
Multirate Digital Filters, Filter Banks, 
Polyphase Networks, and Applications: 
A Tutorial 

Multirate digital filters and filter banks find application in com- 
munications, speech processing, image compression, antenna sys- 
tems, analog voice privacy systems, and in the digital audio indus- 
try. During the last several years there has been substantial progress 
in multirate system research. This includes design of decimation 
and interpolation filters, analysis/synthesis filter banks (also called 
quadrature mirror filters, or QMFJ, and the development of new 
sampling theorems. First, the basic concepts and building blocks 
in multirate digital signal processing (DSPJ, including the digital 
polyphase representation, are reviewed. Next, recent progress as 
reported by several authors in this area is discussed. Several appli- 
cations are described, including the following: subband coding of 
waveforms, voice privacy systems, integral and fractional sampling 
rate conversion (such as in digital audio), digital crossover net- 
works, and multirate coding of narrow-band filter coefficients. The 
M-band QMF bank is discussed in considerable detail, including 
an analysis of various errors and imperfections. Recent techniques 
for perfect signal reconstruction in such systems are reviewed. The 
connection between QMF banks and other related topics, such as 
block digital filtering and periodically time-varying systems, based 
on a pseudo-circulant matrix framework, is covered. Unconven- 
tional applications of the polyphase concept are discussed. 

I. INTRODUCTION 

In recent years there has been tremendous progress in 
the multirate processing of digital signals. Unlike the sin- 
gle-rate system, the sample spacing in a multirate system 
can vary from point to point [I], [2]. This often results in more 
efficient processing of signals because the sampling rates 
at various internal points can be kept as small as possible. 
Unfortunately, thisalso results in the introduction of a new 
type of error, i.e., aliasing, which should somehow be can- 
celed eventually. 

The basic building blocks in a multirate digital signal pro- 
cessing (DSP) system are decimators and interpolators. In 
1981, an excellent tutorial article on decimation and inter- 
polation appeared in [3]. Subsequent to this a text on the 
subject of multirate systems has also been published by the 
same authors [4]. Since then, a number of new develop- 
ments have taken place in the area, particularly in multirate 
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digital filter bankdesigns.Ashort summaryof someofthese 
developments was reported recently by this author at an 
IEEE international conference [5]. The purpose of this article 
i s  to provide a self-contained and more complete exposure 
to many recent contributions on multirate systems, includ- 
ing filter bank design. 

As mentioned in [3], multirate systems find application 
in communications, speech processing, spectrum analysis 
[6], radar systems, and antenna systems. In this tutorial, two 
sections are devoted to a review of applications. In Section 
111, we point out applications in digital audio systems, in 
subband coding techniques (used in speech and image 
compression), and in analog voice privacy systems (for stan- 
dard telephone communications). In Section V-E, appli- 
cations of special transfer functions (such as complemen- 
tary functions) in digital audio is reviewed. In Section IX, 
several unconventional applications of multirate systems 
and polyphase theory are indicated. These include a) deri- 
vation of new sampling theorems for efficient compression 
of signals, b) derivation of new techniques for efficient cod- 
ing of impulse response sequences of narrow band filters, 
c) design of FIR filters with adjustable multilevel responses, 
and d) adaptive filtering in subbands. 

A. Paper Outline 

In section II, basic tools, such as decimators, interpola- 
tors, decimation and interpolation filters, and digital filter 
banks, are reviewed, along with the interconnection prop- 
erties of the building blocks. In section I l l ,  some applica- 
tions of multirate DSP are indicated, in digital audio sys- 
tems, in subband coding, and in voice privacy systems. 
Section IV reviews the digital polyphase decomposition due 
to Bellanger, along with applications such as the uniform 
DFT filter bank. The concept of multilevel polyphase 
decomposition is  also introduced here as a tool for efficient 
implementation of fractional decimation filters. Several 
special types of filter banks, such as Nyquist filters, power- 
complementary systems and Euclidean filter-banks, are 
studied in section V. In section VI, the two-band QMF bank 
i s  studied in sufficient detail along with procedures for 
eliminating aliasing in such systems. Procedures for elim- 
ination of amplitude and/or phase distortion are discussed. 
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Perfect-reconstruction two-channel QMF banks are intro- 
duced by blending the polyphase concept with the classical 
network-theoretic concept of losslessness. 

The relation between M-band QMF banks and two other 
related topics (block filtering and periodically time-varying 
systems) is reviewed in section VII, based on an algebraic 
structure called the pseudo-circulant matrix. In section VIII, 
M-band QMF banks are discussed in greater detail, and 
techniques for elimination of aliasing, amplitude, and phase 
distortions are reviewed. Section IX discusses unconven- 
tional applications, and Section X discusses some exten- 
sions of multirate ideas to cases of multidimensional sig- 
nals. The paper concludes with a discussion of open 
problems in multirate DSP. 

B. Notations and  Terminology 

and w are used as frequency variables for 
continuous-time and discrete-time cases, respectively. In 
the discrete-time case the term normalized frequency i s  
used to denote f = d2s .  The frequency response of a trans- 
fer function H(z) i s  expressed as H(e'") = IH(e/")l e /$("), where 
IH(e/")l i s  the magnitude response and +(U) the phase 
response. The quantity ~ ( w )  = -d+(w)/dw is  the group delay 
of H(z). If (H(e/")l i s  constant for all a, H(z) is  all-pass. If +(a) 
has the form ko - klo ,  then H(z) i s  said to have linear phase 
and the group delay is a constant k,; physically, if the input 
to such a filter H(z) has energy only in the passband of H(z), 
then the output i s  a delayed version of the input, by kl sam- 
ples. Unless mentioned otherwise, a low-pass filter has real 
coefficients, so that IH(e/")l i s  symmetric and +(U) i s  anti- 
symmetric with respect t o o  = 0. Usually (H(e/")( i s  plotted 
for 0 I f 5 0.5 (i.e., for 0 5 w 5 s). If up and us denote the 
passband and stopband edges of a low-pass filter, the quan- 
tity wc = (ap + wJ2 i s  said to be the cutoff frequency. 

Bold-faced quantities denote matrices and vectors, as in 
A, H(z) etc. The symbol / k  denotes the k X k identity matrix 
(with subscript often omitted). The quantitiesAr,At and A* 
denote, respectively, the transpose, transpose conjugate, 
and conjugate of A. For functions H(z), the notation H,(z) 
denotes conjugation of the coefficients without conjugat- 
ing z. For example if H(z) = a + bz-',  then HJz) = a* + 
b*z-l .  Thus, H*(z) = H,(z*). The notation f i (z)  stands for 
H;(z-'). In other words, conjugate the coefficients, take 
transpose (if matrix), and replace z with z-'. When z = e/" 
(i.e., on the unit circle), we have A(z) = Ht(z). Linear time- 
invariant systems [7l are abbreviated as LTI and linear 
periodically time-varying systems as LPW. A p x r matrix 
A is said to be unitary (orthogonal if it i s  real) if AtA = c/~, 
c # 0. Note that A is not restricted to be square. For exam- 
ple, [::$)] i s  unitary for any real 0. The symbol WM stands 
for The subscript M is  usually deleted because i t s  
value i s  often clear from the context. This quantity appears 
in the definition of the discrete Fourier transform (DFT) [I, 
[81. Thus an M-point sequence [xo, xl, . . , xM- , l  has the 
M-point DFT sequence 

The variables 

M-1 

x k  = XnWkn, 0 5 k I M - 1. (1 a) 
l l = O  

The inverse DFT (IDFT) i s  given by 

(1 b) 

The most crucial property of W that finds repeated use in 
multirate DSP is the following: 

M, 

l l = O  0, otherwise. 

k = integer multiple of M c Wk"= ( IC)  

M - l  I 
For any pair of integers k ,  n, we have W K  = W", if and only 
if k - n is an integer multiple of M. In particular, therefore, 
W k  # W" fo r0  5 k < n I M - 1. 

State Space Descriptions: Consider a discrete time trans- 
fer matrix H(z) with input vector u(n) and output vector y(n). 
Suppose we have implemented this transfer matrix using 
a structure, and let N denote the number of delay elements 
used. Label the outputs of the delay elements as the state 
variables xk(n), 0 I k 5 N - 1, and define the state vector 
x(n) = [x,(n) xl(n) . xN-,(n)lr. With u(n) and y(n) denoting 
the input and output (vector) sequences to the structure, 
one can always find equations of the form [9] 

x(n + 1) = Ax(n) + Bu(n), 

y(n) = Cx(n) + Dub), 

to describe the structure. This i s  called the state-space 
description of the structure. The matrix A, called the state 
transition matrix, has size N x NI where N is the number 
of delays in the structure. The transfer function H(z) of the 
structure is given by H(z) = D + C(z/ - A)-'B. The smallest 
number of delay elements (i.e., z- l  elements) required to 
implement H(z) is called the McMillan degree (or simply, 
the degree) of H(z). If the number of delays N in the struc- 
ture i s  equal to the degree, then the structure is said to be 
a minimal realization of H(z). This i s  equivalent to saying 
that A i s  as small as possible. 

A summary of acronyms and common notations used in 
this paper is found in the Nomenclature, which follows sec- 
tion XI. 

I I .  BASIC BUILDING BLOCKS AND TOOLS 

In this section we introduce the basic multirate building 
blocks, along with their frequency-domain characteriza- 
tions, and interconnection behaviors. 

A. Decimators and Interpolators 

decimator is characterized by the input-output relation 
Fig. 1 shows block diagrams of these building blocks. The 

ydn) = x(Mn) (2a) 

(a) 

(b) 
Fig. 1. Building blocks. (a) M-fold decimator. (b) L-fold 
interpolator. 

which says that the output at time n is  equal to the input 
at time Mn. As a consequence, only the input samples with 
sample numbers equal to a multiple of M are retained. This 
sampling-rate reduction by a factor of M is  demonstrated 
in Fig. 2 for the case of M = 2. The L-fold interpolator i s  char- 
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I , I , ~ ... _,, 
0 1 2 3 4  

Fig. 2. Demonstration of decimation for M = 2. 

acterized by the input-output relation 

That is, the output yI(n) is obtained by inserting L - 1 zero- 
valued samples between adjacent samples of x(n), as dem- 
onstrated in Fig. 3for L = 2. The decimator and interpolator 

Sincedecimation corresponds tocompression in the time 
domain, one might expect a stretching effect in the fre- 
quencydomain. To be more precise, theztransform of y,(n) 
i s  given by 

(3b) 

which means MY,(e/") = E::,,' X(e/'"-2"k"M ). The term with 
k = 0 i s  indeed the M-fold stretched version of X(e/"). The 
M - 1 terms with k > 0 are uniformly shifted versions of 
this stretched version. These M terms together make up a 
function with period 27r in w, which i s  the basic property 
of the Fourier transform of any sequence [8]. Fig. 4(c) dem- 
onstrates this effect for M = 2. The terms with k > 0 are 
called the aliasing terms. As long as x(n) i s  bandlimited to 
IwI < d M ,  there is no overlap of these terms with the k = 
0 term. 

The fundamental difference between aliasing and imag- 
ing is important to notice. Aliasing can cause loss of infor- 
mation because of the possible overlap of the shifted ver- 
sionsof the stretched version of X(e1"). Imaging, on the other 
hand, does not lead to any loss of information (which iscon- 
sistent with the fact that no time-domain samples are lost). 

1 M-'  
yD(z) = - X(Z"MWk) 

M k=O 

B. Interconnections 

Fig. 5 shows acascade connection which is often encoun- 
tered in filter-bank systems. The signal v(n) here i s  equal to 

Fig. 3. Demonstration of interpolation for L = 2. 

X(n)*v(n) 

are linear systems even though they are time-varying [4], [SI, 
[IO]. 

The z transform of the interpolator output yl(n) i s  given 

Y/(Z) = X(ZL). (3-3) 

This means YI(e/") = X(eluL) i.e., YI(e/") is an L-fold com- 
pressed version of X(e"?, as demonstrated in Fig. 4(b). The 
appearance of multiple copies of the basic spectrum in Fig. 

by [41: -n/M n / M  

Fig. 5. Effect of decimation followed by interpolation. 

x(n) whenever n is  a multiple of M, and zero otherwise. The 
transform-domain relation is 

(4) 
4 is called the imaging effect and the extra copies are the 1 M-'  

V(Z) = - c X(zWk) images created by the interpolator. M k=O 

-2n -x: 0 n 2n 
(a) 

t ,w 

(C) 

Fig. 4. Transform-domain effects of decimation and inter- 
polation. (a) The z transform. (b) L-fold compressed version. 
(c) Demonstration of effect when M = 2. 

which means that MV(e1") is a sum of X(e/") with the M - 
1 uniformly shifted versions X(el(w-2"k'M' 1. From the figure 
we see that x(n) can be recovered from v(n) by eliminating 
the images by filtering, provided none of the images has an 
overlap with X(e? If such an overlap occurs, it implies 
aliasing and x(n) cannot be recovered. Notice that in order 
for x(n) to be recoverable it i s  not necessary for X(e/") to be 
restricted to IwI < dM. It is sufficient for the total band- 
widthofX(e1")to belessthan2dM.Thusageneral bandpass 
signal with energy in the region a 5 w 5 a + 2a/M can be 
decimated by M without creating overlap of the alias com- 
ponents, and the decimated signal in general is a full-band 
signal. 

A different type of cascade is shown in Fig. 6(a). We shall 
have occasion to use this in section IV-B, which concen- 
trates on multilevel-polyphase decompositions. It should 
becautionedthatthetwo building blocks in Fig.6(a)are not, 
in general, interchangeable, i.e., the systems in Fig. 6(a) and 
6(b) are not equivalent. For example, with M = L, the system 
of Fig. 6(a) is an identity system, whereas the system of Fig. 
6(b) causes a loss of M - 1 out of M samples. I t  can be shown 
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x(n)*yt(n) 

(a) 

x(n) y2(n) 

(b) 
Fig. 6. Two ways to cascade decimator and interpolator. 
These are equivalent if and only if M and L are relatively 
prime. (a) Example of identity system. (b) Example of loss of 
M - 1 out of M samples. 

(Appendix A) that the systems of Fig. 6(a) and 6(b) are iden- 
tical if and only if L and M are relatively prime. 

Decimation Filters and Interpolation Filters: In most 
applications a decimator i s  preceded by a bandlimiting fil- 
ter H(z) whose purpose i s  to avoid aliasing. For example, a 
low-pass filter with stopband edge U, = TIM can serve as 
such a filter. The cascade shown in Fig. 7(a) is commonly 
called a decimation filter. An interpolation filter, on the 
other hand, i s  a device which follows an interpolator (Fig. 
7(b)), the purpose being to eliminate the images. The low- 
pass filter of Fig. 7(c) again serves as an example (with L = 
M). 

-y(n) 

The decimation filter 

(a) 

-y(n) 

(b) 

- -+ilH(eJw; 

The interpOlatiOn filter 

w 
M m 

(C) 

Fig. 7. (a) Decimation filter. (b) Interpolation filter. (c) Low- 
pass filter. 

Fractional Sampling Rate Alterations: Fig. 8(a) shows a 
scheme for reducing the sampling rate by a nonintegral 
(rational) number MIL. Fractional reduction of sampling rate 
often results in data compression without loss of infor- 
mation. As an example, if X(eJw) i s  as in Fig. 8(b), then a frac- 
tional reduction by 312 i s  possible. This can be accom- 

w 
-& 0 x 

3 

(C) 

Fig. 8. Decimation by rational fraction of MIL. (a) General 
structure. (b) Exampleof bandlimited signal. (c) Effect of frac- 
tional decimation of this signal ( L  = 2, M = 3). 

plished by setting M = 3, L = 2 in Fig. 8(a). The filter H(z) 
i s  then taken to be low pass, with passband edge at *I3 and 
stopband edge at 2 ~ 1 3 .  Notice that in this application, the 
transition bandwidth of H(z) need not be unduly narrow. 
The various signals in Fig. 8(a) have transforms as in Fig. 8(c), 
so that Y(e/") i s  a fractionally stretched version of X(e'"). 

Two Noble Identities: In Fig. 9(a) we have a decimator fol- 
lowed by a transfer function G(z). It can be proved, based 

(C) (d) 
Fig. 9. Noble identities for multirate systems. (a) Decimator 
followed by transfer function G(z). (b) Equivalent cascade. 
(c) Example of transfer function preceding. (d) Equivalent 
cascade. 

on (3b), that this cascade is equivalent to the one in Fig. 9(b) 
provided G(z) is a rational transfer function (i.e., a ratio of 
polynomials in z-'). In a similar manner, the two cascades 
in Figs. 9(c) and 9(d) are equivalent (provided G(z) i s  rational), 
as can be proved from (3a). These identities are very val- 
uable in practically all applications for efficient implemen- 
tation of filters and filter banks. We shall call these the 
"noble identities." 

C. Analysis and Synthesis Banks 

These are the two basic types of filter banks. An analysis 
bank is a set of analysis filters Hk(Z) which splits a signal into 
M subband signals xk(n) as shown in Fig. 10(a). What we do 

(C) 

Fig. 10. Analysis and synthesis filter banks. (a) Analysis 
bank. (b) Synthesis bank. (c) Typical response of uniform 
DFT filter bank; here M = 4. 

with the subband signals depends on the application, aswe 
shall see in sections Ill, VI, and IX. Next, a synthesis bank 
(Fig. 10(b)) consists of M synthesis filters Fk(Z), which com- 
bine M signals yk(n) (possibly from an analysis bank) into 
a reconstructed signal i(n). There are several types of filter 
banks, i.e., the complementary type, the Nyquist type, etc., 
to be described in Section V along with applications. 

Uniform DFT Filter Banks: An analysis bank with M filters 
(M > 1) i s  said to be a uniform DFTfilter bank if all the filters 
are derived from H&) according to Hk(z) = H,(zWk), 0 5 

k 5 M - 1. Here H&) i s  called the prototype filter. Note 
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that Hk(e/") = Ho(el(w-2*k'M) ), which means that the fre- 
quency responses of HJz) are uniformly shifted versions 
of Ho(elw). Fig. I O W  shows a typical set of responses, where 
Ho(z) i s  taken to be low pass. More details can be found in 
section IV-C and in [4] and [ I l l .  

111. SOME APPLICATIONS OF MULTIRATE SYSTEMS 

We shall now review a number of important applications 
of multirate filters and filter banks, with pointers to the lit- 
erature for details, examples, and demonstrations. In sec- 
tion IX, several unconventional applications are also out- 
lined. 

Applications in the design of transmultiplexers (which 
are devices for conversion between frequency division 
multiplexing (FDM) and time-division multiplexing (TDM)) 
are not discussed here in detail, primarily because of the 
excellent treatment already available in [13]. Also see [I41 
for the correspondence between transmultiplexers and 
analysiskynthesis filter banks. The input to a TDM-to-FDM 
converter is a signal y(n), which i s  the time-multiplexed ver- 
sion of M signals y&), 0 5 k 5 M - 1. Given y(n), the com- 
ponents yk(n) can easily be separated out by use of a com- 
mutator switch [4], [13]. TheseM signals are then modulated 
using distinct carrier frequencies. The carrier frequencies 
uk, 0 5 k 5 M - 1 are chosen so that there i s  sufficient spec- 
tral gap between the messages. A sum of these M signals 
(which is the FDM signal) i s  then transmitted through the 
channel. The total channel bandwidth is therefore required 
to exceed the sum of signal bandwidths because of the safe- 
guard gap between adjacent spectra. The gap enables one 
to obtain perfect recovery of the multiplexed signals yk(n) 
at a future point. 

A novel approach to transmultiplexing was suggested in 
[36] and cited in [14], based on synthesis and analysis filter 
banks. This approach permits overlap between the spectra 
of successive messages in the frequency domain. The total 
required channel bandwidth i s  therefore less than that in 
conventional FDM channels. Conditions are derived under 
which cross-talk can be avoided and the set of M original 
signals can s t i l l  be recovered from this version. Details can 
be found in reference [36] cited in [14]. 

A. Digital Audio Systems 

In the digital audio industry, it i s  a common requirement 
to change the sampling rates of band-limited sequences. 
This arises for example when an analog music waveform 
x,(t) is to be digitized. Assuming that the significant infor- 
mation is in the band 0 5 lQ(I27r 5 22 kHz [15], a minimum 
sampling rate of 44 kHz is suggested (Fig. Il(a)). It is, how- 
ever, necessary to perform analog filtering before sampling 
to eliminate aliasing of out-of-band noise. Now the require- 
ments on the analog filter /-/@) (Fig. I l (b))  are strigent: it 
should have a fairly flat passband (so that X J j Q )  i s  not dis- 
torted) and a narrow transition band (so that only a small 
amount of unwanted energy i s  let in). Optimal filters for this 
purpose (such as elliptic filters [9], which are optimal in the 
minimax sense) have a very nonlinear phase response [16, 
page82laround the bandedge (i.e., around 22 kHz). In high- 
quality music this i s  considered to be objectionable [15]. A 
common strategy to solve this problem i s  to oversample 
x,(t) by a factor of two (and often four). The filter H,(jQ) now 
has a much wider transition band, as in Fig. Il(c), so that 

minimum over-sampling 
sampling rate 

* :  = 4 :/:kHz 
-44 -22 22 44 88 

t * kHz -22 0 22 
(b) 

A 
1 

4 kHz 
-44 -22 0 22 44 

(C) 

linear-phase LPF 
FIR filter 

(d) 
Fig. 11. (a) Spectrumofx,(t). (b)Antialiasingfilter response 
for sampling at 44 kHz. (c) Antialiasing filter response for 
sampling at 88 kHz. (d) Improved scheme for A/D stage of 
digital audio system. 

the phase-response nonlinearity i s  acceptably low. A simple 
analogBessel filter (which has linear phase in the passband 
[9]) can be used in practice. The sequencex,(n) so generated 
i s  then lowpass filtered (Fig. I l (d)) by a digital filter H(z) and 
then decimated by the same factor of two to obtain the final 
digital signal x(n). The crucial point i s  that since H(z) i s  dig- 
ital, it can be designed to have linear phase [71, [161, [171, 
while at the same time providing the desired degree of 
sharpness. 

