE

Consider the equivalent FSAMOUR system given in
Fig. 6(a). It corresponds to the system shown in Fig. 5(b) with
one difference; namely, the block-equalizer is allowed to have
memory. In the following, we investigate the case of ZFE,
which corresponds to having in the absence
of noise. Obviously, this is achieved if and only if is a
left inverse of . Under the conditions on and described
in Section II, this inverse exists. Moreover, the fact that is
tall implies that this inverse is not unique. Our goal is to find
the left inverse , as in Fig. 6(a), of a given order that
will minimize the noise power at the output, i.e., minimize the
power of , given that . The equalizer design
described here is closely related to the solution of a similar
problem presented in [21]. One difference is that the com-
bined transmitter/channel matrix in Fig. 6(a) is constant,
so we use its singular value decomposition [5] instead of a
Smith-form decomposition, as in [21].

The tall rectangular matrix can be decomposed as [5]

(18)

where and are and unitary matrices,
respectively, and is a diagonal matrix of singular
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Fig. 5. (a) Proposed overall structure of the FSAMOUR system. (b) Simplified equivalent structure for ISI suppression.

values. Since we assumed has rank , it follows that
is invertible. It can be seen from (18) that the most general form
of a left inverse of is given by

(19)

where is an arbitrary polynomial matrix
and represents a handle on the degrees of freedom in the design
of . Defining the , , and

matrices , , and , respectively, as

and (20)

(19) can be rewritten as [see Fig. 6(b)]

(21)

Since there is a one-to-one correspondence (20) between the
matrices and , the design objective becomes that
of finding the of a fixed-order , which is given by
its impulse response

(22)

that minimizes the noise power at the output of
Fig. 6(b). The operator denotes the expected value. From
Fig. 6(b), it is evident that the optimal in this context is
nothing but a linear estimator of a vector random process
given . The solution is well-known [11] and is given by

(23)

Fig. 6. (a) Equivalent FSAMOUR system. (b) ZFE structure with noise input.

where , and
is its autocorrelation matrix. Next, we rewrite the solution

(23) in terms of the noise statistics, namely, its cross-
correlation matrices . First note
that we have (24), shown at the bottom of the page. Similarly,
we can rewrite

(25)

For sufficiently large input block size , it is often safe to as-
sume that the noise is uncorrelated across different blocks; in
other words, for . In this important special
case, the optimal is a constant, namely

(26)

...
...

. . .
...

(24)
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From (26) and (21), we get the optimal form of a ZFE

(27)

Another important special case occurs when the noise samples
at the input of the receiver are i.i.d. It is important to notice here
that in Figs. 5 and 6 is obtained by passing the input noise
through a bank of receiver front ends . Therefore, the
noise autocorrelation matrix is not likely to be a scaled
identity. Instead, in this case, we have

diag (28)

which is a block-diagonal matrix, with noise vari-
ances corresponding to different signal polyphase compo-
nents. Starting from (4) and (12), we can readily verify that for
large values of , . Therefore, in
the case of white channel noise and no oversampling in a system
with many users, the optimal ZFE from (27) becomes

(29)

This follows since and .
At this point, we would like to make a distinction between the

optimal ZFEs in the AMOUR and FSAMOUR systems. From the
derivations presented in this subsection, it is evident that the op-
timal ZFEs can be constructed in a traditional AMOUR system
of [3], [4], and it is to be expected that this solution would per-
form better than the ordinary ZFE based on the matrix pseudo-in-
verse similar to (17). However, in the following, we show that if
the channel noise in Fig. 3(a) is i.i.d., then any optimization of
ZFEs in AMOUR systems will not improve their performance.
This is not true for fractionally spaced AMOUR systems since
the noise samples in vectors and in Fig. 6(b) need
not have the same variances, although they remain independent.
This is due to the fact that and correspond to signals
received through different polyphase components of the channel.
Consequently, in the FSAMOUR case, the noise autocorrelation
matrices appearing in (27) are not given by scaled iden-
tity matrices, and (29) does not correspond to the optimal solu-
tion. Now, let us compare theoptimalZFE in the AMOUR system
for the white noise (29) to the corresponding zero-forcing solu-
tion given in (17). The result is summarized as follows.

