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Abstract—A general family of optimal transform coders (TCs)
is introduced here based on the generalized triangular decompo-
sition (GTD) developed by Jiang et al. This family includes the
Karhunen–Loeve transform (KLT) and the generalized version of
the prediction-based lower triangular transform (PLT) introduced
by Phoong and Lin as special cases. The coding gain of the entire
family, with optimal bit allocation, is equal to that of the KLT and
the PLT. Even though the original PLT introduced by Phoong et al.
is not applicable for vectors that are not blocked versions of scalar
wide sense stationary processes, the GTD-based family includes
members that are natural extensions of the PLT, and therefore also
enjoy the so-called MINLAB structure of the PLT, which has the
unit noise-gain property. Other special cases of the GTD-TC are
the geometric mean decomposition (GMD) and the bidiagonal de-
composition (BID) transform coders. The GMD-TC in particular
has the property that the optimum bit allocation is a uniform al-
location; this is because all its transform domain coefficients have
the same variance, implying thereby that the dynamic ranges of the
coefficients to be quantized are identical.

Index Terms—Bit allocation, generalized triangular decomposi-
tion, geometric mean decomposition, linear prediction, majoriza-
tion, Schur convexity.

I. INTRODUCTION

I N transform coder (TC) theory, the Karhunen–Loeve
transform (KLT) is known for its optimality properties

[2], [10], [25]. For example, it provides maximum coding gain
when high-bit-rate scalar quantizers are used in the transform
domain. The KLT essentially diagonalizes the autocorrelation
matrix of the input vector before quantization. The decorre-
lated components are typically quantized by independent scalar
quantizers.1

If the vector being transformed is a blocked version of
a scalar wide sense stationary (WSS) process , then the
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1Depending on the objective function to be optimized and the statistical as-
sumptions involved, it can also be argued that the KLT is suboptimal in some
sense [3]; we do not get into this aspect here.

coding gain of the KLT can also be achieved by using a dif-
ferent kind of transform called the prediction-based lower tri-
angular transform (PLT), which was introduced into the signal-
processing literature by Phoong and Lin [19]. The PLT is based
on the theory of linear prediction for the scalar WSS process

. PLT has smaller design cost because fast algorithms such
as the Levinson algorithm can be used instead of matrix diago-
nalization. The implementation complexity for the PLT is 50%
smaller than that of the [19]. However, the PLT as introduced
in [19] is in the context of blocked versions of scalar WSS pro-
cesses only, which is not applicable for general WSS vectors
processes.

This paper introduces a general family for transform coding
based on the generalized triangular decomposition (GTD) intro-
duced by Jiang et al., in the context of optimal transceiver design
in digital communications [13]. We will show that the GTD-TC
family has the following features.

1) Unlike the original PLT,2 the input vector is not required
to be a blocked version of a WSS process, but when such
is the case the complexity of the new transform can be
made comparable to that of the original PLT. One of the
attractive features of the PLT is the existence of a structure
with unit noise gain, called the MINLAB structure [19].
The GTD-based family includes a PLT-like special case
which also enjoys the MINLAB structure. In this sense, it
extends some of the features of the PLT for the case where

is not a blocked version of a scalar process.
2) It includes the KLT and PLT as special cases.
3) The coding gain for any member of the family is equal to

that of the KLT.
4) Like the KLT and the PLT, the GTD family also produces

a decorrelated set of components at the inputs of the scalar
quantizers. The GTD offers a great deal of freedom in the
distribution of the variances of these decorrelated trans-
form domain components.

5) Other special cases of the GTD transform coder includes
the geometric mean decomposition (GMD) and the bidiag-
onal decomposition (BID) transform coders.

6) The GMD-TC in particular has the property that the op-
timum bit allocation is a uniform allocation. This follows
from the fact that all transform coefficients have the same

2The original PLT, as introduced in [19], assumes that the input vector � is
a blocked version of a scalar WSS process. The natural extension of the PLT,
introduced in Section II-B, will be shown to be optimal in terms of coding gain
for any stationary vector process (not necessarily a blocked version of a scalar
process) with well-defined covariance matrix [9]. This generalization will be
referred to as the “PLT” and the restricted one in [19] as the “original PLT”
throughout this paper.
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variance (same dynamic range from a practical view point
[23]), and thus the same machine word length can be
used for all coefficients. Recall here that the closed-form
formula for optimal bit allocation used by KLT and other
transforms [10] often yields noninteger values for the
bits. The approximation of these with integers would
lead to suboptimality of the transform coder. Since the
GMD-based method uses the same number of bits for all
the transform domain coefficients without compromising
optimality, this disadvantage is not present anymore.