A similar problem arises after the DIA conversion stage, 
where the digital music signal y(n) should be converted to 
an analog signal by lowpass filtering. To eliminate the 
images of Y(e'") in the region outside 22 kHz, a sharp cutoff 
(hence nonlinear phase) analog low-pass filter is required. 
This problem is avoided by using an interpolation filter, as 
in Fig. 7(b),which increasesthesampling ratedigitally.After 
this, DIA conversion i s  performed followed by analog fil- 
tering. The interpolation filter H(z) is  once again a linear- 
phase FIR low-pass filter and introduces no phase distor- 
tion. 

The obvious price paid in these systems is the increased 
internal rate of computation. However, by using the poly- 
phase framework (section IV) the efficiency of these mul- 
tirate systems can be dramatically improved. 

In digital audio, it i s  relativelyeconomic (compared to the 
analog case) to produce high-quality copies of material from 
one medium to another [15]. Perhaps to discourage such 
practice, the sampling rates used for various mediaareoften 
made different from each other. It is therefore necessary 
in studios to design efficient nonintegral sampling rate con- 
verters (such as the one in Fig. 8(a)). See section IV-B for 
further detai Is. Further applications of mu Iti rate fi Iter banks 
in digital audio can be found in section V-E. 

B. Subband Coding of Speech and Image Signals 

In practice, one often encounters signals with energy 
dominantly concentrated in a particular region of fre- 
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quency. An extreme example was shown in Fig. 8(b), where 
all the energy is in 0 5 10) < 2d3. In this case it i s  possible 
to compress the signal simply by decimating it by a factor 
of 3/2 (using Fig. 8(a)) or less. 

It i s  more common, however, to encounter signals that 
are not bandlimited but st i l l  have dominant frequency 
bands. An example i s  shown in Fig. 12(a). The information 

I 

(C) 

Fig. 12. Splitting a signal into subband signals x,(n) and 
x, (n). (a) Caseof dominant frequency bands. (b) Splitting the 
signal by using an analysis bank with M = 2 (Fig. 10(a)). (c) 
Encoding the subband signal. 

in I O (  > 912 is not small enough to be discarded. And we 
cannot decimatexb) without causing aliasing either. It does 
seem unfortunate that a small (but not negligible) fraction 
of energy in the high-frequency region should prevent us 
from obtaining any kind of signal compression at all. 

Butthere isawayto get around this difficulty: wecan split 
the signal into two frequency bands by using an analysis 
bank (Fig. 10(a) with M = 2), with responses as in Fig. 12(b). 
The subband signal x,(n) has less energy than xo(n), and so 
can be encoded with fewer bits than xo(n). As an example, 
let x(n) be a 10-kHz signal (10000 samples/s) normally 
requiring 8 bits per sample so that the data rate is 80 kbits/ 
s. Let us assume that the subband signals x,(n) and x,(n) can 
be represented with 8 bits and 4 bits per sample, respec- 
tively. Because these signals are also decimated by two, the 
data rate now works out to be 40 + 20 = 60 kbitsls, which 
i s  a compression by 413. This i s  the basic principle of sub- 
band coding: split the signal into two or more subbands, 
decimate each su bband signal, and allocate bits for samples 
in each subband depending on the energy content. This 
strategy i s  clearly a generalization of the simple decimation 
process (which works only for strictly bandlimited signals). 
In speech coding practice, further use of the perceptive 
properties in each subband is  exploited before quantiza- 
tion [18]-[21]. 

The reconstruction of the full band signal i s  done using 
the interpolators and synthesis bank filters as in Fig. 13. The 

, 

Fig. 13. Analysis/synthesis system for subband coding. 
(Also called two-band QMF bank; see text.) 

interpolators restore the original sampling rate, and the fil- 
ters Fk(z) eliminate the images. Further generalizations fol- 
low immediately: the signal can be split into M subbands 
with each subband signal decimated by M and indepen- 
dently quantized. 

Pioneering work on the application of this technique in 
speech coding has been done by Crochiere [18], [I91 and 
by Galand and Estaban [21]. The coding in each subband is  
typically more sophisticated than just quantization. For 
example, techniques such as adaptive pulse code modu- 
lation (APCM) and adaptive delta pulse code modulation 
(ADPCM) are commonly used [20]. The specific properties 
of speech signals and their relation to human perception 
are carefully exploited in the coding process; the appro- 
priate number of subbands and thecoding accuracy in each 
subband are judged based on the articulation index. See 
[18]-[20] for complete examples of speech coding, using this 
idea. The quality of subband coders i s  usually judged by 
what is called the mean opinion score (MOS). This score i s  
obtained by performing listening tests with the help of a 
widevarietyof unbiased listeners, and asking them to assign 
a score for the quality of the reproduced signal ?(n) (in com- 
parison to x(n)). The maximum score is normalized to 5 by 
convention. Subband-coded speech with an average bit rate 
of 16 kbits/s can typically achieve a MOS of 3.1, whereas at 
32 kbits/s a score of 4.3 has been achieved in the past [20, 
chapter 111. 

In video signal processing, subband coding has been 
applied for image compression, and success has been 
reported by several authors [22]-[27]. The results in [22], in 
particular, use vector quantization [28] in each subband to 
obtain acoded imagewith only0.48 bits per pixel. (Theorig- 
inal uncoded picture being an 8 bits per pixel image.) 

Several commentsare now in order: first, in order for sub- 
band coding to work, it i s  necessary to have some a priori 
knowledge abouttheenergydistribution ofX(e1"). In speech 
and image processing, for example, such knowledge is usu- 
ally available because of the long history of experience with 
the coding of such signals. Second, the bandsplitting and 
decimation operation inevitably results in aliasing because 
the filters Hk(z) are not ideal. The filters Fk(z) should be cho- 
sen carefully in such away that aliasing i s  actually canceled 
(see section VI, where we include a detailed review of all 
the distortions which arise in the analysislsynthesis sys- 
tem). 

C. Analog Voice Privacy Systems 

These systems [29] are intended to communicate speech 
over standard analogtelephone links,whileat thesametime 
ensuring voice privacy. The main idea i s  to split a signal x(n) 
into M subband signals xk(n) and then divide each subband 
signal into segments in the time domain. These segments 
of subband signals are then permuted and recombined into 
a single encrypted signal y(n), which can then be trans- 
mitted (after DIA conversion). For example, if there are five 
subbands and twenty-five time segments in each subband, 
then there are 125! possible permutations, and unless an 
eavesdropper has the key for decryption, he will be unable 
to perform a pleasant job of eavesdropping. The aims of the 
designer of such a privacy system are: the encrypted mes- 
sage should be unintelligible, decryption without a key 
should be very difficult, and the decrypted signal should 
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be of good quality retaining naturalness and voice char- 
acteristics. These features have indeed been achieved by 
Cox et al. [29]. 

At the receiver end, y(n) i s  again split into subbands, and 
the time-segments of the subbands unshuffled to get xk(n), 
which can then be interpolated and recombined through 
the synthesis filters. 

Iv. THE POLYPHASE DECOMPOSITION 4ND ITS APPLICATIONS 

The polyphase decomposition, which originated from the 
work by Bellanger et a/. [ I l l ,  i s  very fundamental to many 
applications in multirate DSP. These include efficient real- 
time implementation of decimation and interpolation fil- 
ters, fractional sampling-rate changing devices, uniform 
DFT filter banks, and perfect-reconstruction analysiskyn- 
thesis systems. More recently, the polyphase idea has been 
applied for the derivation of new sampling theorems [30], 
and for recovering bandlimited signalsfrom non-uniformly 
sampled versions. In this section the basic concept is intro- 
duced and some of the aforementioned applications are 
elaborated. Section IX deals with the remaining applica- 
tions. To avoid repetitions, results presented in [3], [4] are 
reviewed only briefly here. 

A. The Polyphase Decomposition 

senting a digital filter. We can rewrite H(z) in the form 
Let H(z) = E:=-, h(n)z-" be a transfer function repre- 

H(z) = [ .  . . + h(-4)z4 + h( -2 )1  + h(0) 

+ z-'[ - * * + h(-3)z4 + h(- l)z2 

+ h(2)zT2 + h ( 4 ) ~ - ~  + * . .I 

+ h(1) + h(3)z-Z + . . .]. (5) 

I f  we use the abbreviations 
m m 

Eo(z) = c h(2n)z-", El(z) = h(2n + l ) z - "  (6) 
n = - m  n = - m  

we can re-express (5) in the form 

H(z) = Eo(z2) + z-'E1(z2). (7) 

Basically, we have merely grouped the impulse-response 
coefficients h(n) into even numbered samples eo(n) = h(2n) 
and odd-numbered samples e,(n) = h(2n + 1). Denoting the 
z-transforms of eo(n) and el(n) by Eo(z) and E,(z), respectively, 
we obtain the relation (7). This representation will be called 
the two-component polyphase decomposition of H(z). The 
quantities Eo(z) and E,(z) are called the polyphase compo- 
nents of H(z). As an example, let H(z) = 1 + 2z-' + 5z-' + 
4 ~ - ~ .  Then H(z) = 1 + 5z-' + z-'[2 + 4z-*], so that Eo(z) = 
1 + 5z-' and E,(z) = 2 + 4z-l. 

Note that the representation of (7) holds whether H(z) i s  
FIR or IIR. For example, let 

-l 

By using the identity 1 - x = (1 - x')/(l + x), we can rewrite 
(8) as 

so that Eo(z) = 1/(1 - a'z-') and El(z) = a41 - a'z-'). 

In an exactly analogous manner, it is possible to repre- 
sent H(z) in the M-component polyphase form 

M - I  

H(z) = c z-kEk(zM). (1 0) 
k = O  

Once again Ek(z) are called polyphase components and the 
coefficients ek(n) and 

(11) 

In other words, the impulse response sequence {h (n ) }  has 
now been grouped into M subsequences ek(n).The kth sub- 
sequence ek(n) i s  mererly the M-fold decimated version of 
h(n + k). Note that for a given H(z), the quantity Ek(z) 
depends on M. For example Eo(z) in (7) i s  totally different 
from that in (IO). A second subscript (such as Ek,M(~)), which 
would make this distinction clear, i s  avoided in this paper 
in the interest of simplicity. In most applications M is fixed, 
and there i s  no room for confusion. 

An important property of the representation (IO) is  given 
by the following relation: 

are given by 

ek(n) = h(nM + k), 0 I k 5 M - 1. 

M - I  c H(ZWk) = ME,(zM) (12) 
k = O  

which follows from the property (IC) of the quantity W. The 
z transform Eo(z) of eo(n) is thus seen to be equal to 
H ( z " ~ W ~ ) I M ,  and since eo(n) i s  nothing but the M-fold deci- 
mated version of h(n), this gives a proof of the formula (3b)! 

Before getting into applications, we shall mention a sec- 
ond type of polyphase decomposition which i s  notationally 
more convenient in some situations. This is given by 

M - I  

H(z) = c z - ( ~ - ' - ~ ) R  k(ZM). (13) 

It i s  evident that RJz) i s  related to Ek(z) by Rk(z) = EM- '  -&), 
which is just a renumbering of the components. The rep- 
resentations (IO) and (13) will be, respectively, called Type 
1 and Type 2 polyphase decompositions. Correspondingly, 
Ek(z) and Rk(z), 0 5 k 5 M - 1 are called Type 1 and Type 
2 polyphase components. It i s  important to notice that the 
polyphase decomposition can be applied for any sequence 
x(n) and is  not restricted to impulse response coefficients. 

B. Application in Sampling-Rate Alteration 

In Section Il-B we mentioned three standard kinds of 
sampling-rate alterations, namely decimation, interpola- 
tion, and fractional decimation. Each of these involves adig- 
ita1 filter H(z), which unfortunatelyoperates at apointwhere 
the sampling rate i s  highest (see Figs. 7(a), 7(b) and 8(a)). 
These filtering operations can be made more efficient as 
described next. 

Decimation Filters: Consider again the decimation filter 
of Fig. 7(a) with M = 2. Supposewe implement H(z) (assumed 
FlRof 1engthN)directlyasin Fig.14.Thesystem hastocom- 
puteonlytheeven numbered output samples y(2n). Foreach 
computed sample we require N multiplications and N - 1 
additions.Assumethatx(n) isarriving in real-timeatthe rate 

k = O  

Fig. 14. Direct implementation of FIR decimation filter. 
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of one sample per unit time. The scheme of Fig. 14 would 
then require that the N multiplications and N - 1 additions 
be performed in one unit of time (because, as the next input 
sample arrives, the internal delay elementsz-' are updated 
to the new set of values). So, whenever y(2n) is being com- 
puted, the system is working at the rate of N MPU and N 
- 1 APU.' And at odd intervals, the system is sitting idle 
(because y(2n + 1) need not be computed). This is clearly 
an inefficient use of computing resources. 

On the other hand, if we implement the system in poly- 
phase form, we can redraw Fig. 7(a) as in Fig. 15(a). Next, 

(a) (b) 
Fig. 15. Polyphase implementation of decimation filter. (a) 
Redrawing based on Fig. 7(a). (b) Redrawing by use of first 
noble identity (Fig. 9). 

with the helpof the first noble identity(Fig.9)wecan redraw 
Fig. 15(a) as in Fig. 15(b). Now the building blocks €&z) and 
E,(z) are receiving the samples at half the rate (i.e., one sam- 
ple in two units of time). We therefore need to perform only 
NI2 MPUsand (N - 1)/2APUson theaverage.Thepolyphase 
representation i s  thus a neat tool which enables us to rear- 
range the computations of the filtering operation, so as to 
minimize the computational load per unit time. Looking at 
it in another way, each multiplier in Fig. 14 is required to 
complete i t s  operation in one unit of time, whereas in Fig. 
I5(b), two units of time are available for the same job. 

For general M, the decimation filter can be implemented 
using the M-component decomposition of (IO). The com- 
putational saving i s  M-fold. 

lnterpolation Filters: Recall the interpolation filter of Fig. 
7(b).AssumefirstthatH(z) isdirectlyimplemented as in Fig. 
14. The input x,(n) to the filter has all the odd numbered 
samples equal to zero. As a result, only about 50 percent 
of the multipliers in Fig. 14 have nonzero inputs. As such, 
the implementation does not exploit this fact to minimize 
the required computation per unittime. For example, when 
n i s  even, h(0) has to work at two times the input rate 
(because its input will change after this duration), while at 
the same time h(1) is resting. Once again a polyphase 
approach will give a more efficient design. For this we use 
(13) with M = 2, and invoke the second noble identity (Fig. 
9) to obtain the implementation of Fig. 16. Here each mul- 

Fig. 16. Polyphase implementation of interpolation filter. 

tiplier in each building block is constantly occupied, and 
gets two units of time to finish its job. 

Commutator Models: A very convenient way to represent 
the polyphase decomposition i s  offered bythe commutator 

'The abbreviations MPU and APU represent multiplications per 
unit time and additions per unit time, respectively, where a unit 
of time is the separation between the samples of the input signal 
x(n). 

switch model. The basic principles of this are discussed 
clearly in [3] and [4]. The applications of the commutator 
model in multirate analysislsynthesis systems is also indi- 
cated in [31]. It can be verified that the Type-I polyphase 
decomposition can be represented using the counterclock- 
wise commutator model [4] and theType-2 polyphase using 
theclockwise model. In this paperweshall not makeexplicit 
reference to this type of a model, and to minimize dupli- 
cation of the results described in [3] and [4], we refrain from 
further elaboration. 

Fractional Decimators: Consider Fig. 8(a), which is a 
scheme to obtain a sampling rate reduction by the factor 
MIL. If we implement H(z) directly, as in Fig. 14, then it i s  
inefficient due to two reasons: first the input to H(z) con- 
tains L - 1 zero-valued samples out of every L samples so 
that only one out of L multipliers i s  working at a time. Sec- 
ond, only one out of M computed samples in xdn) i s  going 
to be used. These two factors are related to the fact that the 
computations in Fig. 8(a) are done at the point where the 
sampling rate i s  the highest possible. 

To obtain a more efficient implementation, we begin by 
considering the M = 3, L = 2 example again. By using the 
Type-I polyphase representation and rearranging as we did 
in Fig. 15, we obtain the implementation of Fig. 17(a). On 

(b) 
Fig. 17. Two ways to improve the efficiency of fractional- 
decimation filter. (a) Using Type-I decomposition, based on 
Fig. 15. (b) Using Type-2 decomposition, based on Fig. 16. 

the other hand, if we use the Type-2 decomposition and 
rearrange as in  Fig. 16, we get Fig. 17(b). Clearly Fig. 17(a) 
and Fig. 17(b) are more efficient than Fig. 8(a), by factors of 
M and L, respectively. Can we do better than these? Notice 
that Fig. 17(a) exploits the presence of the decimator 
whereas Fig. 17(b) exploits the presence of the interpolator. 
Is  it possible to exploit both? 

Theanswer, indeed, i s  in the affirmative. Such an efficient 
scheme is obtained in [3, page 3111 by the use of filter struc- 
tures with time-varying coefficients. The derivation in [3] is 
based on time-domain reasonings. 

We shall now describe an implementation with the high- 
est possible efficiency, based on z-domain reasonings [32] 
using the polyphase decomposition. First notice that we are 
stuck in Fig. 17 mainly because we cannot move the inter- 
polator any more to the right (and decimator any more to 
the left). This i s  because the noble identities simply cannot 
be applied anymore! However, here i s  the nice trick which 
comes to our rescue: we can write z-' = z - 3 3  so that Fig. 
17(b) can be redrawn as in Fig. 18(a). With the help of the 
noble identities, this becomes Fig. 18(b). Next we can inter- 
change the decimator with the interpolator (which is valid 
because 2 and 3 are relatively prime; see section 11-B) to 
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(d) 

Fig. 18. Successive redrawings of fractional decimation cir- 
cuit, to maximize corn utational efficiency. (a) First redraw- 

identities. (c)Third redrawing, interchanging decimator with 
interpolator. (d) Fourth redrawing, using Type-I polyphase 
decomposition (equation (14)). 

ing, when z - ’  = Z - ~ Z  t: . (b) Second redrawing, using noble 

obtain Fig. 18(c). Finally, we can perform aType-I polyphase 
decomposition of the polyphasecomponents Ro(z) and R,(z) 
as follows: 

R,(z) = R,(23) + z-1R,,(z3) + Z-2R,(Z3), 

R&) = R&?) + z-’R& + z - * R , , ( ~ )  (14) 

so that Fig. 18(c)can be redrawn as in Fig. 18(d). In summary, 
Fig. 18(d) i s  equivalent to Fig. Wa)! If H(z) = Er:: h(n)z-”, 
then we still have only N multipliers in Fig. 18(d). However, 
each multiplier operates at the lowest possible rate, which 
i s  one-third of the input rate. This trick works for arbitrary 
M, L as long as they are relatively prime, because in that 
case, two things are true: a) there exist integers no and n, 
satisfying -noL + n, M = 1 (Euclid’s theorem, [33]) so that 
wecan replace each 2 - l  with ~ ‘ ‘ ~ ~ z - ” ’ ~ ,  and b) thedecimator 
and interpolator can be interchanged. 

C. Application in Filter-Bank Implementations 

Consider an analysis filter bank with two filters (i.e., M 
= 2 in Fig. IO(a)) and let the filters be related as H,(z) = Ho( -2) 

(i.e., a uniform DFT bank with M = 2). If we express Ho(z) 
as in (71, then we have H,(z) = E O ( l )  - ~- ’€~(2) ,  so that we 
can implement the system as in Fig. 19. If the implemen- 
tation of Ho(z) requires N, multiplications and N, additions, 
then the pair [H&z), H,(z)], implemented as in the preced- 
ing, requires only N, multiplications and N, + 1 additions. 
We therefore obtain two filters at nearly the cost of one. 

Fig. 19. Implementing pair [H,,(z), Ho(-z)]. 