Proposition 1: Pseudo-inverse is the optimal AMOUR ZF
SSE if the noise is white.

Comment: This result is indeed well known. See [7] for a
detailed treatment of various equalizers in a traditional CDMA
system. For completeness, in the following, we give a short
proof of Proposition 1.

Proof: Starting from the traditional ZFE , we have

(30)

Fig. 7. Probability of error as a function of SNR in AMOUR and FSAMOUR
systems.

A more insightful way to look at the result from Proposition 1 is
that there is nothing to be gained by using the optimal solution if
there is no oversampling at the receiver. In contrast to this, using
the optimal ZFEs in FSAMOUR systems leads to a noticeable
improvement in performance over the simple pseudo-inverses,
as is demonstrated in Section III-B. Finally, note that an alterna-
tive to using the equalizer (27) would be to apply pre-whitening
filters followed by equalizers from (29).

B. Performance Evaluation

In this subsection, we compare the performance of the
conventional (SSE) AMOUR described in Section II and the
FSAMOUR system from Section III with oversampling ratio

. System parameters in the experiment were given by
and , while and were chosen to be the

minimum for the guaranteed existence of channel ZFEs, as
explained in Section II. The performance results were obtained
by averaging over 30 multipath channel realizations. The
equivalent channel was modeled as a combination of a raised
cosine (constant part in the transmitter and the receiver) and
a randomly chosen short multipath channel. The resulting
half-integer sampled, channel impulse responses were
of the 11th order. The equivalent, integer-spaced channels were
obtained by keeping the even samples and are of order .

The channel noise, which was originally AWGN, was colored
by the square-root raised-cosine at the receiver. The signal-to-
noise ratio (SNR) was measured after sampling at the entrance
of the receiver [point in Fig. 3(a)]. Notice that SNR does
not depend on the oversampling ratio as long as the signal
and the noise are stationary. The performance curves are shown
in Fig. 7. The acronyms “SSE” and “FSE” represent AMOUR
and FSAMOUR systems, whereas the suffixes “ZF,” “MMSE,”
and “OPT” correspond to zero-forcing, minimum mean-squared
error, and optimal ZFE solutions, respectively. There are several
important observations that can be made from these results.

• The overall performance of AMOUR systems is sig-
nificantly improved by signal oversampling at the re-
ceiver.
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Fig. 8. (a) Continuous-time model for the AMOUR system with fractional oversampling ratio q=r. (b) Equivalent discrete-time system.

• The performance of ZFEs in FSAMOUR systems can
be further improved by about 0.4 dB by using the op-
timal equalizers that exploit the redundancy in ZFE de-
sign, as described in Section III-A. This is due to the
fact that the optimal solution is given by (27) rather
than (29). As explained previously, the same does not
hold for AMOUR systems.

• The performance of the optimal ZFEs in FSAMOUR
systems is almost identical to the performance of the
optimal1 MMSE equalizers. Thus, there is practically
no loss in performance as a result of using the optimal
ZFE given by (27) instead of the MMSE equalizer (17).
The advantages of using a ZFE become evident by
comparing the expressions (27) and (17). As opposed
to the MMSE solution , ZFE does not
require the knowledge of the signal statistics , and
if the noise is white and stationary, the solution
is independent of the noise variance, which plays a sig-
nificant role in the corresponding MMSE solution (17).
More detailed analysis of the mentioned advantages
can be found in [20].

• Even though the noise was colored, a simple pseudo-
inverse happens to yield an almost identical perfor-
mance as the MMSE equalizer and is therefore the op-
timal ZFE in AMOUR systems with no oversampling.