The family of GTD coders therefore provides a unified frame-
work for a number of optimal linear transforms for high-bit-rate
coders.

This paper is organized as follows. Section II briefly re-
views the KLT and the PLT. In Section III, we discuss the
proposed GTD-TC. Several examples of the GTD-TC, such as
the GMD-TC and BID-TC, are given here. The use of GTD
in progressive transmission will also be described. Section IV
provides numerical simulations related to the topic discussed in
the paper. In particular, the theoretical claim that the GMD-TC
with uniform bit allocation is as good as the KLT with optimal
bit allocation is clearly demonstrated in this section. Section V
concludes this paper.

Notations: Boldface uppercase letters denote matrices,
boldface lower case letters denote column vectors, and italics
denotes scalars. The superscripts and denote the
transpose and conjugate transpose operations. denotes the

th element of the matrix . By , we mean that
is positive semidefinite. For vector , the notation

diag denotes the diagonal matrix with diagonal terms equal
to the elements in the vector . For matrix , the notation
diag denotes the column vector whose elements are the
diagonal terms of . The notation means that the
vector majorizes additively [18], [16]. Similarly,
means that the vector majorizes multiplicatively [13], [16].

Assumptions: All signals and transforms discussed in this
paper are assumed to be real-valued. We assume that the 1
input is a zero-mean real-valued WSS vector process, with
positive definite covariance matrix . The time argument is
dropped when redundant.

II. PRELIMINARIES AND REVIEWS

The transform coder is shown in Fig. 1. The signal
is first multiplied by an matrix so that

. The quantizers are scalar
quantizers and are modeled as additive noise sources so that

. Suppose the th quantizer has bits; then the
variance of the quantization error satisfies

(1)

where is the variance of the signal input to the th quantizer.
This result generally holds under the high-bit-rate assumption
[10], [17], [25]. The constant depends on the type of quantizer
and the statistics of . It is assumed that all the scalar quantizers
have the same . The signal is reconstructed at the decoder by
multiplying with .

Fig. 1. Schematic of a transform coder with scalar quantizers.

A. Transform Coders and the KLT

The problem of minimizing the arithmetic mean of mean
squared error (AM-MSE) of the reconstructed coefficients

, under the average bit-rate constraint, is solved
by the KLT [25]. The KLT uses , where is any

orthonormal matrix such that , and
is the diagonal matrix of the eigenvalues of
(assumed to be in nonincreasing order).

Under the high-bit-rate assumption (1), the optimal bit allo-
cation is given by the bit-loading formula [10], [25]

(2)

where the average bit rate is constrained to be bits per data
stream. Note that is actually the signal variance of the trans-
form coefficient . With the bit allocation chosen as in (2), the
MSE due to the th quantizer becomes independent of (as
seen by substituting (2) into (1), with ). The resulting
AM-MSE is

(3)

It was shown in [24] that under the high-bit-rate assumption,
it is not a loss of generality to assume that the transform is
orthonormal.3 It should be noted that the KLT decorrelates the
signal, so the components of are statistically independent
(under the Gaussian assumption) [4]. This is a necessary con-
dition for optimality (minimum MSE) under the use of scalar
quantizers [10] in the high-bit-rate case.

B. Prediction-Based Lower Triangular Transform (PLT)

The PLT, proposed in [19], is a signal dependent
nonorthonormal transform, which utilizes linear prediction
theory [10], [26]. It has the same decorrelation property as
the KLT and is shown to have the same minimum MSE per-
formance if the “minimum noise structure” and optimal bit
allocation are used [19]. In [19], the original PLT is used for
the vector obtained by blocking a scalar WSS . In the
following review of the PLT idea, it can be seen that the PLT
can actually be used for a vector process that need not be a
blocked version of a scalar process. The development of [19],
which was based on linear prediction theory, does not apply in

3It should be noted that the KLT is optimal among memoryless transforms. If
� is replaced with����, which has memory, then the lapped transform and its
variations can be used to further improve the coding performance [1], [15]. In the
lapped transform the optimal transform is no longer necessarily orthogonal but
biorthogonal [15]. Such transforms are popular in modern practical transform
coders [23].
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Fig. 2. A direct implementation of the PLT.

Fig. 3. The PLT implemented using MINLAB(I) structure.

this case, but some of the main conclusions continue to be true,
as we shall elaborate next.