More generally, consider the uniform DFT filter bank 
described in setion 11-Cwith Hk(Z) = Ho(zWk). Expressing the 
prototype H&) as in (IO) we see that 

M - 1  

Hk(Z) = c w - k n Z - n E n ( p )  (15) 

which follows because WM = 1. Notice the similarity of the 
summation (15) to the IDFT relation in (Ib). This enables us 
to draw the complete analysis bank as in Fig. 20. The total 

n=O 

X ( ” ) Z ? J L [  xo(n) 

2 -1 
EM-&’) xM-l(n) 

Fig. 20. Implementing uniform DFT bank using polyphase 
decomposition. 

computational complexity of this structure, proposed by 
Bellanger et al., i s  equal to that of the prototype plus the 
cost of the IDFT operation. For large M, a standard FFT can 
be used to minimize the cost of the IDFT. For special values 
of M, such as M = 2,4, etc., the IDFT operation i s  entirely 
multiplierless. In any case, i t  is clear that the structure of 
Fig. 20 i s  much more efficient than a direct implementation 
of M filters, because we obtain M filters at the cost of one 
filter (plus the IDFToverhead). In fact, in most applications, 
the outputs xk(n) of the filters Hk(Z) are decimated by M. By 
using the appropriate noble identity we can move these 
decimators to the left as shown in Fig. 21. We now see that, 

Fig. 21. Redrawing Fig. 20 when xk(n)  must be decimated. 

apart from the IDFT overhead, the number of MPUs and 
APUs of the entire system of M filters with decimation i s  
1IMth that ofasinglefilterHo(z)without decimation! Inother 
words, the complexity tends to decrease as M increases. 
This dramatic result is aconsequence of the polyphase rep- 
resentation, combined with decimation. The uniform DFT 
analysis bank i s  therefore an efficient tool for spectrum 
analysis, and has actually been used in commercial spec- 
trum analyzers. See, for example, the recent Tektronix 
product described in  [34]. 

There are, however, some applications for which the uni- 
form DFTfilter bank i s  not necessarily the most well suited. 
As we shall see in section VIII, the uniform DFT filter bank 
is not the most suitable choice in maximally decimated QMF 
bank applications. This i s  because perfect cancelation of 
aliasing with such systems typically requires synthesis fil- 
ters of very high order. Moreover, perfect-reconstruction 
M-band QMF banks seldom have analysis filters satisfying 
the uniform shift property Hk(Z) = /-/0(zWk). 

V. SPECIAL TYPES OF DIGITAL FILTERS AND FILTER BANKS 

A number of multirate applications benefit from the use 
of special types of systems such as half-band filters, Mth 
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band filters, and power-complementary filter-banks. We 
shall now review these systems and indicate some appli- 
cations. 

A. Half-band Filters, Mth Band Filters, and Nyquist Filters 

In most applications, these are linear-phase FIR filters. 
The impulse response h(n) is  assumed to be Hermitian-sym- 
metric with respect t o n  = 0 (i.e., H(z) = E,"= - K  h(n)z-" with 
h(n) = h*(-n)), so that these are, in fact, zero-phase filters. 

A half-band filter [35], [16, page 1401 by definition, i s  a zero- 
phase filter whose impulse response satisfies 

h(2n) = 
c n = O  I 0 n # O  

(16) 

where c i s  usually taken to be 0.5. In other words, the even- 
numbered samples of h(n), except h(O), are equal to zero. 
If the transfer function H(z) i s  written in the form of (7), we 
see immediately that the polyphase component fo(z) i s  a 
constant, i.e., fo(z) = c. Thus 

H(z) = c + z - '€ , (2 )  (1 7) 

from which we obtain 

H(z) + H ( - z )  = 2c. (1 8) 

Notice that with z = e'", H(-z)  = H(e""-")), which, for real- 
coefficient filters, reduces to H(el(*-"'). Thus, for a real-coef- 
ficient zero-phase FIR filter satisfying (16), we have 

(1 9) 

assuming c i s  normalized to 0.5. This shows that 
H(el'"/2-e)) and H(e/'"/2+e)) add up to unity for all 8. In other 
words, we have a symmetry with respect to the half-band 
frequency d2, justifying the name "half-band filters." Fig. 
22 demonstrates the effect of this symmetry for a low-pass 

/+(e'") + H(e""-")) = I 

Fig. 22. Response of FIR half-band filter. 

filter: the peak errors 61 and 6, are equal and the band edges 
wp and os are equally distant from 62. These filters are, in 
particular, suitable as low-pass filters with cutoff wc at d 2 .  
The importance of half-band filters can be more thoroughly 
appreciated in section VI-B (see also [4] and [16, page 1431). 
Special tricks for the design of half-band filters can be found 
in [16, page 1411 and in [361. 

With H(z) = E,"= - K  h(n)z-", it i s  clear that we can assume 
K to be odd (otherwise h(K) = h(-K) = 0, in view of (16), 
anyway). If we now define a causal version of H(z) to be H&z) 

= z - ~ H ( z ) ,  then the relation (18)translates tothewell-known 
relation [IO] HJZ) - H,(-z) = z - ~ .  

An Mth band filter [35] is a logical extension of a half-band 
filter. We shall define it as a zero-phase FIR filter with 
impulse response satisfying 

(20) 

The constant c i s  usually taken to be 1/M. The property of 
(20) i s  also called the Nyquist property, for historical rea: 
sons [37]. Representing H(z) in the polyphase form of (IO), 
it is  clear that the component Eo(z) i s  equal to the constant 
c. In other words, we can write H(z) as 

H(z) = c + z-'€,(zM) + Z-2f2(ZM) 

Naturally we expect such a filter to satisfy a logical exten- 
sion of the property in (18). For this, consider the relation 
in (12), which holds for any H(z)-. With fo(z) equal to the con- 
stant c, the summation on the LHS of (12) reduces to a con- 
stant, i.e., 

M - 1  

C H ( Z W ~ )  = MC for all z. (22) 
k = O  

Notethat anyoneof(20), (21),and (22) implies theothertwo. 
Clearly (18) i s  a special case of (22), with M = 2. The sig- 
nificance of (22) i s  that the M uniformly shifted frequency 
responses H(el('-2*k'M)) add up to a contant for all w, if H(z) 
is  an Mth band filter). 

Standard techniques for the design of FIR Mth band fil- 
ters can be found in [35]. In most applications (such as in 
interpolation filter design and multilevel filter design (sec- 
tion IX-D)), the Mth band filter is required to be a linear- 
phase low-pass filter with cutoff TIM. The simplest design 
procedure that guarantees the Mth band property is the 
well-known windowing technique [16], [17], in which the 
coefficients of h(n) are obtained as 

sin ( d M )  
7rn h(n) = w(n) 

where w(n) i s  a finite-duration sequence called the window 
function. If w(n) i s  taken as the Kaiser window, then any 
desired stopband attenuation and transition bandwidth for 
H(z) can be obtained by choice of the window length and 
a window parameter called 0 [16, page 681. The advantage 
of the window method i s  that the condition (20) is auto- 
matically satisfied, because [sin (7rnlM)Il~n i s  zero when- 
ever n i s  a nonzero multiple of M. 

It i s  well known that window methods do not result in 
filters that are optimal in anyway. An alternative procedure 
to design Mth band filters that are optimal in the least- 
squares sense is provided by the eigenfilter approach, the 
details of which can be found in [38, section VI. Finally, 
design procedures which seek to obtain approximately 
equiripple (i.e., optimal in the minimax sense) FIR Mth band 
filters can be found in 1351. 

For the case of arbitrary-phase FIR and IIR filters, one can 
still define the Mth band property by requiring that one out 
of the M polyphase components €k(z) be constant. IIR Mth 
band filters of this type can be found in [39]. 
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B. Complementary Transfer Functions 

A set of transfer functions [Ho(z), Hl(z), * . , HM-,(z)] i s  
said to be strictly complementary (SC) if they add up to a 
delay, i.e., 

M - 1  

c Hk(Z) = CZ-"', c # 0. (23) 

An example of this is the set H~(z) = H(zWk), 0 5 k 5 M - 
1, where H(z) i s  an Mth band filter (see (22)). If we split a 
signal x(n) into M subband signals using such a set of filters 
(Fig. 10(a)), then the subband signals can simply be added 
to get back the original signal with no distortion except for 
a delay. 

A set of M transfer functions is said to be power-com- 
plementary (PC) if 

k = O  

M-1 

C IHk(e/u)(2 = c for all z, (24) 

where c # 0 is constant. This property is equivalent to 
k = O  /ik(Z)Hk(Z) = cfor all z, by analytic continuation. Such 

a property is useful in analysis/synthesis systems (i.e., in 
systems where Fig. 10(b) i s  cascaded to Fig. 10(a)). If the syn- 
thesis filters are chosen as Fk(z) = A!&), then we have a(n)  
= cx(n), which implies perfect recovery of x(n). In practice, 
the noncausality of fijk(Z) i s  avoided by insertion of a delay 
Z - " ' S O  that a(n) = cx(n - no). 

A set of transfer functions i s  said to be all-pass comple- 
mentary (AC) if 

k = O  

EM-1 - 

M - 1  

Hk(z) = A(z) (25) 

where A(z) is all-pass. If such a set i s  used in Fig. 10(a), and 
if the subband signals xk(n) are recombined by adding, the 
result i ( n )  satisfies Iz(z)l = JX(e/")l, so that there i s  no ampli- 
tude distortion in the reconstructed signal. 

A set of transfer functions i s  said to be doubly comple- 
mentary (DC) if it is AC and PC. There are several appli- 
cations of this (including digital audio; see the following). 

A pair of FIR transfer functions [Ho(z), H,(z)] i s  said to be 
Euclidean complementary (EC) if the polynomials Ho(z) and 
H,(z) are relatively prime (i.e., do not share acommon factor 
of the form (1 - 0rz-l) with 0 < la1 < 00. It i s  well known 
(Euclid's theorem [33, page 1751) that if H,(z) and Hl(z) are 
relatively prime, then there exist polynomials Fo(z) and Fl(z) 
such that 

H&Z)FO(Z) + Hl(z)Fl(z) = C, c f 0. (26) 

This means that we can combine the outputs of Ho(z) and 
H,(z) to reproduce x(n) with no delay, even when the filters 
H,(z), Hl(z), F,(z), Fl(z) are causal FIR! Here is a simple exam- 
ple which helps explain this surprising result: let H,(z) = 
1 + z - l  and H,(z) = 1 - z-'. Then the choice F,(z) = Fl(z) 
= 0.5 results in i ( n )  = x(n). Given the relatively prime pair 
[Ho(z), H,(z)], there exists a unique pair [fo(z), Fl(z)] (up to a 
scale factor) of lowest degree which can be solved using 
Euclid's algorithm. 

More generally, a set of M FIR transfer functions [Ho(z), 
Hl(z), . . * , k/M-l(Z)] i s  said to be EC if there i s  no factor (1 
- az-l) with 0 < ICY < 00 common to all of these. Under 
this condition, there exists a set of M FIR filters [Fo(z), Fl(z), 

. . , FM-~(Z)] such that E;=-/ Hk(Z)Fk(Z) = I. In particular, 
if all Hk(z) are causal, then so are all Fk(z). 

k = O  

A warning i s  appropriate in this context. Suppose the rel- 
atively prime polynomials Ho(z) and Hl(z) are causal low-pass 
and high-pass filters with JH,(eJ")J, JHl(eJ")J 5 1. Then the 
unique lowest degree pair [Fo(z), F,(z)] turns out to be high- 
pass and low-pass, respectively (try it!). So with Fo(z), Fl(z) 
normalized so that IFo(e/")(, (Fl(el")l 5 1, the constant c in 
(26) can be very small. This means that quantization errors 
in the design and implementation of the filters can dom- 
inate c, rendering this scheme impractical. 

C. Relation Between Mth Band Filters a n d  Power- 
Complementary Filters 

Consider a transfer function H(z) represented in the 
M-component polyphase form (IO). Define the new transfer 
function G(z) = fi(z)H(z). Then the set [Eo(z), E1(z), . * - , 
EM-&)] i s  power complementary if and only if G(z) i s  an Mth 
band filter. A proof of this can be found in Appendix B. 

D. Design o f  Special Transfer Functions 

Since the design procedures are well documented in the 
literature, we shall be content with mentioning afew point- 
ers here. The design of linear-phase FIR half-band filters i s  
discussed in [35] and [16, page 1401. The design of FIR linear- 
phase Mth band and Nyquist filters i s  described in [35], [36], 
and [38]. As mentioned in section V-A, the simplest approach 
for this i s  based on the window method. 

Givenan FIRfilterH,(z)with IHo(el")I I 1,itiseasytofind 
an FIR filter Hl(z) such that [H,(z), H,(z)] i s  PC. For this, note 
that PC property i s  equivalent to 

(/-/,(e/")(* = I - (Ho(e/")('. 

In other words, Hl(z) i s  a spectral factor of the quantity I 
- IHo(e/")I2. The coefficients of such a spectral factor can 
be computed as follows: compute the zeros of the poly- 
nomial 1 - fio(z)Ho(z) (which i s  equal to fil(z)Hl(z)), and 
denotetheseaszl,z,, . . . ,z,,,whereKistheorderofH,(z). 
These zeros occur in reciprocal conjugate pairs, i.e., if a i s  
a zero then so is l /a*. Construct H,(z) by arbitrarily picking 
one out of every such pair (this arbitrariness implies that 
the spectral factor need not be unique). Since all the zeros 
of H,(z) are determined in this way, Hl(z) is determined up 
to a scale factor. Methods for computing H,(z) without 
explicitly finding the zeros of 1 - fio(z)Ho(z) are described 
in [40] and [41]. The method in [40] works even if there are 
zeros on the unit circle, whereas the method reported in 
[41] works only if there are no unit-circle zeros. 

Finally, I IR filters with doubly complementary properties 
are elaborated in [42] and [43]. Some more elaboration on 
aspecial classof IlRtransferfunctionswith thedoublecom- 
plementary property can also be found in section VI-A of 
this paper. 

E. Applications o f  Special Transfer Functions 

From the preceding discussions it is clear that Mth band 
filters and complementary filters have applications in the 
exact reconstruction of a signal x(n) after it has been split 
into M subbands (provided the subband signals are not 
decimated; decimation would cause aliasing error, which 
is a major issue discussed in section VI). A second appli- 
cation of Mth band filters i s  that they are ideally suited as 
interpolation filters. Recall that the input to the interpo- 
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lation filter in Fig. 7(b) has M - 1 zeros between adjacent 
nonzero samples (with L = M) and that the purpose of H(z) 
is to fill these zero-valued samples with a weighted average 
of nonzero samples. Clearly, it is desirable to communicate 
the original nonzero samples of x,(n) without change. This 
i s  accomplished [37l if the impulse response h(n) satisfies 
(20). 

Complementary Filters in Digital Audio: The loudspeaker 
system in most audioequipment typically hasdifferent sub- 
speakers for different frequency ranges; e.g., the tweeter 
(high frequency) and woofer (low frequency). In a digital 
audio system it is desirable to split the signal y(n) (before 
D/A conversion) into the low-pass signal yo(n) and high-pass 
signal yl(n) using an analysis bank [Ho(z), H,(z)]. The analysis 
bank i s  more commonly called a "crossover network" in 
the audio industry. (See [ U ]  and [45] for analog-filter exam- 
ples of this type.) These subband signals can then be D/A 
converted and fed into the speakers. Assuming that the 
loudspeaker introduces negligible distortion (which, in 
general, is not true), the human ear eventually perceives an 
analog version of yob) + yl(n). In the transform domain, this 
is [Ho(z) + H,(z)] Y(z). To avoid any distortion in the recon- 
struction, it is desirable to design H,(z) and H,(z) to be a 
strictly complementary pair. This requires the use of linear- 
phase FIR half-band filters, which are more expensive than 
IIR filters. With I I R  filters it is possible to force the all-pass 
complementarity. This means that [Ho(z) + H,(z)] Y(z) rep- 
resents Y(z) faithfully except for phase distortion. If nec- 
essary, phase distortion can be equalized using an all-pass 
filter (section VI-A). 

It is very desirable to design Ho(z) and H,(z) to be good 
low-pass and high-pass filters so that the speakers are not 
damaged by out-of-band energy. Notice, however, that if 
Ho(z) is a good low-pass filter and if [Ho(z), Hl(z)] i s  AC, this 
does not mean H,(z) isagood high-passfilter.This is because 
the responses Ho(el") and /-/,(el") are, in general, complex. 
For example, it i s  possible at some frequencyto have Ho(el") 
= e/*/3 and H,(e/") = so that the sum is  2 cos (d3)  = 
1, consistent with the all-pass requirement of H,(z) + H,(z). 

For this reason a dou bly complementary pair [Ho(z), H,(z)] 
is most suitable: the PC property ensures that Hl(z) is agood 
high-pass filter (if Ho(z) i s  low-pass) and the AC property 
eliminates amplitude distortion. Such I I R  filters can be 
implemented much moreefficientlythan FIRfilters, as elab- 
orated in [42], [43], and in section VI-A. For systems with 
several subband speakers, an M-band AC filter bankcan be 
used; see [39] for the design of such filters. 

More applications of special transfer functions are scat- 
tered throughout this paper in various forms. 

VI. THE TWO-CHANNEL QMF BANK 

Consider the filter bank system of Fig. 13, which is a max- 
imally decimated analysiskynthesis system (or a QMF bank) 
[4], [46]-[50]. The applications of this system were outlined 
in greater detail in section Ill. The QMF bank is an LTV sys- 
tem (because of decimators and interpolators). In this sec- 
tion we shall study the aliasing and imaging effects created 
by the decimators and interpolators, emphasizing the M = 
2 case. The filters Ho(z) and H,(z) are low-pass and high-pass, 
respectively (Fig. 12(b)). The overlapping responses of Fig. 
12(b) ensures that no portion of X(e9 is severely attenuated. 
However, this overlap also means that the filters do not 

bandlimit the subband signals xo(n) and x,(n) to a sufficient 
extent, which results in aliasing when xo(n) and x,(n) are 
decimated. We should choose the synthesis filters Fo(z) and 
Fl(z) to cancel this aliasing, as is explained next. 

A. Analysis and  Elimination of Errors in the QMF Bank 

Since aliasing is permitted, none of the complementary 
filters described in section V can be used for perfect recon- 
struction without canceling this aliasing. 

Consider a typical input x(n) with X(ejw) as in Fig. 23(a).The 
signal xo(n) has transform as in Fig. 23(b). From (3b) we 
deduce that Vo(e/") = [Xo(e/"'2) + Xo(-e/"'2)1/2, which 
describes the aliasing effect in the top channel. From (3a) 
we see that Yo(e/") = Vo(e*/"), which describes the imaging 
effect. In a similar way, we can trace through the bottom 
channel in Fig. 13. The transforms of the various signals in 
Fig. 13 are therefore as shown in Fig. 23. 

Our aim is to combine the signals yo(n) and yl(n) with the 
help of the filters Fo(z) and F,(z) such that aliasing i s  can- 
celed. The shaded areas in Figs. 23(d) and (g) represent the 
two alias components. It i s  evident that the filters Fo(z) and 
Fl(z) should be low-pass and high-pass, respectively, so that 
the major part of the aliasing is removed. After this, the only 
alias components of considerable significance are around 
w = 7d2 and w = 3~12, as shown in Figs. 23(h) and 23(i). These 
nonzero components remain because the analysis filters 
overlap around d 2 .  (Fig. 12(b)). Our aim is  to cancel these 
two nonzero components. 

By using (3a) and (3b) we see that the general relation 
between R(z) and X(z) is given by 

The term containing X(-z), which i s  the alias component, 
vanishes if  we choose 

F&z) = H,(-z), Fi(z) = -H&-z). (28) 

With aliasing canceled in this manner we have 

R(z) = T(Z)X(Z). (29) 

The LTV system of Fig. 13 thus becomes an LTI system with 
transfer function 

which represents the distortion caused by the QMF bank. 
We shall call T(z) the overall transfer function (or the dis- 
tortion transfer function). 

In general, because of T(z), i(n) suffers from amplitude 
distortion (if IT(ej")l i s  not constant for all w) and from phase 
distortion (if T(z) does not have linear phase). To eliminate 
amplitude distortion it i s  necessary to force T(z) to be all- 
pass, whereas to eliminate phase distortion, we have to 
force T(z)  to be FIR with linear phase. Both of these dis- 
tortions are eliminated if T(z) i s  a pure delay, i.e., 

T(z) = Cz-"O (31) 

or, equivalently, 

i(n) = cx(n - no). (32) 
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Fig. 23. Illustration of various Fourier transforms in two-channel QMF bank. Here hor- 
izontal axis represents W. (a) Typical input. (b) Transform. (c) Aliasing effect. (d) Imaging 
effect. (e) Using xl. (9 Using vl. (g) Using yl. (h) Alias-term at output of F,,(z). (i) Alias-term 
at output of Fl(z). 

Summarizing, the reconstructed signal R(n) in Fig. 13 suf- 
fers from three distortions: aliasing distortion (ALD), ampli- 
tudedistortion (AMD), and phasedistortion (PHD). In addi- 
tion, we have the nonlinear coding error created by the 
encoding (or quantization) of the decimated signals. Since 
coding error cannot be eliminated, we shall not discuss it 

further. On the other hand, we shall see that the first three 
errors can be completely eliminated at finite cost by careful 
choice of the filters Hk(z) and Fk(z). Such systems which are 
alias-free and satisfy (31) are called perfect-reconstruction 
(PR) systems. 

Elimination of Phase Distortion: For any pair of analysis 
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filters, the choice of (28) of the synthesis filters eliminates 
ALD. We then have 

T(z) = 1 [H,(z)H,(-z) - H1(z)Ho(-z)l. (33) 

It is easy to force T(z) to be an FIR linear-phase filter simply 
by forcing Ho(z) and Hl(z) to be linear-phase FIR. 