In the next section, we introduce the modification of the idea
of the integral oversampling of the received signal to a more gen-
eral case when the amount of oversampling is a rational number.

IV. AMOUR WITH FRACTIONAL OVERSAMPLING

While FSAMOUR systems with the integral oversampling
can lead to significant improvement in performance compared
to traditional AMOUR systems, the notion of oversampling the
received CDMA signal might be less popular due to very high
data rates of the transmitted CDMA signals. According to the
scenario of integral oversampling, the data rates at the receiver
are at least twice as high as the rates at the transmitter, which
makes them prohibitively high for most sophisticated equaliza-
tion techniques. In this section, we explore the consequences of
sampling the continuous-time received signal in Fig. 3(a)
at a rate that is higher than the symbol rate by a frac-

1The MMSE equalizer is the optimal solution in terms of minimizing the
energy of the error signal at the receiver for the fixed system parameters.

tional amount. To be more precise, suppose the amount of over-
sampling is , where and are coprime integers satisfying

. If for high values of , the data rate at the
receiver becomes almost identical to the one at the transmitter,
which is rather advantageous from the implementational point
of view. It will soon become evident that the case when and

share a common divisor can easily be reduced to the case of
coprime factors. This said, it appears that the discussion from
the previous section is redundant since it simply corresponds to
fractional oversampling with . However, it is instructive to
consider the integer case separately since it is easier to analyze
and provides some important insights.

Consider Fig. 3(a), and suppose has been sampled at
rate . This situation is shown in Fig. 8(a). Performing the
analysis that is very similar to the one in Section III, we can
easily show that in this case, we have

(31)

This is shown in Fig. 8(b), with appropriate modification of the
noise from Fig. 8(a) and with denoting , just
as it did in the case of integer oversampling.

The structure shown in Fig. 8(b) consisting of an expander
by , filter , and a decimator by has been studied ex-
tensively in [18]–[20]. It has been shown in [20] that without
loss of generality, we can assume that and are coprime in
such structures. Namely, if was a nontrivial greatest common
divisor of and such that and , with
and mutually coprime, then the structure is equivalent to the
one with replaced by , replaced by , and the new filter
corresponding to the zeroth -fold polyphase component [14]
of .

Now, we are ready for the problem of multiuser communi-
cations with the rational oversampling ratio of . The anal-
ysis of the fractionally oversampled FSAMOUR systems will
turn out to be somewhat similar to the discussion in Section II,
and in order to make the presentation more accessible, we have
grouped the most important steps into separate subsections. One
noticeable difference with respect to the material from Section II
is that in this section, we will mostly deal with larger, block
matrices. This comes as a consequence of a result on fraction-
ally sampled channel responses, which was presented in a recent
paper on fractional biorthogonal partners [20].
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Fig. 9. (a) Discrete-time model for the FSAMOUR system with the oversampling ratio q=r. (b) Equivalent drawing. (c) Redrawing a block from (b).

A. Writing the Fractionally Sampled Channel as a Block
Convolution

Combining the elements from Figs. 8(a) and (b), we conclude
that the discrete-time equivalent scheme of the FSAMOUR
system with the oversampling ratio is shown in Fig. 9(a).
It has been established in [20] that the operation of filtering
by surrounded by an expander and a decimator, as
it appears in Fig. 9(a), is equivalent to blocking the signal,
passing it through a matrix transfer function , and
then unblocking it. This equivalent structure is employed in
Fig. 9(b). The unblocking element of a darker shade represents
the “incomplete” unblocking, i.e., it converts a sequence of
blocks of length into a higher rate sequence of blocks of
length . In other words, it can be thought of as the unblocking
of a length- vector sequence into a scalar sequence, followed
by the blocking of the obtained scalar signal into a length-
vector signal. Here, for simplicity, we assumed divides ;
however, this condition is unnecessary for the above definition
to hold, and we return to this point later.