Consider the LDU decomposition [8] of the covariance ma-
trix given by

(4)

Here, is lower triangular with diagonal elements equal to unity
and is a diagonal matrix with positive diagonal elements. We
can rewrite this as

That is, has the diagonal covariance matrix . So pre-
multiplying with results in decorrelation. The transform
coder with will be referred to as the PLT here, and
its implementation is shown in Fig. 2. The multipliers in
the figure are the coefficients in the matrix . In this im-
plementation, the quantizer noise is amplified by .
A different implementation, called the minimum noise struc-
ture I (MINLAB(I)) [20], is shown in Fig. 3. At each step of
the Minlab encoder as well as the decoder, a prediction is made
based on the quantized data, whereas in the structure in Fig. 2,
the encoder makes predictions based on the original data but the
decoder makes predictions with quantized data. This structure is
shown to have the unity noise gain property [19].4 It minimizes
the AM-MSE if the bit loading for each quantizer follows the
bit-loading formula

(5)

Note that is actually the signal variance of the input to the
th quantizer. By choosing the bit allocation as in (5), the MSEs

at the output of the quantizers are made identical, as seen by
using (5) in (1). The resulting AM-MSE will be

(6)

which is the same as what the KLT can achieve when the op-
timal bit loading is applied. The reason for the name PLT is that

4It can be shown [19] that the components of � and � in Fig. 3 are related as
� � � � � �, where � is the error introduced at the �th quantizer. So the
reconstruction error equals the quantization error, yielding the unit noise gain
property [19].

the multipliers are related to optimal linear predictor coef-
ficients [19] when is the blocked version of a scalar WSS
process . For simplicity, we shall continue to use the term
PLT even when this is not the case.

The PLT achieves the same optimal performance as the KLT
but with less computational complexity in the implementation.
Other attractive features are mentioned in [19].

III. GENERALIZED TRIANGULAR DECOMPOSITION

TRANSFORM CODER

In this section, we will show how to construct the GTD-TC
from a given covariance matrix. We will also show that actually
both the KLT and the PLT are special cases of the GTD-TC.
Several other interesting instances of GTD-TC, i.e., GMD-TC,
BID-TC, and the combination of GMD-TC with progressive
transmission, will be discussed. Before going into the GTD
theory, let us first review the notion of multiplicative majoriza-
tion [6], [7], [16], [28].

Definition 1: Multiplicative Majorization [16], [7]: Given
two vectors and ,
where and are all positive, we say is multiplicatively
majorized by or multiplicatively majorizes , and we write

if

whenever

and equality holds when . Here, “ ” denotes the compo-
nent of the vector with th largest magnitude, i.e.,

and .
Multiplicative majorization property plays an important role

in GTD theory, as shown by the following result proved in [13].
Theorem 1: The generalized triangular decomposition

(GTD): Let be a rank- matrix with sin-
gular values in descending order. Let

be any vector that satisfies

(7)

where and .
Then there exist matrices , and such that

(8)

where is a upper triangular matrix with diagonal
terms equal to and and both have
orthonormal columns.

According to the GTD factorization algorithm described in
[13], if and are real valued, then the matrices , and
can be taken to be real valued. There are many standard decom-
positions that can be regarded as special instances of the GTD.
These are listed below. The first five can be found in standard
texts [5], [8]:

1) the singular value decomposition (SVD) ,
where is a diagonal matrix containing the singular values
on the diagonal;

2) the Schur decomposition , where is an
upper triangular matrix with eigenvalues of a square matrix

on the diagonal;
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3) the QR decomposition , where is an upper
triangular matrix (here );

4) the complete orthogonal decomposition ,
where is the QR factorization of and

is the QR factorization of ;

5) the bidiagonal decomposition (BID) , where
is a bidiagonal and upper triangular matrix [5, p. 251];

6) the geometric mean decomposition (GMD) [11],
, where is an upper triangular matrix with the

diagonal elements equal to the geometric mean of the pos-
itive singular values.

Now consider the transform coding problem again. Suppose the
LDU decomposition of is as in (4). Decom-
pose using the GTD, i.e.,

(9)

Then we can express as

diag

where is a unit-diagonal lower triangular matrix that satisfies

diag

Note that because of the GTD theory, the multiplicative ma-
jorization property

(10)

holds, where are the eigenvalues of with
nonincreasing order, i.e., . Note that (10)
implies the fact that the diagonal terms of cannot be arbi-
trarily chosen but have to satisfy the multiplicative majorization
property.