In the earliest known QMF banks [4], [46], the analysis 
filters were related to each other as follows: 

HJz) = Ho(-z) (34) 

F&Z) = H&Z), F,(z) = - H ~ ( z )  = - H ~ ( - z ) .  (35) 

The choice of (34) ensures that H,(z) i s  a high-pass filter if 
H&z) is low pass. The choice of (35) i s  equivalent to that of 
(28) under the condition of (34), thus eliminating aliasing. 
We then have 

T(z) = [ H ~ ( z )  - H;(-z)] = ~ Z - ' € ~ ( Z ~ ) € , ( Z ~ )  (36) 

which automatically has linear phase as long as Ho(z) is cho- 
sen to have linear phase (the RHS of (36) is obtained bywrit- 

ing H,(z) as in (7)). With ALD and PHD eliminated in this way, 
we still are left with AMD. To demonstrate this, Fig. 24(a) 
shows three linear-phase designs of Ho(z). The correspond- 
ing plots of JT(el")( are shown in Fig. 24(b), demonstrating 
the existence of AMD (because the plot is not constant for 
all w. If there i s  too much overlap between the filters Ho(z) 
and Hl(z) (curve I), then there i s  peaking in IT(el")I, around 
w = d2. Iftheoverlapistoosmall(curve2),then IT(e'")I dips 
around d 2 .  An optimal overlap based on trial-and-error 
results in curve 3, which appears to be fairly good (though 
not very exciting). 

From(36)weseethatthesystem isPRifandonlyif fo(z)E,(z) 
i s  a pure delay. Since Ho(z) i s  restricted to be FIR, this is pos- 
sible if and only if Eo(z) and E,(z) are delays, which means 
Ho(z) must have the form 

(37) 

Summarizing, a two-channel FIR QMF bank with filters 
restricted as in (34) can have PR property if and only if H,(z) 
i s  a trivial transfer function of the form (37). 

In practice, frequency responses are required to be more 

Ho(z) = CoZ-Z"o + C1Z-(2nl+l). 
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Fig. 24. Three design examples for FIR QMF bank, demonstrating amplitude distortion. 
(a) Response of analysis filters H,,(z). (b) Corresponding amplitude distortions. 
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sophisticated than (37). So, under theconstraint of (34), per- 
fect reconstruction i s  not possible. After eliminating ALD 
and PHD, it is, however, possible to minimize AMD sys- 
tematically. To be more specific, one optimizes the coef- 
ficients of Ho(z) such that the function 1 T(ej")) i s  made as flat 
as possible, while at the same time minimizing the stop- 
band energyof Ho(z).Thusan objective function oftheform 

c* n *I2 

O < a < l  (38) 

can be minimized by optimizing the coefficients of H,(z). 
The second integral in (38) goes only up to u12 because 
IT(ej'")l has period u rather than 2u (see (36)). The coefficient 
a i s  used to control the tradeoff between the stopband 
energy of H,(z) and the flatness of (T(ej")(. Such optimi- 
zation has been done by Johnston [48], and by Jain and Cro- 
chiere [49]. Several tables of optimal filter coefficients can 
be found in [41 and [48]. 

An efficient implementation of the preceding two-chan- 
ne1 QMF bank can beobtained using the polyphasedecom- 
position. In view of (34), the analysis bank can be drawn as 
in Fig. 19. The decimators which follow this can be moved 
to the left of E o ( l )  and E1(2), so that the entire analysis bank 
requires only about NI2 MPUs and NI2 APUs. And in view 
of the relation of (351, the synthesis bank can be imple- 
mented with equal efficiency. Fig. 25 shows the complete 

4 * *  
bank Synhsir bank 

Fig. 25. Completetwo-band QMF bankwith H,(z) = Ho(-z), 
Fo(z) = H&), F,(z) = -H,(z). 

implementation using the polyphase framework. Notice 
that the complete system in Fig. 25 requires a total of only 
about N MPUs and N APUs, where N is  the length of the 
low-pass filter Ho(z). 

Recall that in the preceding method H,(z) is required to 
have linear phase if T(z) must have linear phase. A caution 
about thechoiceof N is necessary here: N should bechosen 
to be even. An odd value of N results in T(ej"), which i s  nec- 
essarilyzero at w = k u12. For proof, see [4], [47] or [50, page 
7. A different proof is obtained by looking at the RHS of 
(36): if N is odd, then Eo(z) and El(z) are linear-phase filters, 
and one of these necessarily has odd order, resulting in a 
zero at w = u [16, page 731. This translates into a zero of (36) 
at w = ku12. 

Elimination ofAmplitude Distortion: The choice of filters 
as in (34) and (35), with H,(z) chosen as linear-phase FIR, 
eliminated ALD and PHD completely, and AMD was then 
minimized by optimization. A complementary approach 
would be to choose the filters to eliminate ALD and AMD 
completely, and minimize PHD. This can indeed be accom- 
plished as follows. Again choose the filters as in (34) and (35) 
so that (28) i s  satisfied, resulting in ALD elimination. Now 
we have T(z) as in (361, which we wish to force to be all-pass. 
From the RHS of (36) we see that this can be done by con- 
straining the polyphase components E,(z) and El(z) to be IIR 

all-pass! This i s  precisely equivalent to constraining the 
analysis filter Ho(z) to be of the form 

(39a) 

where Ao(z) and Al(z) are all-pass filters of the form 

A,(z) = ao(z2), Al(z) = z- 'a1(2).  (39b) 

The relevant question now is  this: is it possible to obtain 
good low-pass filters under the constraint that the transfer 
function be of the form of (39a)? The answer, fortunately, 
i s  yes! 

To understand this, recall that the frequency response of 
the all-pass functions can be expressed as A,(ej") = e@"(") 
and Al(ejw) = ej+l(") so that (39a) takes the form 

If the all-pass functions are designed such that the phase 
responses +,(U) and +l(o) are aligned in the passband and 
differ by in the stopband, IHo(e'")l automatically comes 
out to be a good low-pass response! In fact, it can be shown 
[42] that digital Butterworth, Chebyshev, and Elliptic filters 
are special cases of the form (39a). 

The further constraint (39b) on the all-pass filters is nec- 
essary to ensure that Ao(z)12 and A1(z)/2 are the components 
Eo@) and z-'€~@), so that (36) will work out to be all-pass, 
thus eliminating AMD. We then have T(z) = z-'aO(2)a,(1)/ 
2. The phase distortion created by the nonlinear phase of 
T(eI") can be reduced by all-pass equalization. 

Design Procedure: Perhaps the simplest procedure to 
design filters of this form involves the recognition [42], [43] 
that digital elliptic filters (which are optimal in the minimax 
sense) automatically have the form of (39a). If the order of 
H,(z) is odd, the coefficients of A,(z) and A,(z) are real [42], 
and we shall assume it is so here. The only remaining step 
is to ensure that Ao(z) and Al(z) have the forms ao(z2) and 
z -'al(z2), respectively. Now with H,(z) = [ao(z2) + z -'a,(z2)Y 
2 and Hl(z) = Ho(-z), we can verify by direct substitution 
that 1 Ho(e'"))2 + I Hl(e'w)12 = 1, i.e., 

In other words, 1 Ho(e/W)12 has a symmetry, with respect to 
u12, analogous to Fig. 22. 

The procedure would then be to design an odd-order 
elliptic filter Ho(z) (of specified attenuation and transition 
width) with passband ripple 61 and stopband ripple 62 such 
that the aforementioned symmetry holds (i.e., 1 - (1 - 264' 
= 6;) .  With all the filter specifications now available, a stan- 
dard digital elliptic filter design procedure (such as the one 
in [9, pp. 125-1271 followed by bilinear transformation) can 
be used to design H,(z). 

The filter so designed is  guaranteed to have the following 
form: 

because of the half-band symmetry, which guarantees that 
the poles of H,(z) are confined to the imaginary axis of the 
z plane (see [43, Appendix] for formal proof). This ensures 
that d(z) has the form 

r 

d(z) = (1 + dkz-l) 
k = l  
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with 

0 < dl < d2 < * * *  < d, < 1. 

The filters ao(z) and al(z) are now identified [51] as 

2o.eoe 

a * -I 18.080 
w e, 

wp = 0 . 3 8 ~ .  The elliptic low-pass design, based on [9], then 
results in Ho(z) = [ao(z2) + ~-~a,(z*)]12, where 

0.211056 + z- ’  
1 + 0.211056z-“ 

0.685604 + z - ’  
= 1 + 0.685604~-” ao(z) = 

Fig. 26(a) shows the magnitude response of Ho(z). The group 
delay of the QMF bank (i.e., the group delay T ( W )  of T(z) = 
z-’ao(z2) al(z2)) i s  shown in Fig. 26(b). This exhibits a peak 
around s12 as expected. The group delay distortion (which 
i s  thedifference between the largestand thesmallest values 
of T(w) )  i s  approximately equal to 14 samples. 

A ninth-order all-pass equalizer of the form 

. 

3 . with equalizer 

Once the polyphase components Eo(z) = ao(z)/2 and El(z) = 
a1(z)/2 are so determined, we can implement the complete 
QMF bank as in Fig. 25. The phase distortion of the QMF 
bank (caused by the nonlinearity of phase d(w) of T(z) = 
z-’ao(z2) al(z2)/2), can be seen by plotting the group delay 
T ( W )  = -d+(w)/dw. The nonlinearity of I$(o) corresponds to 
a nonflat nature of ~(0). This i s  particularly severe near the 
band edge (i.e., around w = d2), and particularly so for fil- 
ters with sharp transition bands and/or large attenuations. 

Design Example: Assume that Ho(z) is  required to have a 
stopband attenuation of 40 dB and stopband edge wS = 
0.62~. Because of the half-band symmetry, this implies a 
peak passband ripple ti1 = 0.25 x and passband edge 

is used to compensate for the group delay distortion of 
ao(z)al(z). This means that the reconstructed signal 2(n)  must 
be passed through €(z*) to get the equalized output. Fig. 
26(b)also shows thegroupdelayofthecompleteQMF bank 
with theequalizer. This group delay isfairlyflat and exhibits 
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Fig. 26. Design example for IIR all-pass-based QMF bank. (a) Magnitude response of H,(z). 
(b) Group delay of complete QMF bank with and without equalizer. 
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a distortion of only about 2.5 samples. Note that the overall 
group delay of the equalized QMF bank i s  approximately 
equal to 23 samples. The coefficients 0, Rk, and were 
obtained by minimizing an objective function of the form 

Jo* [71(u) + 7 2 ( 0 )  - d2 du 

where 71(0) is the group delay of ao(z) al(z) and Tz(1.0) i s  the 
group delay of E(z). The quantity c of this i s  an unknown 
constant, and i s  among the parameters being optimized. 
The equalizer parameters found in this matter turned out 
to be 

R1 = 0.673364, R2 = 0.660524, R(3) = 0.662805, 

R(4) = 0.666467, 

el = 0.7791~, e2 = 0.1896r, e3 = 0.3808~, 

= 0.5759~, 

and /3 = 0.659. 
There exist a number of digital filter structures for imple- 

menting all-pass filters [52], I531 which have the following 
property: the transfer function remains (stable and) all-pass, 
despite quantization of the multipliers. In other words, the 
transfer function i s  structurallyall-pass (i.e., all-pass despite 
multiplier values). This i s  very desirable: if we implement 
the QMF bank as in Fig. 25, with the functions Eo(z) and El(z) 
constrained to be structurally all-pass, then ALD and AMD 
are eliminated regardless of quantization of the structure 
coefficients. 

See the end of section VI for a discussion of implemen- 
tation complexity and for a comparison with other types of 
two-channel QMF banks of comparable performance. 

B. Two-channel Perfect Reconstruction QMF Banks 

Next, how can we eliminate all three distortions, viz., ALD, 
AMD, and PHD simultaneously? Such elimination would of 
course imply (31), i.e., perfect reconstruction. We can cre- 
ate a very simple example of a PR system by choosing the 
filters as follows: 

H&z) = 1, H~(z) = z-', F&z) = z-', F1(z) = 1. 

(41 ) 

This system is  shown in Fig. 27(a). By employing (27) we can 
verify that (29) i s  satisfied with T(z) = z -' so that i(n) = x(n 
- 1). This can also be seen from Fig. 27(a) by noting that the 
analysis bank merely partitions the input samples into even- 
and odd-numbered subsets. The synthesis bank combines 
these subsets and puts the samples back in their original 
places (except for a delay z-'). 

Even though the filters (41) have trivial frequency 
responses,this example provestheexistenceof FIR PRQMF 
banks. Weshall make useof Fig. 27(a) toconstruct nontrivial 
FIR PR QMF examples, where the filters Ho(z) and Hl(z) have 
good attenuation. We shall seek the help of the polyphase 
decomposition to make the connection between Fig. 27(a) 
and more nontrivial systems. 

Polyphase Decomposition of the QMF Bank: We have 
already seen that a two-channel QMF bank can be drawn 
as in Fig. 25 when the filters are related by (34) and (35). We 
also saw that if the filters are so related, then perfect recon- 
struction i s  not possible unless the frequency response of 

(d 
Fig. 27. Pertaining to design of perfect-reconstruction sys- 
tems. (a) Simple perfect-reconstruction system. (b) Redraw- 
ing two-band QMF bank. (c) Here P ( z )  = R(z)E(z). 

Ho(z) i s  as in (37). Let us, therefore, not assume at the begin- 
ning any relationship between filters. 

Suppose each of the analysis filters i s  written in the form 
of (7), i.e., H&) = Eko(z2) + z-'Ekl(z2), k = 0,l. Similarly let 
each synthesis filter be written in the form (13), i.e., Fk(z) = 
z-'Rok(z2) + Rlk(z2). We can collect these equations neatly 
in matrix-form as follows: 

and 

With this, we can redraw Fig. 13 in the form of Fig. 27(b), 
where F(z) = [E'[),], 0 I k, n, 5 M - 1, and R(z) = [REA], 0 I 
k, n, s M - 1. Now we can employ the noble identities (Fig. 
9) to move the decimator and interpolator, resulting in Fig. 
27(c), where f(z) = R(z) €(z). 

It i s  now clear that if the filters Hk(z) and Fk(z) are such 
that 

R(z) = €-'(z) (44) 

then the system of Fig. 27(c) reduces to that of Fig. 27(a), 
which is  a PR system! It is in fact shown in [31] that a nec- 
essary and sufficient condition for the PR property i s  that 
f(z) should have one of the following forms: 

Returning now to the earlier example, where the filters 
were related as in (34) and (35), we have 

where Eo(z) and El(z) are polyphase components of Ho(z). 
We then have 

R(z) €(z) = 2E,(z) E&)/. (47) 
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As explained earlier, it i s  not possible to obtain a PR system 
based on this, because Ho(z) would then become con- 
strained as in (37). 

To obtain an FIR PR system with good filters Ho(z) and 
H,(z),we havetogive up theconstraint (34). Smith and Barn- 
well [54] have shown how this can be done, based on spec- 
tral factorization of half-band filters. We shall review this 
same approach from a different viewpoint which enables 
us to extend the perfect reconstruction property for arbi- 
trary M and, in addition, gives efficient polyphase lattice 
structures for robust implementation. Consider the task of 
satisfying the general condition (45) for perfect reconstruc- 
tion.Thus let us forcethe productP(z)to be dz-K/by requir- 
ing R(z) = d ~ - ~ E - ' ( z ) .  This means that R(z) and hence Fk(z) 
are, in general, I IR filters. The synthesis filters will be stable 
provided the determinant of €(z) i s  a minimum phase poly- 
nomial, 

To obtain a PR system with only FIR filters, we must work 
harder. The strategy woud be to constrain det f(z) to be a 
delay. A subclass of FIR matrices for which the determinant 
is a delay i s  the family of lossless matrices [31], [50]. To design 
FIR PR QMF banks systematically, we now turn attention to 
this family. I t  should be remembered, however, that loss- 
lessness of f(z) is not a necessary condition for perfect 
reconstruction [301, [311, [551. 

C. Lossless Systems2 

Historically, lossless systems are well known in classical 
electrical network theory [56]-[58]. An electrical network 
composed of lossless elements (such as inductors and 
capacitors but no resistors) i s  said to be lossless.The imped- 
ance matrix Z(s) of a multiterminal lossless electrical net- 
work satisfies Re [Z(jt?)] = 0. The scattering matrix of a mul- 
titerminal network i s  defined as T(s) = [Z(s) - I][Z(s) + I ] - ' .  
For a lossless network, the property of Z(jt?) translates into 
the unitariness of T(jt?). An excellent (and perhaps the only 
one of its kind) reference on lossless systems is the text by 
Belevitch [58]. 

Interestingly enough, the concepts of losslessness and 
passivity have played a crucial role in single-rate digital sig- 
nal processing (primarily in robust digital filter design) [42], 
[43], [59]-[61]. The importance of lossless systems in mul- 
tirate digital filter banks has been exploited in [31]. Our pre- 
sentation in this tutorial i s  based on [31], [50], and [62]-[65], 
which deal with discrete-time lossless systems directly in 
the z domain, for application in QMF bank design. - 

Discrete-Time Lossless Systems: A p X r transfer matrix 
H(z) describes an r-input p-output system with input vector 
u(n) and output vector y(n). Thez-transforms of u(n) and y(n) 
are related as Y(z) = H(z) U(z). The energy of the sequences 
are defined as E, = E;= ut(n) u(n) and ,Ey = Er= -m yt(n) 
y(n), respectively. The system H(z) i s  said to be lossless if 
the relation E,, = cE, holds for every possible input 
sequence, where c > 0 is  a constant independent of u(n). 
If we take c = 1, then the output of the lossless system has 
the same energy as the input, justifying the name. 

More formally, a transfer matrix H(z) is said to be lossless 
if it i s  stable (i.e., all entries have poles inside the unit circle 
[q) and satisfies 

fi(z) ~ ( z )  = c/ for all z, (48) 

*At this point, the reader may find it beneficial to review the 
Nomenclature section, found at the end of the paper. 

for some c # 0. The property of (48) implies that H(z) is uni- 
tary on the unit circle (see section I), i.e., Ht(e'") H(e"? = 
c l  for all W. 

A constant unitary matrix i s  a trivial example of a lossless 
system. A scalar stable all-pass function H(z), which by def- 
inition satisfies 1 H(e'")l = constant, i s  another example. AS 
a third example, if Hk(z), 0 5 k 5 M - 1 is  a power com- 
plementary set, then the M x 1 vector [Ho(z) Hl(z) * e e 

HM-l(z)]T i s  a lossless system. A lossless example with p = 
r i s  offered by the 2 x 2 orthogonal matrix [A-;]. When p 
= r, an FIR lossless systems H(z) satisfies the property det 
H(z) = ~ ! z - ~ ,  where d i s  a constant and K i s  an integer [62], 
[64]. Moreover, the inverse i s  given by H-'(z) = fi(z)/c, as 
seen from (48). In other words, the inverse i s  not only guar- 
anteed to exist, but also can be found from H(z) simply by 
writing down fi(z). For example, let 

(49) 

We can verify that this is lossless (because (48) is satisfied 
with c = 4). The inverse is given by 

H(z) = [: : 1:: ; 1:: 1. 

D. Use of Lossless Systems in QMF Design 

to be FIR and lossless. We can now choose R ( z )  as 
Returning now to the QMF bank, suppose we restrict f(z) 

R(z) = z-Ki(z) = cz-Kf- '(z) (51) 

so that perfect reconstruction i s  guaranteed. The delayz-K 
ensures causalityof the synthesis bank. For example, if €(z) 
i s  as in (49), then R ( z )  should be 

R(z) = (52) I- [ -1 + z - l  1 + z - '  

1 + z - '  -1 + z - '  

With €(z) as in (49) and R(z) as in (52), we have 

Ho(z) = 1 + z - '  + z - 2  - z-3, 

H1(z) = 1 + z-1 - 2 - 2  + 2 - 3  (53) 

and 

F&z) = [-I + z - ~  + z - ~  + z - ~ ] ,  

Thus the simple choice of filters, as in (53) and (54), results 
in an FIR PR QMF bank. 

The product of paraunitary systems is paraunitary. There- 
fore the product of lossless systems is  lossless, so that we 
can generate more complicated examples of arbitrary 
degree just by multiplyingtogether simpleexamplesof €(z). 
However, to obtain a systematic procedure for the design 
of QMF banks based on lossless polyphase matrix €(z), we 
have to find a technique for characterizing the entire family 
of 2 x 2 FIR lossless systems. By performing a systematic 
gradient search within this family, it is then possible to 
optimize the filter responses Ho(z) and H,(z) so that they 
have good stopband attenuations. In preparation for this 
we shall now summarize a number of important results per- 
taining to the QMF bank based on lossless f(~). See [65] for 
most proofs. 
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Summarizing, an FIR PR QMF bank with €(z) chosen to 
be lossless has the following properties: a) [H,(z), H,(z)] i s  
a power complementary pair; b) Hl(z) i s  related to Ho(z) by 
(56), i.e., by (57); and c) the synthesis filters are given by (58), 
i.e., by (59). Conversely, it turns out [65] that if an FIR QMF 
bank satisfies these three properties, it i s  a perfect recon- 
st ruction system. 

It can finally be shown that if H,(z) i s  any FIR transfer func- 
tion such that i ts  polyphase components foo(z) and E,,(z) are 
power-complementary (or, equivalently, if /4,(z) H,(z) is  a 
zero-phase half-band filter; see section V-C), then the fol- 
lowing things are true: a) the matrix E(z) defined as (55) i s  
lossless; b) if Hl(z), F,(z), and Fl(z) are chosen as in (56) and 
(58), we have a FIR PR QMF system. 