The relation between the filter and the corresponding
matrix is rather complicated and is introduced in the fol-
lowing. First, let us write in terms of its Type-2 -fold
polyphase components

(32)

Next, recall from the Euclid’s algorithm that since and are
mutually coprime, there exist , such that

(33)

Let us define the filters and their Type-1 -fold
polyphase components as

for

(34)
Then, it can be shown [20] that the equivalent matrix transfer
function is given by

...
...

...

(35)
Now, consider the block surrounded by a dashed line in

Fig. 9(b). This can trivially be redrawn as in Fig. 9(c). The
denoted transfer function is the block pseudo-cir-
culant in (36), shown at the bottom of the page. The blocks

, for in (36), represent the impulse response of
, while is the order of the matrix polynomial and it

depends on the choice of and on the maximum channel order
. This issue will be revisited shortly. It is implicitly assumed

...
...

. . .
...

...
...

. . .
...

...
...

. . .
...

...
...

...

(36)
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in (36) that divides . For arbitrary values of and , we can
write

and (37)

where , , , , and , . Equation
(36) obviously corresponds to , i.e., when di-
vides and divides . For general values of and , the
block pseudo-circulant from (36) gets transformed by
inserting additional columns of zeros in each block-row and
by adding additional rows at the bottom. In the following,
we will assume since this leads to essentially no
loss of generality. Furthermore, we will assume that or,
equivalently, that , which is a valid assumption since

is a free parameter.

B. Eliminating IBI

Next, we would like to eliminate the memory dependence in
(36), which is responsible for inter-block interference (IBI). It is
apparent from Fig. 9 that this can be achieved by choosing
such that its last rows are zero. This effectively means that
the transmitter is inserting a redundancy of symbols after
each block of length . Let us denote by the

constant matrix obtained as a result of premultiplying
by . Next, we note that the blocked version of the

equality (6) holds true as well. In other words, can be block-
diagonalized using block-Vandermonde matrices. Namely, let
us choose

...
...

...
for

(38)
denote by the following matrix, recalling
that

...
...

...
(39)

and define the block-diagonal matrix

diag

(40)

Then, for any and any set of distinct complex numbers
, the following holds:

(41)

Notice that the symbols and are used here to represent
different matrices from the ones in Section II. This is done for
notational simplicity since no confusion is anticipated.

Once we have established the connection with the traditional
AMOUR systems, we follow the steps similar to those in

Section II in order to get conditions for MUI cancellation and
channel equalization, regardless of the channels . Given
the analogy between (41) and (6), we conjecture that the block
at the receiver in Fig. 9 that is responsible for MUI elimination
should be given by , as in (38). In the following, we first
clarify this point and then proceed to state the result on the
existence of channel ZFEs.

C. MUI Cancellation

The interference at the th receiver coming from the user
is proportional to the output of the concatenation of ma-

trices , where is the nonzero part of the spreading
code matrix and is exactly the same as the one used in (7).
Using (41), we see that the MUI term is proportional to

with (42)

...
and

...
...

...
(43)

The entries , for ,
in (43), represent the th Type-1 polyphase components of the

th spreading code used by user , evaluated at . In other
words, the th spreading code in Fig. 1(a) can be written as

It follows from (42) and (43) that MUI elimination can be
achieved by choosing such that

(44)

Equations (44) define zeros for each of the
polyphase components of . In addition to this, we will
choose the nonzero values similarly as in Section II such that
the channel equalization becomes easier. To this end, let us
choose

(45)

for integers and with chosen such that
. This brings the total number of constraints in each of the

spreading code polynomials to . Recalling that the last
samples of spreading codes are fixed to be zero, the minimum
spreading code length is given by .
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D. Channel Equalization

The last step in the receiver design is to eliminate the ISI
present in the MUI-free signal. For an arbitrary choice of in-
tegers and with , we can write

(46)

with , , and . Let us first assume that was
chosen such that in (46). Substituting (45) in (43) for

, we have

(47)

which further leads to

...
...

...
(48)

Recalling the relationship (41), we finally have that

...
...

...
(49)

where is the northwest submatrix of . If
in (46), this simply leads to adding the first columns

of the next logical block to the right end in (47), consequently
augmenting the matrices and in (49).

The channel equalization block, following the MUI cancel-
lation, amounts to finding a left inverse of the matrix product

appearing on the right-hand side of (49). The first ma-
trix in this product is block-Vandermonde, and it is invertible if

and if are distinct (the latter was as-
sured previously). Therefore, we get the minimum value for one
of the parameters

(50)

Notice that since , from (50) and (46), it automatically
follows that is a tall matrix; thus, it could have a left
inverse. However, these conditions are not sufficient. Another
condition that needs to be satisfied is the following:

rank rank (51)

In other words, in order for the channel to be equalizable
using ZFEs, the following needs to be satisfied. After oversam-
pling the received signal by and MUI cancellation, we can
allow for the rank of in (40) to drop by the maximum
amount of , regardless of the choice of signature points

. Obviously, this cannot be guaranteed regardless of the
channel and other system parameters simply because the ma-
trix polynomial could happen to be rank-deficient for
all values of . At best, we can only hope to establish the con-
ditions under which the rank equality (51) stays satisfied, re-
gardless of the choice of signature points. This is different from
the conventional AMOUR and integral FSAMOUR methods
described in Sections II and III, where we had two conditions
on system parameters for guaranteed channel equalizability, de-
pending on whether the channel was known or un-
known . Here, we cannot guarantee equalizability
even for the known CSI, if the channel leads to rank-deficient

. Luckily, this occurs with zero probability.2 If is
not rank-defficient, the channel can be equalized under the same
restrictions on the parameters, regardless of the specific channel
in question. The following theorem establishes the result under
one extra assumption on the decimation ratio .

Theorem 1: Consider the FSAMOUR communication
system given by its discrete-time equivalent in Fig. 9(a). Let
the maximum order of all the channels be .
Let us choose the integers and such that the
irreducible ratio closely approximates the desired amount
of oversampling at the receiver. Next, choose an arbitrary

, and take the following values of the parameters:

(52)

1) MUI can be eliminated by blocking the received signal
into the blocks of length and passing it through the
matrix , as introduced in (38) with

, as long as the spreading codes are
chosen according to (44) and (45).

2) Under the above conditions, the channel can either
be equalized for an arbitrary choice of the signature
points , or it cannot be equalized, regardless
of this choice. More precisely, let be the
polyphase matrix corresponding to , as derived
in (32)–(35). Under the above conditions, there are
two possible scenarios:

• rank . In this case, the system

is ZFE-equalizable, regardless of .
• rank . In this case, there is

no choice of that can make the system
ZFE-equalizable.

Comment: The condition introduced in the state-
ment of the theorem might seem restrictive at first. However,
in most cases, it is of special interest to minimize the amount of
oversampling at the receiver and try to optimize the performance
under those conditions. This amounts to keeping roughly equal
to yet slightly larger than and choosing large enough so that
the ratio approaches unity. In such cases, happens to be
greater than by design. The condition is not nec-
essary for the existence of ZFEs. It only ensures the absence of
ZFEs if the rank condition on is not satisfied.

2Moreover, unless E (z) is rank-deficient, even if it happens to be ill-con-
ditioned for certain values of � , for known CSI, this can be avoided by the
appropriate choice of signature points.
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Fig. 10. Proposed structure of the FSAMOUR receiver in systems with
fractional oversampling.

Proof: The only result that needs proof in the first part of
the theorem is that the order of is , whenever

. If , all the parameters in (52) are consistent
with the values used so far in Section IV. Then, the first claim
follows directly from the discussion preceding the theorem. In
order to prove that , we use the following lemma, whose
proof can be found in the Appendix.