The Design Procedure: In  the aforementioned FIR PR 
QMF system, once we know H,(z), the remaining transfer 
functions Hl(z), F,(z), and Fl(z) are completely determined. 
We are now left with one final question: how to design the 
coefficients h,(n) of H,(z)? We shall restrict the design to the 
case of real h,(n). It i s  shown in [62] that every 2 x 2 real- 
coefficient FIR lossless system €(z) can be expressed in the 
form 

€(z) = dR,A(z) RK-~A(z) . . R,A(z)R~ (60) 

The four entries of a 2 x 2 FIR lossless system are 
related to each other because of the constraint €(z) 
€(z) = cl. It can be shown that the most general 2 x 
2 causal FIR lossless system has the form 

where cy is a constant with (a( = 1, K 2 0 is an integer 
large enough to make the entries causal, and {Eoo(z), 
E,,(z)} forms a power complementary pair. In what 
follows we assume a = 1, as this does not reduce the 
freedom for filter design. 
As a consequence of this, if we use €(z) to construct 
analysis filters as in (42), then Hl(z) i s  related to H,(z) 
by 

Here 2K + 1 is  the order N - 1 of Ho(z) (so that Hl(z) 
in (56) is causal). With this, the coefficients of H,(z) are 
given by 

h,(n) = (-l)"h,*(N - 1 - n). (57) 

With the matrix R(z) chosen as z -~€ (z )  the synthesis 
filters determined by (43) are given as 

so that 

(59) 

Clearly this choice also implies I Fo(el")l = I H,(e/")I 
and I F,(el")( = I H,(e'")l. 
With €(z) constrained to be lossless, the pair [H,(z), 
H,(z)] i s  power complementary, and so i s  the pair [F,(z), 

The quantityk,(z)H,(z) is azero-phase half-band filter 
(section V-A). 

Fi MI. 

where R, are 2 x 2 real orthogonal matrices of the form 

A(z) is  a diagonal matrix of the form 

r1 o 1 

and d i s  a real scalar constant of no serious consequence. 
Here K i s  the degree of €(z). Note that the building blocks 
(61) and (62) in the product (60) are themselves lossless. With 
F(z) used as the polyphase matrix for the analysis filters and 
with the synthesis-bank polyphase matrix chosen as (51), 
any real-coefficient FIR PR QMF bank with lossless €(z) can 
be drawn as in Fig. 28. This is called the lattice structure, 

Analysis bank implementation 

- 
Synthesis bank implementation 

I \ A  - f 

Fig. 28. Lattice structure implementation of two-channel 
real-coefficient FIR perfect reconstruction QMF bank with 
lossless E(z). 

because of the criss-cross nature of the building blocks. The 
parameters CY, can be optimized on a computer to ensure 
that the stopband energy of H,(z )  i s  minimized; the pass- 
band of H,(z) comes out to be automatically good because 
of the half-band property of /4,(z) H,(z). Several design 
examples can be found in [65], along with tables of optimal 
filter coefficients with filters designed in this maqner. The 
use of filters related by (56) and (58) (with H(z) 2 Ho(z) H,(z) 
constrained to be a half-band filter) in the design of perfect 
reconstruction QMF banks was first recognized in [54] and 
[66]. The first approach to design such filters was based on 
the design of the half-band filter H(z) followed by spectral 
factorization. Such factorization is often numerically inac- 
curate because H(z) has large attenuation and typically has 
several zeros on the unit circle. An inaccurate spectral fac- 
tor results in a QMF bank with imperfect reconstruction 
property. Later on the lattice structure of Fig. 28 was intro- 
duced so that a direct optimization of H,(z) could be done 
with no need for factorization; the lattice guarantees per- 
fect reconstruction despite coefficient quantization. 

A noteworthy feature of the lattice is that regardless of 
the values of a, and d, the following properties hold: a) 
f io(z) H,(z) is a zero-phase half-band filter; b) H,(z) i s  related 
to Ho(z) by (56); c) [H,(z), H,(z)] is  power complementary; and 
d) i ( n )  = cx(n - 2K - I), so that perfect reconstruction i s  
guaranteed regardless of quantization of the coefficients 

Linear-Phase FIR Perfect Reconstruction QMF Banks: In 
some perfect reconstruction sytems, it i s  desirable to have 

ffn. 
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analysis and synthesis filters having linear phase. At first 
this might appear to be a redundant requirement because, 
the complete analysislsynthesis system has the PR property 
anyway (which means that any phase distortion caused by 
analysis filters i s  somehow compensated for by the syn- 
thesis filters). However, in practice, the term "PR system" 
implies that only the linear errors (ALD, AMD, and PHD) are 
eliminated but not the nonlinear coding error (which results 
from the coding of the subband signals after decimation). 
For low bit-rate coding, the coding errors are typically cor- 
related to the signals, and the alias cancellation is not per- 
fect in the presence of such errors. Experience has indi- 
cated (particularly in image-processing applications) that 
the reconstruction error caused by this coding error is less 
harmful if the analysis filters used in the QMF bank have 
linear phase. 

The perfect reconstruction system described in the pre- 
ceding i s  such that the analysis filters Hk(z) do not have lin- 
ear phase. This is because a linear-phase power comple- 
mentary pair [Ho(z), H,(z)] necessarily has trivial forms (such 
as (37)). If we give up the power complementary require- 
ment of the analysis filters, we can obtain perfect recon- 
struction FIR QMF banks with linear-phase analysis filters 
(and synthesis filters of same lengths). Two such families 
are reported in [67l, where the losslessness of €(z) (and 
hence the power-complementarity of the analysis filters) i s  
given up forthis purpose.TheresuItinganalysis-bankstruc- 
ture is somewhat similar to Fig. 28. The main difference i s  
that the minus sign in front of olk in each building block i s  
absent for 0 5 n 5 K - 1 (so that R, i s  not orthogonal any 
more). The last section RK is, however, exactly as in Fig. 28, 
with olK = 1. Further detailed derivations, design examples, 

and the exact details about the corresponding synthesis 
bank can be found in [67l. 

E. Computational Complexity and Price Paid for Perfect 
Reconstruction 

So far in this paper we have seen three methods for the 
design of two-channel QMF banks. In one method, the rela- 
tions (34) and (35) are satisfied, and H,(z) i s  a linear-phase 
FIRfi1ter;ALD and PHD arecompletely eliminated; and AMD 
is minimized using Johnston's procedure[4], [a]. In another 
method, relations (34) and (35) are st i l l  satisfied, but H,(z) 
i s  an IIR filter of the form (39a), whereA,(z) and A&) are all- 
pass filters of the form (39b); ALD and AMD are completely 
eliminated; and PHD reduced by all-pass equalization. 

We then described a method where the analysis and syn- 
thesis filters are FIR, satisfying a different relation (viz., (56) 
and (58)), and are such that fi,(z) H,(z) has half-band prop- 
erty. In this method, ALD, AMD, and PHD are completely 
eliminated, but the analysis filters do not have linear phase. 
Finally, we mentioned a method which gives rise to FIR per- 
fect reconstruction systems in which the analysisfilters have 
linear phase(whi1eat the sametimeofferingarbitrarilygood 
attenuation characteristics). 

Several features of the preceding four methods are sum- 
marized in Table 1, where a number i s  assigned to each 
method for identification purposes. Notice in particular the 
MPU count (derived in the following) for the entire QMF 
bank,which isequal tothelengthofthefiIterH,(z)for meth- 
ods 1 and 2, and half this length for method 3. The group 
delay of the complete QMF system is  also tabulated, and 
i s  equal to the order of Ho(z) for the first three methods. 

Table 1 Comparison of Four Types of Two-Channel QMF Banks. 

Method 2 
(Smith-Barnwell [54], 
VaidyanathanlHoang Method 3 

Method 1 b51) (VaidyanathadNguyen [67]) Method 4 
(Johnston's Table) Perfect-Reconstruction Perfect-Reconstruction IIR Based 

[41, [MI System System WI, [431 

Relation between H,(z) = Ho(-z) H,(z) = -z-Lfi,(-z) not explicit; implicitly same as method 1 
filters F ~ ( z )  = HoM, Fo(z) = z-' f io(z), det E(z) = delay, and 

F ~ ( z )  = - H ~ ( - z )  F,(z) = z-' f i ,(z) R(z) = cz-*E-'(z) 
L = order of Ho(z) 

Phase response of linear 

Other crucial features 

Ho ( I )  

of Ho(z) 

nonlinear 

f i o ( z ) ~ o ( z )  is a (zero- 
phase FIR) half-band 
filter 

Distortions in QMF ALD canceled ALD canceled 
bank AMD minimized AMD eliminated 

PHD eliminated PHD eliminated 

linear 

ALD canceled 
AMD eliminated 
PHD eliminated 

nonlinear since H o ( z )  

2H0(z) = ao(zZ) 

IIR 

+ Z - ~ ~ , ( Z ~ ) ,  ao(z), 
a,(z)  IIR allpass 

ALD canceled 
AMD eliminated 
PHD equalized 

N, = order of H,(z) Notation for filter N, = length of N, = length of Ho(z) N 3  = length of Ho(z) 
length or order as Ho (z) 
relevant 

N, - 1 + equalizer 

analysis/synthesis overhead (all-pass 
system polyphase) 

Number of MPU to N, (direct-form, Nz (lattice, polyphase) N3 

implement entire polyphase) 2 
- (lattice, polyphase) 

Group delay of entire 
analysis/synthesis 
system 

N, - 1 NZ - 1 N, - 1 complicated 

Note: ALD = aliasing distortion; A M D  = amplitude distortion; PHD = phase distortion. 
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Counting the Number of MPU: For Method 1 the MPU 
count is obvious from earlier discussions. For Method 2, 
note that the lattice structure of Fig. 28 enables us to obtain 
a polyphase implementation requiring half as many MPUs 
as a direct-form implementation of the analysis bank. This 
is because each section of the form (61) requires two mul- 
tipliers, which operate at half the input rate (because the 
decimators can be moved all the way to the left in Fig. 28), 
and the number of such sections in the analysis bank i s  
equal to Nl2, where N i s  the length of Ho(z). Consequently, 
the entire analysis/synthesis system requires only N MPUs. 
A direct-form implementation would have required 2N 
MPU, and the modified direct form [68] would require 1.5N 
MPUs. Next, for Method 3 the same lattice structure can be 
used with the modification mentioned in section VI-D. Since 
this modification callsfor deletion of the minus sign in front 
of ak in Fig. 28, each latticesection requires only one (rather 
than two) multiplier 1691, so the MPU count i s  reduced by 
a factor of two. For method 4, the MPU count i s  obtained 
from the fact that any all-pass function of order L can be 
implemented with only L multipliers [53]. 

To obtain a more complete feeling for the relative trade- 
offs and complexities of the various methods, we compare 
them based on design examples of identical specifications 
(as far as practicable). Table 2 compares the three FIR QMF 
banks. In each method,Ho(z) i s  required to havea stopband 
attenuation A, = 38 dB, and stopband edge w, = 0.586~. 
Only method 1 has amplitude distortion, and this is pro- 
portional to  the second integral in (38) (see [48] for quan- 
titative definition). Assume that this distortion i s  required 
to be 0.025 dB or less. With these requirements, methods 
1 and 2 require approximately the same filter length, and 
hence the same MPU count. On the other hand, method 
3 (where the analysis filters have linear phaseandthe QMF 
bank has perfect reconstruction) requires a higher length 
of 62. However, because of the existence of a neat lattice 
representation for method 3, the number of MPUs required 
for the entire QMF bank is nearly same as for methods 1 
and 2! 

If this is so, what i s  the price paid for perfect reconstruc- 
tion? Compared to method 1, method 2 has nonlinear-anal- 
ysis filters, which can be considered the price paid. How- 

ever, this i s  overcome in method 3. The only price paid in 
method 3 is  that the overall group delay of the QMF system 
i s  two times longer. Assuming an input sampling rate of 8 
kHz for x(n) in Fig. 13, this group delay is approximately 4 
ms for methods 1 and 2, and 8 ms for method 3. Even 8 ms 
is  unlikely to be objectionable in most speech communi- 
cation systems. 

Next, Table 3 shows a comparison of the FIR perfect 
reconstruction system (method 2) with the I IR QMF bank 

Table 3 Comparison of Methods 2 and 4, When Both are 
Required to have A, = 40 dB, and us = 0.62 ?r 

Method 2 
(Perfect- Method 4 

Reconstruction (IIR System with 
FIR System) Nonzero PHD) 

Filter length or order 
as appropriate 

Number of MPU for 
entire analysis/ 
synthesis system 

Group delay 
distortion 

Other distortions 

N, = filter length 
for H,(z) = 22 

N, = order of 
H,(z) = 5 

22 11, with an allpass 
equalizer E(z) of 
order 9 

none 2.5 samples with 
allpass equalizer 
E(z) of order 9 

none none 

(method 4) with Ho(z) constrained to have A, = 40 dB and 
W, = 0 . 6 2 ~  in both cases. With a ninth-order all-pass equal- 
izer, the group delay distortion of method 4 i s  about 2.5 
samples and the MPU count i s  only half as much as the FIR 
perfect reconstruction system. Note, however, that for sys- 
tems with sharper H o ( z ) ,  the equalizer tends to have dis- 
proportionately higher order, so that the IIR system might 
end up having a higher MPU count! 

VII. UNIFICATION OF ALIAS-FREE QMF BANKS, BLOCK 
DIGITAL FILTERS AND LPTV SYSTEMS 

There are three topics in digital signal processing, devel- 
oped quite independently of each other, that are closely 
related by a common mathematical structure [70]. These 
topics are alias-free QMF banks, block digital filtering, and 

Table 2 Comparison of Design Examples for Three FIR Two-Channel QMF Banks. In 
All Three Methods, H,(z) has A, = 38 dB and w,  = 0.586 IT 

Method 1 Method 2 Method 3 
(Johnston’s Tables) (Vaidyanathan-Hoang) (Nguyen-Vaidyanathan) 

i.e., Imperfect Reconstruction Le., Perfect-Reconstruction i.e., Perfect-Reconstruction 
with Linear Phase with Nonlinear Phase with Linear Phase 

Analysis and Synthesis Filters Analysis and Synthesis Analysis and Synthesis 

Required filter-length N, = 32 for AMD error E, = 

Filters Filters 

N, = 62 N, = 30 
for H,(z) 0.025 dB 

Group delay of entire 
analysis/synthesis 
system 

Number of MPU for 
entire analysis/ 
synthesis system 

31 29 61 

32 30 31 

Price paid by the AMD not equal to zero H,(z) and H,(z) do not 
have linear phase 

Group delay is longer 
method in relation 
to remaining two 
methods 

Note: AMD = amplitude distortion 
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linear periodically time-varying (LPTV) systems. In the fol- 
lowing parts of this section we shall review this relation. 

A. Alias-Free QMF Banks 

Fig. 29(a) shows the M band generalization of the QMF 
bank. It i s  said to be a maximally decimated structure 
because the decimation ratio M is  equal to the number of 
bands.Todistinguish this from tree structures(section VIII), 
the scheme of Fig. 29(a) is called a parallel structure. Once 

(b) 

Fig. 29. (a) M-band maximally decimated parallel QMF 
bank. (b) Redrawing of Fig. 29(a) in terms of polyphase com- 
ponent matrices. 

again, this is an LTV system because of the decimators and 
interpolators. The correct name for the system of Fig. 29(a) 
would be "M-band maximally decimated analysis/synthesis 
system." It is, however, loosely called the "QMF" bank in 
analogywith the two-channel system of Fig. 13. For the two- 
channel case, the response 1 H,(e/'")\ i s  usually an image of 
1 H,(e/")( with respect to the quadrature frequency 7d2, jus- 
tifying the name "quadrature mirror filter." For the M-band 
case, the name QMF is technically illogical, but has been 
used for simplicity by several authors. 

If therewere nodecimators and interpolators in Fig. 29(a), 
it would have been very easy to obtain perfect reconstruc- 
tion by using any one of the special techniques of section 
V. In the presence of the decimators and interpolators, we 
must be morecarefu1,duetoaliasingeffects. Employing(3a) 
and (3b), we arrive at the following relation, which reflects 
the aliasing caused by the decimators and the imaging 
caused by the interpolators: 

. M - I  M - 1  
1 

M k = O  n=O 
f ( z )  = - F ~ ( z )  Hk(zWn) X(zW"). (63) 

This shows that there are M - 1 alias components X(zW"), 
n > 0 in the reconstructed signal, besides the original X(z). 
If thesecomponents are eliminated by proper choiceof Fk(z) 
and Hk(z), the QMF bank becomes an LTI system with trans- 
fer function T(z) = f (z) /X(z) = E;=-: Fk(z) Hk(z)/M. Further- 
more, if T(z) i s  all-pass, AMD is  eliminated, whereas if T(z) 
i s  linear-phase FIR, PHD i s  eliminated. 

The condition for alias-cancellation can be written in 
matrix form [12], [71], [72] as 

The M X M matrix H(z) in (64) i s  called the alias-component 
matrix. If it can be inverted, it i s  indeed possible to find the 
synthesis filters Fk(z), 0 5 k 5 M - 1 to cancel aliasing com- 
pletely. The difficultywith this approach i s  that even if Hk(z) 
are FIR, the inverse of H(z) could be IIR, so that Fk(z) are, in 
general, neither FIR nor stable. If we multiply all Fk(z) bythe 
LCM of the denominators of Fk(z), 0 5 k 5 M - 1 to get a 
new set of synthesis filters, aliasing continues to be absent 
(as seen from (64)), but T(z) changes. In any case, the result- 
ing set of synthesis filters can have very high orders. For 
these reasons, inversion of H(z) i s  usually not used as a pro- 
cedure for the design of alias-free QMF banks. 

If we approach this problem in terms of the polyphase 
matrices €(z) and R(z) as in section VI-B, we have much bet- 
ter luck. In fact, a convenient procedure for design of 
M-band FIR perfect-reconstruction QMF banks based on 
lossless €(z) has been developed [31], [63], [64], and will be 
summarized in Section VIII. 

Suppose we express Hk(z) and Fk(z) in terms of Type 1 and 
Type 2 polyphase components, respectively: 

M - 1  

Hk(Z) = c z - n E k n ( Z M ) ,  
n = o  

M - 1  

Defining the M x M matrices €(z) = [Ekn(z)] and R(z) = 
[Rnk(z)], we can then redraw the QMF bank as in Fig. 29(b). 
By using the noble identities of Fig. 9, we can move the deci- 
mators and interpolators to finally obtain Fig. 30, where&) 

Fig. 30. Equivalent structure of Fig. 29. 

= R(z) €(z). In conclusion, every M-band maximally deci- 
mated QMF bank can be redrawn as in Fig. 30. The prop- 
erties of the QMF bank, such as aliasing, and other dis- 
tortions depend completely on the behavior of P(z). We now 
askourfirst question in thissection(anddiscusstheanswer 
in Section VIII-D). 

Question 1: What is a set of necessary and sufficient con- 
ditions in terms of P(z) so that aliasing i s  completely can- 
celed? 

B. Block Digital Filters 

Consider a single-input single-output (or "scalar") LTI 
system with transfer function S(z) (Fig. 31(a)). From the input 
sequence x(n) let us create a vector sequence x(n) as fol- 
lows: 

x(n) = [xM-,(n) xM-*(n) . . . x0(n)lT (66) 

. .  1 :  Ho(ZWM-l) H,(z 
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(b) 
Fig. 31. (a) Scalar transfer function S(z). (b) Its blocked ver- 
sion with block length M. 

where xdn) = x(nM + k), 0 I k s M - 1. Then x(n) is called 
the blocked version of the scalar signal x(n). Similarly, the 
blocked version y(n) of y(n) is 

y(n) = [yM-l(n) yM-2(n) . . * yo(n)lT (67) 

where yk(n) = y(nM + k), 0 I k I M - 1. The integer M is  
called the block length. It can be shown [731-[75] that the 
two vector-sequences y(n) and x(n) are related by a transfer 
matrix, i.e., 

V(z) = f(z) X(z). (68) 

The M x M matrix p(z) i s  called the blocked version of S(z). 
Implementing the filterS(z1 by direct implementation of P(z) 
i s  called block digital filtering. Theadvantageof such imple- 
mentation i s  that we increase the available parallelism by 
a factor of M. Block filtering therefore offers higher imple- 
mentation speed due to increased parallelism. 

Wecan seethat the blocking operation (68) i s  veryclosely 
related to polyphase decomposition. Indeed, the compo- 
nents of (66) are merely M-fold decimated versions of x(n 
+ k), 0 5 k 5 M - 1. It can be seen that the implementation 
of S(z) using the blocking approach can be given a flow- 
graph representation as in Fig. 31(b). The close relation 
between the blocking scheme and QMF banks can be seen 
from this representation. Here is the second question we 
raise in this section (we shall discuss the answer in the fol- 
lowing text). 

Question 2: Suppose we are given an arbitrary M x M 
transfer matrix f (z) .  What i s  a set of necessary and sufficient 
conditions on p(z) such that it i s  the blocked version of some 
scalar filter S(z)! 