Lemma 1: Under the conditions of Theorem 1, can
be written as

(53)

where and are polynomial matrices of order
, is a unitary matrix, and is a diagonal matrix

with advance operators on the diagonals.
Having established Lemma 1, the first part of the theorem

follows readily since can be equalized effortlessly,
and thus, the order of is indeed for all practical
purposes.

For the second part of Theorem 1, we use Lemma 2, which is
also proved in the Appendix.

Lemma 2: The difference between the maximum and the
minimum achievable rank of given by (40) is upper
bounded by .

From the proof of Lemma 2, it follows that we can distinguish
between two cases.

• If the normal rank of is , then the minimum
rank of over all choices of signature points is
lower bounded by , and therefore,
ZFE is achieved by finding a left inverse of the product
in (49).

• If the normal rank of is less than , then the
maximum rank of is given by

rank

Therefore, regardless of the signature points, ZFE
does not exist.

This concludes the proof of Theorem 1.
To summarize, in this section, we established the algorithm

for multiuser communications based on AMOUR systems with
fractional amount of oversampling at the receiver. The proposed
form of the receiver (block labeled “equalization and rate re-
duction” in Fig. 9) is shown in Fig. 10. As was the case with
the simple AMOUR systems, the receiver is divided into three

parts, namely , , and . The first block is sup-
posed to eliminate MUI at the receiver. The second block
represents the inverse of , which is defined in (49) and es-
sentially neutralizes the effect of and on the MUI-free
signal. Finally, is the block designed to equalize the channel
that is now embodied in the tall matrix [see (49)].

Note that even though the notations may be similar as in Sec-
tion II, the building blocks in Fig. 10 are quite different from
the corresponding ones in AMOUR systems. The construction
of is described in (38) with the signature points chosen in
accordance with the spreading code constraints (44) and (45).
The channel equalizer can be chosen according to one of
the several design criteria described in (17). Instead of in
(17), we should use the corresponding matrix . In addition
to these three conventional solutions, we can choose the optimal
zero-forcing equalizer as the one described in Section III-A. The
details of the construction of this solution are omitted since they
are analogous to the derivations in Section III-A.

The conditions for the existence of any ZFE are de-
scribed Theorem 1. Under the same conditions, there will exist
the optimal ZFE as well. The event that the normal rank
of is less than occurs with zero probability, and thus,
for all practical purposes, we can assume that the channel is
equalizable, regardless of the choice of signature points. Again,
for the reasons of computational benefits, signature points can
be chosen to be uniformly distributed on the unit circle [see
(10)]. In the following, we demonstrate the advantages of the
FSAMOUR systems with fractional oversampling over the con-
ventional AMOUR systems.

E. Performance Evaluation

In this section, we present the simulation results comparing
the performance of the conventional AMOUR system to the
FSAMOUR system with a fractional oversampling ratio. The
simulation resuts are averaged over 30 independently chosen
real random channels of order . The -times oversampled
channel impulse responses were also chosen randomly
under the constraint that they coinside with AMOUR channels
at integers. In other words, . The channel
noise was taken to be colored. However, as opposed to Sec-
tion III-B, it was modeled as an auto-regressive process of first
order [11], i.e., AR(1) process with the cross-correlation coef-
ficient equal to 0.8. The SNR was measured at the receiver, as
explained in Section III-B. The amount of oversampling at the
receiver was chosen to be and the parameter .
The other parameters were chosen as in (52). Notice that the ad-
vantage of this system over the one described in Section III is in
the lower data rate at the receiver. Namely, for each five symbols
of the input data stream , the receiver in Fig. 3 needs to
deal with ten symbols, whereas the receiver in Fig. 9 deals with
only six. This represents not only the reduction in complexity of
the receiver but also minimizes the additional on-chip RF noise
resulting from fast-operating integrated circuits.