C. Linear Periodically Time-Varying (1 PTV) Systems 

Consider a linear system whose coefficients vary period- 
ically with time, with period M. For 0 I k I M - 1, letAk(z) 
represent the transfer function of the system if i ts  coeffi- 
cients were frozen to be their values at time -k. For each 
k, let us  represent Ak(Z) in terms of i t s  M polyphase com- 
ponents: Ak(z) = C!:Jz-"Gk,(zM). Defining G(z) = [Gkn(Z)], 
we can represent the LPTV system as in Fig. 32(a). By defin- 
ing the components 

(69) 

we can redraw Fig. 32(a) as in Fig. 32(b). The relation of (69) 
between the'kth rows of P(z) and G(z) i s  quite interesting: 
thus, with M = 3, we see that f(z) i s  given by 

(b) 

Fig. 32. Representation of arbitrary linear periodically time 
varying system using polyphase framework. (a) The LPTV 
system. (b) Redrawing based on components defined in 
equation (69). 

G d z )  GOl(Z) G02(z) 

P(z) = z-lclz(z) G,o(z) Gll(4 ] . (70) i z -1G2,(Z) z -lG*2(Z) G20(z) 

In other words, the kth row of P(z) is a k-times circularly 
shifted version of the kth row of G(z) with a delay 2-l 

attached to  the elements that spill over. Here i s  the third 
question we raise. 

Question 3: Let Fig. 32(b) represent an arbitrary LPTV sys- 
tem. What i s  a set of necessary and sufficient conditions on 
p(z) so that the system is actually time-invariant? 

D. Pseudo-circulant Matrices 

Thethreequestions raised in the preceding havethesame 
answer! The answer is that, f ( z )  should have an algebraic 
form called the pseudo-circulant form. Thus, if (and only 
if)P(z) i s  pseudo-circulant,thefollowing aretrue: a)theQMF 
bank is alias-free; b) f(z) i s  the blocked version of a scalar 
filter; and c) the LPTV system of Fig. 32(b) represents an LTI 
system. This result is proved in [70]. In this section we shall 
merely state the meaning of "pseudo-circulant." Taking M 
= 3, for convenience, a 3 x 3 pseudo-circulant has the form 

f(z) = [ !;'k2(z) Po(z) :El. 
Thus P(z) i s  a circulant matrix [76] with the exception that 
theentries below the main diagonal are multiplied with z -'. 
Pseudo-circulants have also been observed explicitly or 
implicitly in the context of block processing by other 
authors [75], [77]-[80]. 

Assuming that f(z) is pseudo-circulant, what is the scalar 
filter S(z) of which f(z) i s  the blocked version? The answer 
is 

Pdz) 

(71) 

P, (z) z - PJZ) Po(z) 

M - 1  

s(z) = z-kPk(ZM). (72) 

In  other words, the 0th row of f ( z )  contains the type-1 poly- 
phase components of s ( ~ ) .  Next, given a QMF bank with 
pseudo-circulant f(z) (so that aliasing i s  canceled), the dis- 
tortion function T(z) of (64) i s  given by 

k=O 

T(z) = ~ - ( ~ - l )  S(Z). (73) 
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It can also be shown that P(z) i s  lossless if and only if S(z) 
is stable all-pass. Thus an alias-free QMF bank i s  free from 
AMD if and only if the pseudo-circulant i s  lossless, and the 
blocked version of a scalar filter i s  lossless if and only if the 
scalar filter is stable all-pass! 

VIII. M-BAND PERFECT RECONSTRUCTION SYSTEMS 

Perfect reconstruction in M-band FIR QMF banks has 
been shown to be possible in the past [14], [31], [50]. We shall 
now summarize some techniques for this. 

Consider the M-band QMF bank of Fig. 29(a) again. As 
seen in Section VILA, there are M - 1 alias components in 
k(n), and these components are removed if and only if (64) 
holds. If perfect reconstruction i s  also desired, we have to 
force T(z) to be a delay. It remains to solve for the synthesis 
filters Fk(z) in (64). Once again we wish to avoid inversion 
of the alias-component matrix. So we lean on the polyphase 
representation of Fig. 29(b), which is  completely equivalent 
to Fig. 29(a). 

As we did in section VI-B, we can choose R(z) = E-’(z)  to 
obtain perfect reconstruction. To avoid inversion of F(z), we 
wish to force it to be lossless so that €(z) = cF-’(z). This 
means that the choice of R(z), as in (51), will ensure the PR 
property. Assuming that H ~ ( z )  (and hence €(z)) are FIR, this 
also ensures that R(z), and hence Fk(z) are FIR. Moreover, 
this choice of R(z) i s  equivalent to choosing the synthesis 
filter coefficients as [31] 

fk(n) = &;(no - 1 - n), 0 5 k 5 M - 1 (74) 

where no i s  the length of the longest analysis filter, and a 
i s  a nonzero constant which can be scaled to be unity. 

It remains to show how E(z) can be forced to be lossless. 
In the M = 2 case, we had the factorization result (60) for 
lossless matrices. Similar factorization theorems have also 
been developed [62]-[64] for the M x M case. A structure 
has been developed in [64] for real coefficient FIR lossless 
transfer matrices based on a state-space approach. The 
structure is such that every M x M real coefficient FIR loss- 
less system can be realized using this structure. Conversely, 
regardless of the values of the parameters in the structure 
(which are angles of rotation), the transfer matrix remains 
(FIR and) lossless. The development in [64] is based on the 
discrete-time lossless bounded real lemma [81] which 
relates the losslessness of €(z) to the state-space descrip- 
tion (see end of section I for state-space notations). Accord- 
ing to [81], a stable transfer matrix€(z) i s  lossless if and only 
if there exists a structure (with minimum number of delays) 
such that the system matrix 

R = r  ’1 
i s  unitary. Acomplete parameterization of all lossless matri- 
ces of a given degree can therefore be obtained merely by 
parameterizing all unitary matrices of a given size. The 
development in [64] makes further use of the fact that F(z) 
i s  FIR, so that A has all eigenvalues equal to zero. Because 
of the unitariness of the R matrix, the structures in [64] are 
also said to be ”orthogonal filter structures.” 

The only disadvantage of the structure in [64] i s  that the 
parameters in the structure are sines and cosines of angles. 
If we wish to optimize the analysis filter responses by opti- 
mizing these angles, then the procedure involves several 
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computations of sines and cosines per iteration, which 
results in a very slow optimization procedure. 

It i s  possible to obtain a more convenient characteriza- 
tion of FIR lossless matrices that i s  free from cosines and 
sines. The following result is proved in [62] and [63] and 
works for the real as well as complex coefficient case. 

Theorem. An M x M causal FIR transfer matrix F(z) of 
degree K is lossless if and only if it can be expressed in the 
form 

(75) 

where Vn(z) are M x M matrices of the form 

E(z) = vK(z) vK-I(z) ‘ ’ ’ vl(z)/fO 

VJZ) = [I - v, v:, + z - lv,  v:] (76) 

in which v, are M x 1 column vectors of unit norm, and Ho 
i s  an M x M constant unitary matrix. 

The term ”degree” in the preceding statement indicates 
the smallest number of scalar delays (i.e., z - ’  elements) 
required to implement the system. It can be shown [62], [63] 
that the form (76) for V,(z) with unit-norm v, automatically 
guarantees that Vn(z) is  (causal, FIR, and) lossless of degree 
one. If we write down the state-space representation of the 
system implemented as in (75), the system matrix R turns 
out to be unitary [82]. In other words, the structure for €(z) 
obtained in this way i s  an “orthogonal” structure in the 
same sense as those in [64] are. This property is important 
because it implies certain useful properties for finite word- 
length implementations, such as automatic Oe2 scaling of 
internal nodes, and reduced round-off noise [83]. 

It is important to note that for the case of real coefficient 
FIR lossless matrices, the unit-norm vectors v, in (76) and 
the unitary matrix Ho in (75) are real. 

It i s  possible to optimize the unit-norm vectors v, in (76) 
and the unitary matrix Ho in (75) such that the sum of stop- 
band energies of the analysis filters Hk(z) i s  minimized.This 
issue is handled in much greater detail in [63]. In fact, it is 
possible to completely avoid rotation angles in the expres- 
sion (75) (and this helps to speed up the optimization of the 
analysis filter responses) because the unitary matrix Ho can 
also be expressed as a product of M - 1 matrices of the form 
[ I  - 2w, w;] (where w, are unit-norm column vectors), fol- 
lowed by a diagonal unitary matrix. The factor [I -. 
2w, 4 1 ,  which i s  a unitary matrix, i s  thewell-known House- 
holder form. 

The degree-one lossless building blocks described by(76) 
can be implemented with 2M multipliers and one scalar 
delay (see Fig. 33). For the real coefficient case, Ho can be 

Fig. 33. Implementation of degree-one M x M FIR lossless 
building block using 2M multipliers and one scalar delay. 

implemented using (r) planar rotation angles (see [64] and 
[84]), each of which is equivalent to four real multiplica- 
tions. The matrix H, then requires 4 (r) multiplications so 
that the total number of real multipliers in a real-coefficient 
FlRanalysis bankwith losslessF(z),as in(75), isequal to2MK 
+ 2M(M - 1). 

Robustness of Perfect Reconstruction Under Coefficient 
Quantization: Recall that as long as the polyphase matrix 
of theanalysis bank has the form (75),wherevnareunit-norm 
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vectors and Ho i s  unitary, the filter bank of Fig. 29(a) has per- 
fect reconstruction provided the synthesis filters are cho- 
sen as in (74). The unit-norm requirement of y,, and uni- 
tariness of Ho are essential to ensure losslessness of €(z) (and 
hence perfect reconstruction). Now suppose that we 
actually implement the analysis and synthesis banks in 
polyphase form (Fig. 29(b)) with R(z) related to €(z) as in (51) 
(i.e., fk(n) related to hk(n) as in (74)). In particular, assume 
that E(z) i s  implemented as in (75), with building blocks as 
in Fig. 33. In practice we have to quantize the components 
of v,, appearing in the building block.The norm of thequan- 
tized v,, is not unity any more. If we do not exercise addi- 
tional care, perfect reconstruction property will be lost 
because of this. However, here is a simple trick which over- 
comes this problem: instead of using the building blocks 
(76) use the denormalized building blocks 

U,,(z) = [u:u,/ - u,u: + z-'u,u:] 

where U, i s  the quantized version of the unit-norm vector 
v,,. The modified building blocks are lossless, i.e., U&) U,,(z) 
= a,,/for some scalar a,, > 0. Next, in practice, the elements 
of the unitary matrix Ho in (75) should also be quantized. 
Recall that H,, can be expressed as a product of the matrices 
[I - 2w,, w:] (and a diagonal matrix). If we replace each of 
these with [u:u,,/ - 2u,u:], whereu, i s  a quantized version 
of w,,, then the resulting product is still unitary (but denor- 
malized). The overall result of these replacements i s  that, 
€(z) is replaced with c€(z), where c i s  some positive scalar. 
The losslessness property of the polyphase matrix is there- 
fore preserved under quantization, and so is the perfect 
reconstruction property of the filter bank! 

Other Quantization Effects: In general, quantization of 
the filter coefficients in the analysis bank results in deg- 
radation of the analysis filter responses. Because of the loss- 
less property of Rz),  it is, however, possible to reduce the 
passband sensitivity of the responses 1 Hk(e'")l with respect 
to coefficient quantization (as discussed in [42], [43], and 
[60]). I t  should, however, be noted that in subband coding 
applications, passband sensitivity of the analysis filters i s  
not very crucial. I t  is more important to have good rejection 
of adjacent-band signals (i.e., good stopband attenuations) 
so that the subband features can be exploited during the 
coding process. Simulation results in [65] show that the 
stopband sensitivity of the analysis filters with respect to 
thecoefficientsofthe lossless matrix&) areacceptablylow 
in practice. It i s  also desirable to have perfect reconstruc- 
tion in spite of coefficient quantization, which in turn can 
be accomplished as described in the preceding. 

Roundoff Noise and Coding Noise: The FIR perfect 
reconstruction system implemented in terms of the lossless 
matrices€(z) and R(z) is also subject to roundoff noise errors, 
due to internal signal quantization. This has been analyzed 
in [65] for the two-channel case. Because of the lossless 
nature of the building blocks, the noise gain from the loca- 
tion of the noise source to the location of f(n) does not 
exceed unity. The output noise variance i s  therefore well 
under control. See [65] for more quantitative details. A sec- 
ond (and major) source of error arises from the fact that the 
subband signals (outputs of the analysis filters Hk(Z)) are 
coded prior to transmission. The analysis of this noise i s  
rendered difficult because the coding noise sources from 
adjacent channels are not necessarily uncorrelated and, 
moreover, each noise source can be colored. 

IIR QMF Banks with Lossless E(z): If we replace each delay 
element z - '  in (75) with a degree-one all-pass function 
(ai + z-')/(I + a,,z-') (where la,,[ c 1 for stability), then 
€(z) becomes an IIR lossless system. Moreover, every 
degree4 M x M I I R  lossless system can be realized in this 
manner [85]. In the FIR case with lossless E(z), we had to 
choose R(z), as in (51), to obtain perfect reconstruction. In 
the IIRcasethiscannot bedone becauseE(z)will have poles 
outside the unit circle. To overcome this problem we pro- 
ceed as follows: we write €(z) = P(z)/d(z), where d(z) i s  the 
least common multiple of the denominators of the entries 
of €(z), and f(z) is the matrix of correspondingly adjusted 
numerator polynomials. We then choose R(z) = ~ - ~ R z ) / d ( z )  
so that R(z) (and hence the synthesis filters) are guaranteed 
to be stable. With this choice we have R(z) €(z) = ~ - ~ [ d ( z ) /  
d(z)]/, so that the distortion T(z) in (29) i s  all-pass. Sum- 
marizing, there is  no amplitude distortion, only phase dis- 
tortion. A second method based on the determinant of €(z) 
i s  indicated in page 491 of [31]. These ideas work for arbi- 
trary M. 

FIR Design Examples: We shall now present design exam- 
ples of FIR perfect reconstruction systems. For a three- 
channel system, Fig. 34(a) shows an example of the 
responses I Hk(e/")I of the three analysis filters. These were 
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Fig. 34. Examples of magnitude responses in dB for anal- 
ysis filters of various FIR perfect reconstruction systems. (a) 
Three-band analysis bank. (b) Five-band analysis bank. (c) 
Three-band linear-phase analysis bank. 
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designed by constraining €(z) to be lossless as just 
described, and optimizing the parameters of v, and H,. The 
optimization was carried out using appropriate software in 
[86]. Initialization of theoptimization wasdoneasdescribed 
in [63]. To obtain perfect reconstruction, the FIR synthesis 
filters were obtained as in (74) with no = 56. As a second 
example, Fig. 34(b) shows the responses of the analysis fil- 
ters Ho(z), l+,(~), and H2(z) for the M = 5 case.The remaining 
two filters are given by H&z) = H1(-z) and H4(z) = Ho(-z), 
and are therefore not shown (this relation is not necessary 
for perfect reconstruction, nor i s  it automatic; see [64]). The 
FIR matrix F(z) was again constrained to be lossless. Once 
again, if synthesis filters are chosen according to (74) with 
no = 44, we have perfect reconstruction, because of the 
losslessness of F(z) which was forced during the design of 
Hk(z)’s.The table of filter coefficients for these two exam- 
ples can be found in [63] and [64], respectively. Finally, Fig. 
34(c) shows the analysis filter responses for a three-channel 
QMF bank, where the analysis filters have linear phase; the 
matrix F(z) i s  not lossless here, but still has a determinant 
equal toadelay.Thetableof filter coefficientsforthis exam- 
ple can be found in [87l. 

Methods Based on Tree-Structures: When M is  a power 
of two, we can obtain the QMF bank by repeated use of the 
two-channel QMF bank. See [54] for details. If the two-chan- 
ne1 building block i s  designed to have the PR property, then 
so does the M channel tree-structured design. Since the 
design of the filters Ho(z) and Hl(z) i s  easier than a direct 
M-band design, tree structures are often considered attrac- 
tive. However, for agiven M, tree structures are not optimal 
in terms of filter lengths and result in greater group delay 
of the overall QMF system, compared to nontree designs. 
Such group delays are of concern in long-distance com- 
munication links, where echos are possible. 

Methods Based on Approximations: Some authors have 
developed methods for designing the filters Hk(z) such that 
the three distortions (ALD, AMD, and PHD) are approxi- 
mately eliminated. Notable among these are [88] and [89]. 
These are based on the design of an appropriate optimized 
prototype filter, from which the other filters can be derived 
using a modified form of cosine modulation. The approx- 
imate designs are sometimes less expensive to implement 
than the perfect ones. 

Price Paid for Perfect Reconstruction: It i s  sometimes 
assumed that one must pay a high price in terms of design 
complexity, to achieve perfect reconstruction in FIR QMF 
banks. This, however, i s  not true. The PR property often 
admits the representation of the analysis bank in terms of 
lattice structures, which are surprisingly efficient. If a PR 
system is  implemented in lattice form, it is often not more 
expensive than an approximate design with comparable 
attenuations for the analysis filters. See section VI-E and 
Tablesl-3of this paper;also seePO, pp. 701-703lforfurther 
quantitative remarks. 

As a further demonstration of this claim, consider the FIR 
perfect reconstruction example in Fig. 34(c). The analysis 
filters here have linear phase. A design example i s  pre- 
sented in [87l for the M = 3 case, where the filters Ho(z), 
Hl(z), and H2(z) have lengths 56,53, and 56, respectively. The 
entire analysis bank of three filters, if implemented using 
the lattice structure in [87, requires a total of only 8 MPUs 
and 11 APUs! 

Let us now count the total number of multiplications in 
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the M band FlRanalysis bankwith lossless polyphase matrix 
F(z) implemented as in (75). Assuming thecoefficients of the 
filters to be real (so that v, and Ho are real), we have a total 
of 2MK + 2M(M - 1) multipliers for the analysis bank. With 
F(z) as in (751, the analysis filters have maximum length N 
= KM + M, so that the number of multipliers becomes 2(N 
- 1) + 2(M - Recognizing that these multiplications can 
be performed at the lower rate (by moving the decimators 
to the left of F(z) in Fig. 29(b)), the number of MPUs for the 
analysis bank is equal to 2(N - 1)lM + 2(M - 1)21M = 2(N 
- 1)lM + 2M. In comparison, consider the uniform DFT 
analysis bank of Fig. 21, which we found to be very efficient 
in section IV. Assuming that the analysis filters have length 
N each, the total number of multiplications i s  equal to N 
plus the cost of IDFT. The number of MPUs is  equal to 
N/M plus the DFT cost, which depends on M. For N >> M 
we see that the perfect reconstruction FIR system with loss- 
less&) implementedas in (75)isonlyabouttwotimes more 
expensive than the uniform DFT filter bank with same filter 
orders! In fact, if we impose certain symmetry conditions 
among the analysis filters Hk(z) in the perfect reconstruc- 
tion system (as elaborated in [go]), then the number of MPUs 
for the perfect reconstruction system is  reduced by a factor 
of two, so that it becomes equal to that of the uniform DFT 
polyphase analysis bank. Summarizing, the computational 
complexity of the FIR perfect-reconstruction analysis bank 
based on lossless polyphase matrices can be made com- 
parable to that of the uniform DFT polyphase analysis bank 
for same N, whenever N >> M. 

Unsuitability o f  the Uniform DFT QMF Bank for Perfect 
Alias Cancellation: The uniform DFT FIR analysis bank 
shown in Fig.21 iscomputationallyveryefficient,and iswell 
suited for spectrum analysis. However, it is usually not well 
suited for QMF bank applications requiring perfect recon- 
struction (hence perfect alias cancellation in particular). This 
can be seen by referring to [12], which derives the necessary 
and sufficientconditionsontheFlRsynthesisfiltersforalias 
cancellation in this case. It turns out that the synthesis fil- 
ters typically have much higher orders than the analysis fil- 
ters, resulting in a much more expensive synthesis bank. 
In contrast to this, the perfect reconstruction FIRQMF bank 
based on general lossless FIR €(z) (rather than on uniform 
DFT analysis bank) i s  such that each synthesis filter has the 
same length as the corresponding analysis filter (see (74)). 
The overall cost of the complete analysislsynthesis system 
is therefore lower. 

Alias-component matrix, polyphase component matrix, 
and interrelations: I t  can be shown [31] that the M x M 
matrix in (64) is lossless if and only if the polyphase com- 
ponent matrix F(z) is lossless. So by forcing €(z) to be loss- 
less, we make the inversion of (64) simple; in fact, closed- 
form expressions for fk(n) as in (74) are obtained. 

For any M-band maximally decimated FIRQMF bank, con- 
sider the following three properties: a) losslessness of €(z); 
b) the relation (74); and c) perfect reconstruction property 
(32). I t  can be shown [31] that any two of these imply the 
third. For example, if a QMF bank satisfies (74) and has per- 
fect reconstruction property, then &) must be lossless. 
Similarly, if F(z) is lossless, then we have perfect recon- 
struction if and only if (74) holds. Note, however, that nei- 
ther losslessness of E(z) nor the relation (74) are, by them- 
selves, necessary or sufficient conditions for perfect 
reconstruction. 



Notice that in Fig. 29(b) if €(z) is replaced with the M x 
M DFT matrix, it i s  equivalent to performing an orthogonal 
(rather unitary) transformation on blocks of the input. A 
more general type of orthogonal transformation called the 
“lapped orthogonal transformation” (LOT) has recently 
been used in image processing applications [91]. Interest- 
ingly enough, the LOT has been developed quite indepen- 
dently (see [91] and references therein) but turns out to  be 
an analysis bank with lossless €(z) of low degree. See [92], 
where the authors have established the link between LOT 
and paraunitariness; also see [93]. 