The performance curves are shown in Fig. 11. The acronyms
“SSE” and “FSE” represent the AMOUR system with no over-
sampling and the FSAMOUR system with the oversampling
ratio 6/5, whereas the suffixes “ZF,” “MMSE,” and “OPT”
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Fig. 11. Probability of error as a function of SNR in AMOUR and FSAMOUR
systems with oversampling ratio 6/5.

correspond to the zero-forcing, minimum mean-squared error,
and optimal ZFE solutions, respectively. The optimal ZFEs are
based on optimal matrix inverses, as explained in Section III-A.
Comparing these performances, we conclude the following.

• In this case (due to noise coloring and fractional over-
sampling), the optimal ZFE in both the AMOUR and
FSAMOUR systems perform significantly better than
the conventional ZFE. This comes in contrast to some
of the results in Section III-B.

• The optimal ZFEs in both systems on Fig. 11 per-
form almost identically to the MMSE solutions. As ex-
plained in Section III-B, the complexity of is
reduced compared with that of and so is the
required knowledge of the signal and the noise statis-
tics.

• The FSAMOUR system with the oversampling ratio
6/5 performs better than the corresponding AMOUR
system with no oversampling. The price to be paid is
in the data rate and the complexity at the receiver. As
expected, the improvement in performance resulting
from oversampling by a ratio 6/5 is not as pronounced
as in Section III-B, with a ratio . This can be as-
sessed by comparing the gain over the symbol-spaced
system in Figs. 7 and 11).

V. CONCLUDING REMARKS

The recent development of A Mutually Orthogonal Usercode
Receiver (AMOUR) for asynchronous or quasisynchronous
CDMA systems [3], [4] represents a major break-through in
the theory of multiuser communications. The main advantage
over some of the other methods lies in the fact that both
the suppression of MUI and ISI within a single user can be
achieved, regardless of the multipath channels. For this reason,
it is very easy to extend the AMOUR method to the case where
these channels are unknown [4]. In this paper, we proposed
a modification of the traditional AMOUR system in that the

received continuous-time signal is oversampled by an integral
or a rational amount. This idea leads to the concept of Fraction-
ally Spaced AMOUR (FSAMOUR) receivers that are derived
for both integral and rational amounts of oversampling. Their
performance is compared to the corresponding performance
of the conventional method, and significant improvements are
observed. An important point often overlooked in the design of
zero-forcing channel equalizers is that sometimes, they are not
unique. We exploit this flexibility in the design of AMOUR and
FSAMOUR receivers and further improve the performance of
multiuser communication systems.

APPENDIX

Proof of Lemma 1: Without loss of generality, we only
consider since the proof for follows
essentially the same lines. The polyphase components
of the -fold oversampled channel defined in (32) can
be thought of as FIR filters of order (or less). As a special case,
note that . Next, consider the auxiliary filters

, as in (34). From (33), it follows not only that and
are coprime but, at the same time, that and are coprime as
well. For this reason, the numbers

mod

are distinct for each . As a consequence, the first
filters

of length are delayed by the amounts that are all different
relative to the start of blocks of length . This, combined with
the fact that , leads us to conclude that the entries of

, namely defined in (35), are all given by

(54)

Here, are constants, , , and
. Moreover, the index within the th row of ,

where the exponent increases by one, is different for each
of the first rows, and all the polyphase components for

are constant. It follows that indeed, can be written
as (53), with denoting the unitary matrix corresponding to
row permutations and given by

diag

whose purpose is to pull out any common delay elements from
each row of .

Proof of Lemma 2: Consider (53). Depending on ,
can be chosen as

...
...

...
. . .

...

(55)

From (55), it follows that

ord (56)
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Therefore, (55) can be rewritten using the Smith–McMillan
form for the FIR case [14]

(57)

where and are unimodular, and is diagonal
with polynomials on the diagonal for . From
(56), it follows that

ord (58)

Note that some of the diagonal polynomials can be iden-
tically equal to zero, which will result in rank ,
regardless of . However, if this is not the case, it follows from
(58) that by varying , the rank of can drop by at most

. This concludes the proof.
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