IX. UNCONVENTIONAL APPLICATIONS 

In this section we outline some unconventional appli- 
cations of multirate filter banks in signal processing. These 
include new sampling theorems, new techniques for effi- 
cient quantization of filter coefficients, and adaptive fil- 
tering in subbands. 

A. New Sampling Theorems Based on the QMF Principle 
and Polyphase Decompositions 

The sampling theorem for continuous-time signals has 
been well known for several decades [94], [95]. The earliest 
known version says that if a continuous-time signal x,(t) i s  
bandlimited to -u < Q < u, it can be reconstructed from 
equallyspaced samplesx(n) = x,(nT) provided thesampling 
frequency 2dTexceeeds the so-called Nyquist rate 8 20. 
Under this condition, the transform X(e1”) is a periodic rep- 
etition of X,(jQ) properly scaled, as shown in Fig. 35. Quan- 

-0 a *n 

(a) 
lowpass filler lor 
recovering x& 
from samples, tx(e”ll 

... ... 
0 

(b) 
Fig. 35. Transform of x, ( t )  and transform of sampled ver- 
sion x,(nT). (a) Signal recovery. (b) Low-pass filtering. 

titatively, 

The signal x,(t) can be recovered from the samples x(n) 
merely by low-pass filtering the impulse train Er= -m x(n) 
6(t - nT), which results in elimination of the unwanted cop- 
ies of the basic spectrum X,( jQ)  in Fig. 35(b). Notice that the 
low-pass filter required i s  an ideal filter which i s  IIR, non- 
causal, and unstable 17, 181. 

Several generalizations of this theorem are known [96]. 
Perhaps the earliest one, called the derivative sampling 
theorem, says that if x,(t) and dx,(t)/dt are available (for 
example, the position and velocity of an aircraft), then uni- 
formly spaced samples of these two waveforms, taken at 
half the Nyquist rate, are sufficient to retain all the infor- 
mation. In other words, the signal x,(t) can be recovered 
from these samples. Once again, the use of ideal filters i s  

required in the recovery pr0cess.A natural extension of this 
theorem i s  that if x,(t) and the first M - 1 derivatives are 
available (such as the position, velocity, acceleration, jerk, 
etc. of an aircraft), then each of these can be uniformly sam- 
pled at the rate 8 / M  without losing information. No simple 
closed-form expressions are available, however, for the 
reconstruction of x,(t) from these generalized samples. 

The second family of generalizations i s  the class of non- 
uniform sampling theorems [96]. The basic idea is that the 
samples of x,(t) can be spaced in an entirely nonuniform 
manner (Fig. 36) provided the sampling rate averaged over 

Fig. 36. Demonstration of nonuniform sampling. 

a sufficiently long period exceeds 8. More precise state- 
ment of this result can be found in [96] and references 
therein.This result i s  called the nonuniform sampling theo- 
rem, and less formally, the ”folk theorem.”The knowledge 
of this result seems to date back [97] to  the days of Cauchy 
(1841!). An extreme case of the folk theorem is the assertion 
that a bandlimited signal i s  completely determined every- 
where if all i t s  past samples, taken at twice the Nyquist rate, 
are available! The reconstruction of x,(t) from the nonun- 
iformly spaced samples is, in general, very involved [98], 
Wl. 

However, if we take a second look at these sampling theo- 
rems from a discrete-time viewpoint, the insight obtainable 
i s  rewarding. For example, let x(n) be a bandlimited 
sequence, i.e., a sequence whose transform X(e1“) vanishes 
for w, 5 IwI 5 K, with wC < K. An example with wC = 2d3 
was seen in Fig. 8(b). It i s  clear that we can construct a new 
sequence y(n) with a lower rate, without losing information. 
Fig. 8(a) shows how to do this in terms of the fractional deci- 
mator circuit (L  = 2, M = 3). We know that if H(z) i s  ideal 
low-pass with cutoff 2d3, Y(e’“) i s  a stretched version of 
X(e/”) by the factor 3/2. 

This, however, i s  not theonlywayto reduce thesampling 
rate. A simpler way to compress x(n) in Fig. 8(b) would be 
to divide the time index into segments of length three and 
retain two out of three samples in each segment. This is 
equivalent to nonuniform sampling of a hypothetical 
underlying continuous-time signal. From this nonuni- 
formly decimated version y(n), i s  it possible to recoverx(n)? 
The answer i s  yes, as we would expect because of our 
knowledge about the “folk theorems.” 

The main point we wish to make [30] i s  that this problem 
can be stated in the form of a QMF bank design problem. 
With such a restatement, the algorithm for reconstruction 
ofx(n)fromy(n) i s  seen to beasimplesynthesis-bankdesign 
problem, which actually can be carried out in practice with 
FIR filters. To demonstrate these ideas, consider the exam- 
ple of Fig. 8(b) again. We wish a data rate reduction of 312. 
Thiswill beaccomplished by retainingtwoout of everycon- 
secutive segment of three samples. Fig. 37 shows a way to 
mechanize this subsampling based on multirate building 
blocks.The samples retained in the process are those num- 
bered . . . -4, -3, -1,O, 2,3,5,6,8,9, . . . Consider now 
the M-channel maximally decimated QMF bank of Fig. 29(a) 
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Fig. 37. Mechanization of nonuniform subsampling pro- 
cess. 

with M = 3, and let the analysis filters be Ho(z) = 1, H,(z) = 

z-l ,  and H2(z) = 0. The analysis bank then resembles Fig. 
37. Question: how do we design the synthesis filters Fo(z) 
and Fl(r) such that f(n) is equal to x(n)? This problem can 
be formally solved using the matrix description of section 
VII-A.The resultsderived in [30] showthat the required syn- 
thesis filters are 

Fo(z) = z-'[1 - c + S G H ( Z ) ]  C,(Z), 

F,(z) = [I - c - sG,(z)] GL(Z) (77) 

where GL(z) is an ideal low-pass filter with cutoff U, = 
2 d 3  and CH(z) is an ideal Hilbert transformer [16], [Iq, i.e., 
GH(ej") = jsgn[o]. The claim i s  that the choice (77) results 
in i ( n )  = x(n - 1). In practice, the ideal responses can be 
approximated with linear-phase FIR filters with any desired 
accuracy. See [30] for design examples of this type. Exten- 
sion of these results for the multidimensional case can be 
found in [loll. 

A more complete analysis of this type of reconstruction 
filter banks has been done in [IOI]. For the case of general 
L and M, the ideal solution for the reconstruction filters 
turns out to be such that each filter fk(z) i s  a multilevel filter. 
(Multilevel filtersaredescribed in section IX-Dof this paper.) 
This means that the response fk(el") i s  a piecewise constant 
with M (possibly complex) levels in the region 0 5 (J < 2a. 
It turns out that all the M filters F&) can in practice be 
implemented by implementing a single Mth band low-pass 
filter in polyphase form, and obtaining fixed linear com- 
binations of the outputs of the polyphase components. 
Consequently, the price paid for the set of reconstruction 
filters is equal to the price of a single Mth band low-pass 
filter plusthecost of implementingaconstant M x L matrix. 
Details can be found in [loll. 

The advantage of these compression techniques based 
on nonuniform subsampling is that the compression is 
computationally very simple. The only price paid i s  for the 
implementation of filters Fk(z) at the reconstruction stage. 
These techniques are attractive when a transmitter has low 
computational capability, while the receiver (e.g., a ground 
station) has more resources for signal retrieval. 

The second type of sampling theorem for sequences i s  
somewhat similar to the derivative sampling theorems. Let 
x(n) be some sequence, not necessarily bandlimited, which 
we wish to transmit (or just store). Let us define the first 
difference as x,(n) = x(n) - x(n - 1). Suppose, instead of 
transmitting x(n) we transmit twofold decimated versions 
of x(n) and xl(n). (We will soon talk about advantages of 
doing this). From the received signals is it possible to get 
back x(n) for all n? The answer i s  yes, as the reader might 
have guessed. In fact, more i s  true. If we are given x(n), and 
the first M - 1 differences xk(n), 1 s k 5 M - 1, we can 
transmit the M-fold decimated versions of these M 
sequences, and eventually reconstruct x(n) at the receiver. 
Moreover, such reconstruction can be done perfectly with 
FIR filters. These filters, in addition, are multiplierless! 
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This result can be derived by recognizing that the prob- 
lem can be posed as a filter bank design problem (Fig. 29(a)), 
where the analysis filters are Hk(z) = (1 - z - ' ) ~ ,  which cor- 
responds to the difference operators. The task is to design 
the synthesis filters Fk(z), 0 s k I M 5 1 such that f(n) = 
x(n - no). Even though the solution for Fk(z) is  not obvious 
by looking at Fig. 29(a), it becomes quite tractable once we 
redraw the structure as in Fig. 29(b). The polyphase matrix 
f(z) in this case turns out to be a constant lower triangular 
matrix which is i ts  own inverse [30, Lemma 3.11. With R ( z )  
chosen as €-'(z) for perfect reconstruction, we then have 
R(z) = f(z), and the synthesis filters given by (65) are evi- 
dently FIR. As an example, consider the M = 3 case, so that 

(78) 

LI -2 IJ 

Using (65), the synthesis filters turn out to be 

F~(z) = 1. (79) 

For sequences of certain types, difference sampling theo- 
rems offer an advantage. Consider, for example, a signal 
x(n), each of whose samples i s  a 16-bit number. Clearly it 
cannot be bandlimited (because it i s  quantized). But the 
first difference x,(n) can be quite small (see Fig. 38 for dem- 

... I"i 1 i I 1  i ... 

Fig. 38. Binary register patterns for hypothetical sequence 
and i t s  first difference. 

onstration), and so representable by, e.g., 8 bitdsample. If 
we transmit decimated versions of x(n) and x,(n) with 16 and 
8 bits per sample, then the average data rate i s  now 1 2  bits 
per sample, which i s  an improvement. 

B. Efficient Quantization o f  Filter-Coefficients Using the 
Generalired Polyphase (GPP) Decomposition 

In section Ill-B we saw that the subband coding tech- 
niquecan be used for efficient representation of a sequence 
whose spectral energy is very low in some frequency regions 
compared to others. Can we apply the same trick for effi- 
cient representation of thecoefficients h(n)of adigital filter? 
In other words, does it make sense to do subband coding 
of impulse responses? After all, the frequency response 
H(eIW) in most applications does have very low energy in 
some frequency bands. The anticipated advantage would 
be that the average number of bits per sample of h(n) could 
possibly be reduced, resulting in a more efficient imple- 
mentation of H(z). 

The main flaw in this kind of reasoning is that subband 
coding of a sequence requires a filter-bank system. If the 
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price paid for the filter bank outweighs the advantage 
gained from efficient representation of h(n), we are losers 
in the game! As a result, the idea works only if the filter bank 
turns out to be a simple low-cost device. Based on intuitive 
reasonings we shall now derive an appropriate low-cost 
"QMF bank" that can be used for such applications. 

To fix ideas, let H(z) be a narrow-band low-pass deci- 
mation filter. It i s  well known [8], [ I 7  then that the adjacent 
samples of the impulse response h(n) are highly correlated, 
i.e., h(n) - h(n - 1) i s  typically very small compared to the 
average [h(n) + h(n - 1)]/2. Our aim i s  to exploit this. Let 
us represent H(z) in terms of i t s  type-I polyphase form (7). 
After moving the decimators (assumed to be two fold for 
simplic'ity) using the appropriate noble identity, the struc- 
ture is as in Fig. 15(b). Suppose now that we insert a matrix 
rand  i ts  inverse in Fig. 15(b), to obtain Fig. 39(a). Evidently, 
this does not affect x(n) at all! As an example let T = [A -;I, 
so that T- '  = There. Noting that 

and that 

[E,(z) E,MI r = [E,(z) E,(z) - E,(Z)I (81) 

we can redraw Fig. 39(a) as in Fig. 39(b). The coefficients of 
Eo(z) - El(z) are composed of the first difference of h(n), 
which are expected to be very small. 

(a) 

(b) 

Fig. 39. New type of polyphase decomposition for filter- 
coding applications. (a) implementation based on insertion 
of matrix Tand its inverse in Fig. I5(b). (b) Redrawing using 
equations (80) and (81). 

Comparing the two equivalent structures (Fig. 15(b) ver- 
sus Fig. 39(b))forthedecimationfilter,weseethat both have 
the advantage offered by the polyphase representation, 
namely computation at the lower rate. The additional 
advantage offered by Fig. 39(b) i s  that the lower branch con- 
tains Eo(z) - El(z) (rather than E,(z)), which can be repre- 
sented with much fewer bits than E0(z). 

Now we come to generalizations. Suppose we represent 
H(z) in the M-component type-I polyphase form (IO). We 
can now insert an M x M nonsingular matrix T and its 
inverse as in Fig. 40(a). This gives us the new representation 
of Fig. 40(b), where 

[cO(z) Gl(z) ' . GM-l(Z)I = [E&) El(z) ' ' ' EM-l(z)I T 

(82) 
and 

(b) 
Fig. 40. Generalized polyphase (GPP) decomposition. (a) 
Implementation using an M x M nonsingular matrix Tand 
its inverse. (b) Redrawing using equations (82) and (83). 

For example let M = 3 and let 

1 1 1  

r =  o -I -2 . (84) 

[o 0 d 
Note again that T - l  = There. We can then simplify Fig. 40 
to Fig. 41. In this example the difference E0(z) - E&) again 

Fig. 41. Generalized polyphase implementation of deci- 
mation filter with M = 3. 

has coefficients requiring fewer bits than Eo(z). The same i s  
true with the second difference Eo(z) - 2E1(z) + E2(z), and 
so on. 

These specific examples are such that the columns of T 
correspond to the coefficients of the difference operators 
(1 - z - l ) k .  This i s  the reason for the appearance of the dif- 
ferences Eo(z) - E&), Eo(z) - 2E1(z) + E2(z), etc. in Fig. 41. 
In general, if the M x M matrix T has columns chosen as 
in the preceding, we have T - '  = T (the proof follows by 
using Lemma 3.1 in [30]). 

There are M branches in Fig. 40. In general, for narrow- 
band H(z) with Tchosen as in the preceding, the branches 
have decreasing importance as k grows. Thus the coeffi- 
cients of Gk(z) can be quantized to fewer and fewer bits as 
k grows. Note that if we altogether discard every branch 
with k > 0, we obtain the recently reported I F l R  scheme 
[I021 for efficient design of narrowband filters (elaborated 
below). The choice of T with columns equal to the coeffi- 
cients of (1 - z - ' ) ~  i s  not necessarily the optimal choice 
from the viewpoint of obtaining the most efficient imple- 
mentation of H(z), and i s  used here only as a demonstration. 
Further study i s  required to determine the optimal choice 
of T for any given H(z). In any case, the representation of 
Fig. 40(b) can be expressed as 

M - 1  

H(z) = c U,(Z) Gk(ZM) (85) 
k = O  

which we shall call thegeneralized polyphase (GPP) decom- 
position. With U&) = z - k  we obtain the type-I polyphase 
representation (IO), and CJz) automatically becomes Ek(z). 
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C. The Interpolated FIR (/FIR) Approach 

In recent years, a number of techniques have been pro- 
posed by several authors for efficient implementation of 
narrowband digital FIR filters [102], [103]. The IF lR approach 
i s  a simple and elegant technique for such a purpose, intro- 
duced by Neuvo etal. in [102]. Consider the design of a nar- 
rowband linear-phase FIR low-pass filter with desired 
response as in Fig. 42(a). The transition bandwidth (U, - up) 

0 

(a) 

2n 

(d) 
Fig. 42. Illustrating IFlR approach for narrow-band FIR 
design. (a) Low-pass filter with desired response. (b)Twofold 
stretched response. (c) Replacing each delay with two delays. 
(d) Removing unwanted passband by use of low-pass filter 
0). 

i s  also narrow so that the required order is very high [Iq. 
As an example, let the passband ripple 61 and stopband rip- 
ple ti2 be equal. Let the stopband attenuation A, (defined 
as -20 logl06,) be equal to 40 dB, with up = 0 . 1 6 ~  and W ,  

= 0.24~. An equiripple design H(z) then requires an order 
of 52 (see [16, page 801). Instead of designing the filter to 
meet the response of Fig. 42(a) directly, suppose we design 
a linear-phase FIR filter G(z) to meet the twofold stretched 
response in Fig. 42(b). Now the transition band is two times 
wider (but the peak ripples in the passband and stopband 
are unaltered), so that the required order i s  26. If we now 
replace each delay in the implementation of G(z) with two 
delays, the response i s  as in Fig. 42(c). In other words, we 
have the desired passband and an unwanted passband. The 
unwanted passband can be removed by a low-pass filter I(z) 
with response as in Fig. 42(d). Notice that the transition band 
of I(z) is verywide so that I(z) i s  of very low order. The overall 
transfer function i s  now H,(z) = G(z2)I(z) and can be used 
in place of the direct design H(z). 

This indirect design approach i s  called the lF lR (inter- 
polated FIR) approach for reasons described in [102]. The 
filter G(z) i s  called the model filter, and I(z) the “interpo- 
lator’’ (because I(z) interpolates the impulse response of 
G(z2) [102]). The order of the IF lR design G(z2)/(z) i s  clearly 
higher than the direct design H(z) (due to the extra order 
contributed by /(z)). However, the computational com- 

plexity is lower. Taking the impulse response symmetry into 
account, the directly designed filter H(z) for the preceding 
specifications requires 27 multipliers. The filter G(z) (and 
hence G(z2)) requiresonly 14 multipliers. So the IFlRdesign 
requires about half as many multipliers (because I(z) can be 
made practically multiplierless; see [16], [102]). If we now 
assume that H(z) i s  a factor-of-two decimation filter, then 
a direct design of H(z) would require 27/2 = 14 MPUs (after 
usingthe polyphasetrickof Fig. 15),whereasthe IFlRdesign 
would requireaboutl4I2 = 7MPUsplusthesmalloverhead 
of implementing /(z). More generally, assume the low-pass 
specification of Fig. 42(a) to be such that us << TIM, so that 
its output can be decimated by M without causing aliasing. 
Let K be the order of a direct design H(z). The specification 
can now be stretched M-fold for designing the model filter 
G(z), so that the order of G(z) in the IFlR design is KIM. The 
IFlR design i s  therefore H,(z) = G(zM)I(z), where I(z) now 
eliminates M - 1 unwanted passbands in G(zM). Assuming 
again that the overhead cost of I(z) i s  small, we see that the 
MPU count is approximately as follows: K MPUs for H(z) 
without decimation; K IM MPUs for H(z) followed by deci- 
mation; and only KIM’ MPUs for H,(z) followed by deci- 
mation (see Fig. 43). In practice, all these numbers can be 
divided by two because of linear-phase symmetry. 

x(n)-y(n) 

Fig. 43. Implementation of decimation filter using lFlR 
approach. 

Combining these discussions with those in section IX-B, 
it is clear that, structurally, the IFlR scheme can also be 
obtained by using the GPP approach (simply retain the top 
branch in Fig.40(b)sothatthesystem isequivalenttoadeci- 
mation filter Go(zM)U0(z)). The reader i s  encouraged to see 
[4, Ch. 5]for multistagedecimation filter design techniques, 
which are related to the preceding idea, and which are per- 
haps the earliest reported techniques for efficient narrow- 
band filter design. 

D. FIR Filters with Adjustable Multilevel Response, and 
Tunable FIR Filters 

In section V we discussed zero-phase FIR Mth  band fil- 
ters, and mentioned a few applications. In this section we 
shall discuss one more application. This is in the design of 
multilevel digital filters. Such a filter has several passbands 
with each passband response typically at a different level 
&, as shown in Fig. 44. In practice it is also desirable to adjust 

the levels & independently by tuning a single parameter 
for each band, without having to redesign the entire filter. 
In short, we are looking for a “programmable” feature in 
the filter implementation. 

All of this can be easily accomplished based on the poly- 
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phase components of a standard low-pass zero-phase Mth  
band "prototype" filter H ( z )  with frequency response as in 
Fig. 45(a). Consider the new transfer function 

M - 1  

G(z) = c PfJ-RzWk) (86) 

which i s  a weighted sum of the responses in Fig. 45(b). In 
the regions where the responses of H(zWk) do not overlap, 

k = O  

(C) 

Fig. 45. Pertaining to multilevel filter design based on Mth  
band (or Nyquist) filters. (a) Prototype filter H(z). (b) 
Responses. (c)  Example of real positive monotone. 

the levels are determined entirely by the &, assuming that 
the stopband response of H(z) i s  small enough to be 
neglected. In the regions of overlap in Fig. 45(b), the 
response is more complicated. Consider, for example, the 
region around w = TIM. We can assume that only H(z) and 
H(zW) are significant here. From (22) (with c = 1 I M ) ,  we see 
that E;:: H(zWk) = 1 for al l  z so that we have 

H(z) + H(zW) = 1, for w around s/M. (87) 

Now consider G(z) around U = TIM. We have, assuming 
thatthepkare much largerthan the stopband rippleof H ( z ) ,  

G(e"? = PoH(z) + PIH(zW) = Po[H(z) + H(zW)] 

+ (01 - Po)H(zW) (88) 

which simplifies, in view of (87), to 

G(e9 = PO + (P1 - Po)H(zW). (89) 

The main pointwewish to make is  that G(e/") in (89) is mono- 
tone in thetransition region. In otherwords, itchangesfrom 
Po to P1 without any "bumps" (Fig. 45(c)), because H(zW) i s  
a real positive monotone function in the region of overlap. 

Summarizing, G(e'") is a filter with multiple pass bands, 
with Pk denoting the k th  passband level and, moreover, the 
transition between passbands is monotone. This conclu- 
sion is a consequence of the Mth  band property of H(z). By 
combiningtheexpression (86)with (21),wecan simplifyG(z) 
into 

C(z) = bTW+e(z) (90) 

where P = [POP1 . . 
Z-(M-l)E M - l  (zM)IT, and W is the usual M x M DFT matrix. 
This gives a polyphase implementation of the multiband 

PM-l]T, e(z) = [1/M z-'El(zM) 

Fig. 46. Polyphase implementation of adjustable 
level filter. Here& represents "response level" in kth 

multi- 
I band. 

filter G(z), whose passband levels Pk are adjustable merely 
by tuning the multipliers Pk. See Fig. 46. 

Design Example: Fig. 47(a) shows the frequency response 
of a fifth-band (M = 5) prototype filter H(z) with length N 
= 59, designed using the Kaiser window approach (Section 
V-A). Note that the responses in this figure are plotted for 
0 s w 5 2s. The stopband attenuation of H(z) is about 75 
dB. Fig. 47(b) shows two examples of multilevel responses. 
The levels used are (0.4, 1.0, 0.7, 0.1, 0.9) and (1.0, 0.5, 0.0, 
0.7, 0.7), respectively. In the latter example, two adjacent 
levels are permitted to be equal (=0.7), and the transition 
band between them cannot be seen.This i s  because, H(zW3) 
and H(zW4) add up to aconstant very nicely in the transition 
band, due to the fifth-band property. This feature can be 
used to obtain multilevel filters with unequal bandwidths, 
simply by choosing M to be sufficiently larger than the num- 
ber of levels and appropriately combining adjacent bands. 

Adjustable Cutoff FIR Filters: A second outcome of this 
idea i s  the generation of low-pass filters (and bandpass if 
desired), of adjustable cutoff. For example, if we choose Po 
= P1 = f i M - l  = 1 and the remaining 0's to be zero, then C(z) 
i s  a real-coefficient FIR low-pass filter with cutoff 3sIM. In 
this way, the cutoff frequency can be "tuned" in discrete 
jumps. By increasing M, the discrete nature of the tuning 
can be made sufficiently close to "continuous tuning" in 
practice. 

E. Adaptive Filtering in Subbands 

Adaptive filters and their applications in signal process- 
ing such as equalization, echo cancellation, etc. are well 
known [104]-[108]. An important issue in the implemen- 
tation of adaptive filters is  the rate at which the filter coef- 
ficients converge to a solution. This rate in turn depends 
on the statistical properties of the input signal. To make 
discussions easy, let the signal be wide sense stationarywith 
power spectrum S(W). Let sM and s, represent the maximum 
and minimum values of S(W) and let r = sM/s,. Clearly 1 5 
r I W. As a rule of thumb, we can say that the convergence 
is slow for large r [104]. 

The use of band-splitting in adaptive filters was sug- 
gested first in [106]. It should be noted that frequency- 
domain adaptation algorithms [IO7 are special cases of this 
idea. The idea of decimating in each subband before adap- 
tation i s  treated in [108]. If the bandsplitting filterswere ideal 
bandpass filters, then the ratio r for each subband will be 
smaller than that for the original signal. This leads to faster 
convergence in each subband. It should be remembered, 
however, that in practice the filters H&) are not ideal and 
there i s  aliasing in each subband due to decimation. The 
effect of this on the ratio r in each subband requires further 
study. 
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Fig. 47. Design example for adjustable multilevel FIR filters. (a) Response of prototype 
fifth band filter of length 59. (b) Two examples of multilevel design, obtained using poly- 
phase network of Fig. 46. 

X. MULTIRATE PROCESSING OF MULTIDIMENSIONAL SIGNALS form Vn, where Vis a fixed nonsingular matrix of real num- 

Multidimensional signals [I091 arefunctionsof more than 
one variable. These are denoted by notations such as x(n,, 
n2, , nM) and abbreviated as x(n). (We also abbreviate 
two-dimensional as “2D” and multidimensional as “MD.”) 
It is necessary to manipulate and process such signals in 
applications such as video, and in radar and sonar signal 
processing. In this section we shall be content with point- 
ing out the existing literature on multirate multidimen- 
sional signal processing. 

The concept of sampling a two- (or higher) dimensional 
signal proves to be more trickythan in the one-dimensional 
case. This is because the sampling geometry can be rect- 
angular or nonrectangular. One of the earliest references 

* 

bers and n i s  a vector of integers. The matrix V is  said to 
generate the lattice. A discrete-parameter M D  signal x(n) 
can be obtained from a continuous-parameter M D  signal 
x , ( f )  by defining x(n) = x,(Vn). In other words, x , ( f )  has been 
sampled at the locations of the lattice generated by V. For 
this reason, Vis called the sampling matrix. The number of 
samples per unit area which results from this sampling is 
equal to the reciprocal of the determinant of V. Notice that 
a diagonal V corresponds to rectangular sampling. 

The reciprocal lattice i s  a lattice generated by the matrix 
V-‘and plays a key role in sampling theory. Basically, if 
X,(Q) and X(o) are the multidimensional Fourier transforms 
of x,(f) and x(n), respectively, then they are related by 

on the generalized sampling of multidimensional signals 1 
X(W) = - c Xa[V-T(o - 27rk)l 

L k  
i s  the work by Petersen and Middleton [IIO], where the 
number theoretic concepts of lattices and reciprocal lat- 
tices were used to describe the sampling and aliasing pro- 
cesses. A lattice is basically a collection of vectors of the 

where L i s  equal to the determinant of V. This summation 
extends over all integer vectors k. If a bandlimited M D  sig- 
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nal has to be sampled without causing aliasing, we can do 
this by appropriate choice of Vso as to ensure that no two 
terms in the preceding summation overlap for any W .  

Digital processing of sampled multidimensional signals 
i s  discussed in [111]-[114]. An excellent overview on the 
sampling of multidimensional signals, including a review 
of lattices, can be found in [113]. 

The minimum sampling density required to avoid alias- 
ingdependson the shapeof the basic reciprocal latticecell. 
By careful choiceof V,wecan minimize thisdensity. In par- 
ticular, notice that a diagonal V(i.e., rectangular sampling) 
does not necessarily lead to minimum density. This, in fact, 
i s  the motivation for the introduction of generalized non- 
rectangular sampling. For example, i f  X,(Q) is restricted to 
a circular region of support, then a particular choice of V, 
known as the “hexagonal sampling matrix,” is known to 
result in smaller sampling density [109]. 

The generalized multidimensional decimator takes an 
input signal x(n) and produces the output y(n) = x(Dn), 
where D is a M x M nonsingular matrix of integers. Several 
standard multirate topics, such as the design of decimation 
and interpolation filters, design of filter-banks, and mul- 
tistage decimator design techniques, have been recently 
extended to the MD case by several authors. For the case 
of separable systems, an interesting scheme to obtain per- 
fect reconstruction with IIR filters (based on all-pass build- 
ing blocks as in section VI) is reported in [115]. Reference 
[I161 extends the perfect reconstruction results of [31] to the 
2D rectangular decimation case. References (1171 and [I181 
deal with some of these extensions for the case of gener- 
alized (nonrectangular) decimators and interpolators. 
Extension of the concept of polyphase representation to the 
(nonrectangular) MD case can be obtained by using the 
ideas of “cosets of lattices” [113]. In fact, it is shown in [I181 
that the perfect reconstruction techniques for maximally 
decimated analysislsynthesis systems reported in [31] can 
begeneralized totheMDcasesimply by making useof such 
a generalized multidimensional polyphase decomposition. 

XI. OPEN PROBLEMS AND CONCLUDING REMARKS 

Even though the multirate filter bank area has reached 
a certain level of maturity, there do remain certain open 
questions and research problems of considerable interest. 

First, consider the FIR two-channel perfect reconstruc- 
tion system based on the Smith Barnwell approach. As we 
saw in section VI-B, the design issue is to find a spectral 
factor Ho(z) of a zero-phase FIR half-band filter. Once Ho(z) 
is found, the remaining filters are completely known 
(through the relations (56) and (58)). There are two ways to 
design Ho(z). The first is to find a zero-phase half-band filter 
H(z) of appropriate specifications and then find a spectral 
factor of H(z) by a zero-finding approach or by cepstral 
methods [40]. The second procedure is to use the fact that 
the lattice of Fig. 28 automatically gives rise to H,(z) and 
H,(z) with appropriate properties as elaborated in section 
VI-C. The difficulty with the first approach i s  that if A, i s  the 
desired stopband attenuation of Hfl(z), then H(z) has to have 
an attenuation of 2A,dB. For large A,, it i s  therefore difficult 
(and numerically inaccurate) to do the factorization. The 
second approach overcomes this problem because no 
spectral factorization i s  involved. However, it has the dis- 
advantage of requiring long computer time for optimiza- 

tion of the lattice coefficients (and for this reason, a number 
of tables of filter-coefficients are published in [65] so that 
the designer does not have to do the optimization), even 
though perfect reconstruction i s  structurally guaranteed. 
The problem of efficient design of Ho(z) (so that it takesonly 
about as much time as a standard single-rate equiripple 
design [I191 of comparable order) i s  still open. Stated in a 
completely different way (section VI-C), we wish to design 
a good low-pass filter Ho(z) such that its two polyphase com- 
ponents are power complementary. What is the most effi- 
cient way to do this? 

The second problem has to do with the all-pass breakup 
described in section VI-A. The conditions under which an 
IIR filter Ho(z) can be expressed as a sum of two all-pass 
functions is well known [42], [43]; and digital Butterworth, 
Chebyshev, and Elliptic filters happen to satisfy this con- 
dition. Such transfer functions are useful in the design of 
two-channel QMF banks. For the M-band case, it would be 
necessary to express a transfer function as sum of Mall-pass 
functions (this also enables us to obtain a uniform DFT 
bank). Even though such designs have appeared in the lit- 
erature [39], the problem of finding a set of necessary and 
sufficient conditions on H&z) (analogous to [42, page 35311, 
that will permit such all-pass decomposition i s  open. 

In section VI1 we saw that the pseudo-circulant property 
of P(z) i s  necessary and sufficient for alias-cancellation in 
QMF banks. Diagonal matrices of the form P,(z)/are clearly 
special cases of pseudo-circulants. However, all examples 
of alias-free QMF banks reported in the literature have P(z) 
= Po(z)/ (or minor permutations of it), which i s  not a nec- 
essary condition. If we relax this condition, does it result 
in more efficient designs? Assuming that this i s  so, what is 
a systematic procedure to arrive at such designs? These are 
unresolved questions. 

In section VI we saw that in order to design FIR perfect 
reconstruction QMF banks, it i s  really only necessary to 
force the determinant of €(z) to be a delay. This was done 
byforcing€(z) to be lossless, primarily because losslessness 
is easier to force structurally, giving rise to useful design 
techniques (and, moreover, the synthesis filters are thereby 
guaranteed to have the same length as analysis filters, as 
seen from (74)). If we give up the lossless condition and keep 
€(z) as general as possible (subject of course to the deter- 
minant condition), then we can get more general (perhaps 
more efficient) designs. In the two-channel case, for exam- 
ple, in order to get FIR perfect reconstruction QMF banks 
with good analysis filters which are at the same time linear- 
phase, it is necessary to give up losslessness [67]. 

An obvious way to force the determinant of €(z) to be a 
delay is to express €(z) as 

€(z) = RKAK(z)RK-~AK-~(z) . . R,Al(z)Ro (91) 

where R, are M x M constant nonsingular matrices and 
A,(z) are M x M diagonal matrices with delay elements on 
the diagonals. Note that (60)-(62) represent a special case 
of this with M = 2. Now the preceding product form does 
not cover every possible M x M €(z) whose determinant i s  
a delay. Here is the open problem: find a structure (or a 
mathematical expression) such that it represents every pos- 
sible €(z) of agiven degreewith determinant equal to a delay, 
and which does not represent any €(z) whose determinant 
i s  not a delay. If such a structure can be found, its param- 
eters can then be optimized on a computer to obtain good 

88 PROCEEDINGS OF THE IEEE, VOL. 78, NO. 1, JANUARY 1990 

.~ 



analysis filters as done in section VIII. Even though this 
problem has not been formulated or solved to this degree 
of generality, special cases of this can be found in [67] and 
[87l (to obtain linear-phase FIR PR QMF banks) and in [55] 
(for obtaining special nonconstant passband magnitude 
responses for analysis filters in FIR PR QMF banks). One 
approach towards a generalized solution i s  the following 
observation: an M x M polynomial matrix E(z) in the vari- 
able z-l has determinant equal to a delay if and only if it 
can be expressed in the form 

F(z) = U(z)A(z)V(z) (92) 

where A(z) i s  a diagonal matrix of delays (with nondecreas- 
ing powers as we go down the diagonal) and U(z) and V(z) 
are polynomial matrices in z-l with determinants equal to 
nonzero constants (in other words, U(z) and V(z) are "uni- 
modular" matrices [120])). This observation follows from 
the Smith-McMillan form of decomposition for polynomial 
matrices [120, Ch. 61, [121, Ch. 61. The preceding problem 
then reducesessentiallytooneof characterizing causal uni- 
modular matrices: one seeks to develop a structure whose 
multiplier parameters span all unimodular matrices; and 
converselyevery transfer matrix generated by the structure 
i s  required to be causal and unimodular. Certain general 
factorization theorems such as those in [I221 may give a 
starting point for this problem. 

Fig. 48 helps to visualize the FIR perfect reconstruction 
family. The largest set in this Venn diagram is  the set of all 

ALL FIR E (1) 

Fig. 48. Venn diagram, summarizing families of FIR QMF 
banks for perfect reconstruction. 

FIR analysis banks. We then have the subset for which the 
determinant of E(z) i s  a minimum-phase polynomial so that 
a stable synthesis bank (not necessarily FIR) for perfect 
reconstruction exists. The next subset is such that det E(z) 
is actually a delay so that an FIR synthesis bank for perfect 
reconstruction exists. The synthesis filters can, however, be 
longer than the analysis filters. The fourth subset i s  such 
that F(z) can be expressed as in (91) (which obviously guar- 
antees that the determinant i s  a delay). The synthesis filters 
for perfect reconstruction, in  principle, can again be longer 
than the analysis filters. The last and the smallest subset is 
such that E(z) is lossless. In this case the synthesis filters 
have the same length as the analysis filters, and moreover 
are given by the closed form formula (74). The advantage 
of subset #5 i s  that it gives rise to lattice structures, which 
in turn lead to simple design procedures for the analysis 
filters, ensuring that the filter-responses are nicely 
bounded. Thedisadvantage is that, in thetwo-channel case, 
losslessness is not compatible with the linear-phase 
requirement of analysis filters (unless they are trivial, as in 
(37)). In 1671, losslessness has been relaxed to obtain linear- 
phase two-channel QMF banks with perfect reconstruc- 

tion. There are two cases considered at length in [67. These 
belong to subsets #4 and #3, respectively. 

Another open area in multirate DSP is the design of QMF 
banks with nonuniform decimation ratio. This means that 
the decimators in Fig. 29(a) are not all equal to M but depend 
on the subband. For example, let nk represent the deci- 
mation ratio for the k th  subband with 0 I k 5 M - 1 (the 
passband widths of the filters are, of course, accordingly 
adjusted to be nonuniform). These integers should clearly 
satisfy Clink = 1, to preserve the average number of sam- 
ples per unittime. Examplesof such systems have beengen- 
erated inthe past bycombiningsmallerQMF bankmodules 
in some way (such as in a tree structure [4]). Some of the 
unresolved issues in the more general case are how to 
obtain alias cancellation (and, for the more ambitious 
designer, perfect reconstruction) with FIR filters. What are 
the necessary and sufficient conditions for these, and how 
can these be forced structurally? Does losslessness still have 
a role? Some progress in this direction has been reported 
in [123]. 

Finally, there has been some progress in the design of 
two-dimensional filter banks, as mentioned in section X. 
However, systematic procedures for obtaining completely 
general lattice structures for lossless polyphase matrices 
are yet to be developed, due to lack of neat factorization 
theorems in the general case. Factorization theorems for 
restricted special cases can be found in [82]. Finally, the 2D 
versions of practically all the I D  open problems are open 
as well. 

NOMENCLATURE 

AC 
A/D 
ADPCM 
A LD 
AMD 
A PCM 
A PU 
D/A 
DC 
DFT 
DS P 
EC 
FDM 
FIR 
GPP 
IDFT 
/FIR 
IIR 
LBR 
LOT 
L PTV 
L TI 
LTV 
MD 
MOS 
MPU 
PC 
PHD 
PR 
QMF 
TDM 
2 0  

All-pass complementary. 
Analog to digital. 
Adaptive delta pulse code modulation. 
Aliasing distortion. 
Amplitude distortion. 
Adaptive pulse code modulation. 
Additions per unit time. 
Digital to analog. 
Doubly complementary. 
Discrete Fourier transform. 
Digital signal processing. 
Euclidean complementary. 
Frequency division multiplexing. 
Finite-length impulse response. 
Generalized polyphase. 
Inverse discrete Fourier transform. 
Interpolated finite-duration impulse response. 
Infinite-duration impulse response. 
Lossless bounded real. 
Lapped orthogonal transform. 
Linear periodically time-varying. 
Linear time-invariant. 
Linear t i  me-varyi ng. 
Multidimensional. 
Mean opinion score. 
Mu I t i  pl icat ions per u n i t-ti me. 
Power complementary. 
Phase distortion. 
Perfect reconstruction. 
Quadrature mirror filter. 
Time-domain multiplexing. 
Two-dimensional. 
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Analysis filters. 
Synthesis filters. 
Type-I polyphase component matrix for anal- 

ysis bank. 
Type-2 polyphase component matrix for syn- 

thesis bank. 
Equals R(z)E(z). 
Overall transfer function (or distortion func- 

Number of channels in analysiskynthesis fil- 

Equals e-’2n’M; subscript M often omitted. 
Frequency variable (radls) for continuous-time 

Frequency variable (rad) for discrete-time sig- 

tion) of alias-free QMF bank. 

ter bank. 

signals. 

nals. 
f = w/2r Normalized frequency. 

APPENDIX A 
CONDITION FOR EQUIVALENCE OF FIGS. 6(a) AND 6(b) 

see that 
By applying the relations (3a), (3b) to Figs. 6(a) and 6(b) we 

(A.4 
1 M - l  

Y1(Z) = kso X(zLlMWkL) 

and 

1 M - l  
Y 2 ( z )  = - c X(zL/MWk). (A.2) 

The summations (A.l) and (A.2) are identical except for the 
powers of W appearing in each. The right sides of (A.l) and 
(A.2) are identical if and only if the collection of M numbers 
WkL, 0 I k 5 M - 1 i s  equal to the collection Wk,  0 5 k 

We know that there are precisely M possible values for 
W” when n runs through the set 0 I n I M - 1. Since W k  
# W” for 0 5 k < n I M - 1, all the M distinct values of 
the powers of Ware present in the set W k ,  0 I k I M - 
1. The expression (A.1) i s  therefore identical to (A.2) if and 
only if WkL # WnL for any k, n such that 0 I k < n 5 M 
- 1 (i.e., if and only if (k  - n)L # pM for an integer p). This 
in turn is true if and only if M and L are relatively prime (Le., 
do not share a common factor greater than unity). 

M k = ~  

s M - I .  

APPENDIX B 
RELATION BETWEEN Mth  BAND FILTERS AND POWER- 
COMPLEMENTARY FILTERS 

Let H(z )  be any transfer function expressed in Type-I 
polyphase form (IO). Define 

M - 1  

H,,(Z) H(ZW-“)  = c Z-kWknEk(ZM) (A.3) 
k = O  

for0 5 n 5 M - 1, where W = e-i2T/M. This set of M transfer 
functions can be represented in vector form as 

64.4) 

where W is the M x M DFT matrix [A, [8]. Since W i s  unitary, 
it i s  (trivially) paraunitary(sectionV1-C). If the set[E,(z), El (z), 
. . .  , EM-,(z)] is power complementary (i.e., if the column 
vector [ E ~ ( Z ) ,  E,(z), . , E M - l ( Z ) ] ’ i s  paraunitary), then the 
M X 1 matrix on the LHS of (A.4) i s  paraunitary (because it 
is a product of paraunitary matrices). This, in turn, means 
that the set Hk(z) ,  0 I k I M - 1 is power complementary. 
In other words, if we define G(z)  g f i ( z ) H ( z ) ,  then G(z) sat- 
isfies Cy=-; G ( z W - ~ )  = constant, so that it is an Mth  band 
filter. 

Conversely, assuming that C(z) is an Mth  band filter, we 
can prove that the set of polyphase components [Eo(z), El (z), 
. . . , &-l(.z)] i s  power complementary simply by inverting 
the two M x M matrices in (A.4) and carrying out a similar 
argument as in the preceding. 
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