If we pass the signal through the orthonormal matrix to
produce , i.e., the covariance of is

diag

Therefore, is the lower triangular matrix of the LDU form of
. If now apply the PLT to the signal , the components

of the resulting vector are decorrelated. The system is called
GTD-TC and is demonstrated in Fig. 4 for . Here we
have used the MINLAB(I) structure [19]. The multipliers
are the entries of the matrix . For example, when

The bit-loading formula becomes

(11)

Fig. 4. The GTD transform coder implemented using MINLAB(I) structure.

where we have used .
Note that the signal variance of the input to the th quantizer is

. Again, by using the bit-loading formula (11), the MSEs of
the outputs of the quantizers are identical. This is the same prop-
erty that the KLT and the PLT have, as introduced in Section II.

The AM-MSE is invariant to the orthonormal matrix at the
decoder; therefore the AM-MSE is the same as the one for the
PLT part for the transform coding of . As in (6), the MSE is

(12)

which is the same as the MSE for KLT and PLT with optimal bit
allocation. Note that this result is true because of the minimum
noise structure for the PLT (which has unit noise gain).

We can regard and as the precoder and postcoder,
and the system in between as the PLT part as indicated in the
figure. Since there are infinitely many GTD realizations [13],
this framework includes many transform coders that achieve the
maximized coding gain. Actually, it contains both the KLT and
the PLT as special cases.

1) Suppose in (9) the GTD is taken as the SVD of

In this case, we actually have ;
thus , which consists of the eigenvectors of the
input covariance matrix. We also have

. In this case, the GTD-TC is reduced to the KLT. The
PLT part in Fig. 4 is simply a series of scalar quantizers,
and the optimal bit loading is according to (2).

2) In (9), suppose is taken as the QR decomposi-
tion of . Since is by itself an upper triangular
matrix, we actually have and . In this case,
the GTD-TC is reduced to the original PLT.

In the following, we will introduce three new transform coder
schemes based on GTD theory.

A. Geometric Mean Decomposition

Geometric mean decomposition is a special case of GTD. It
arises in optimal transceiver design [12], [18], [22], [27], [29].
In GTD, if the diagonal terms of are identical and equal to

, then it is called GMD. GMD always exists for
any matrix since the multiplicative majorization property al-
ways holds. Suppose GMD is used for the transform coder: in
(9), has all diagonal terms equal to . The
bit-loading formula becomes

(13)
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TABLE I
DESIGN AND IMPLEMENTATION COSTS OF TRANSFORM CODERS

because . The preceding equation says that all
the quantizers are assigned the same number of bits. This is a
consequence of the fact that in (5) are identical for all . That
is, the variances of the quantizer inputs are all identical, which
means that the dynamic ranges of the signals being quantized
are identical. This is a desirable property in practice.

B. Bidiagonal Transformation—Hessenberg Form

A matrix is said to be bidiagonal if it has the form demon-
strated below for the 4 4 case

If the GTD form of is where is a bidiagonal
matrix, then we call it the bidiagonal transform coder (BID-TC).
It can be seen that

where is a tridiagonal matrix demonstrated below for size
4 4

with . This tridiagonal form is also known as
the Hessenberg form [5] of .

The advantages of the BID-TC coder lie in its reduced com-
putational complexity. To reduce a symmetric matrix to a tridi-
agonal form by orthonormal transformation is computationally
much less complex compared to eigenvalue decomposition [5].
The detail of reducing a symmetric matrix to the tridiagonal
form is discussed in [5] and requires only several Householder
transformations. The LDU decomposition for a symmetric tridi-
agonal matrix is also easy, and requires only operations
now instead of for general symmetric matrices. There-
fore, the design cost for the BID-TC is less than KLT, whereas
KLT requires iterative EVD computations. Also, due to the bidi-
agonal structure of , the implementation cost for the inner PLT
part is also reduced, which is only on the order of . This
can be seen in Fig. 5, which shows the MINLAB(I) structure for
the BID-TC encoder. Signal feedforward paths are only required

Fig. 5. The BID transform coder implemented using MINLAB(I) structure.

Fig. 6. Use of GTD-TC in the progressive transmission context.

for the adjacent data streams. The number of signal feedforward
paths is much less than for the original PLT.

A detailed comparison between the design and implemen-
tation costs for various GTD-based coders is summarized in
Table I.5

C. Combination of GMD and Progressive Transmission

There are some applications where rapid transmission is
required and a coarse signal approximation is first produced
[14]. When more bits are available, the system progressively
enhances the performance by sending more information. Fig. 6
shows the example in which we divide the signal data streams
after the linear transformation into three groups. The first group
is the significant group, where the data streams contain a
coarse approximation of the signal. The second group is the less
significant group, where the data streams contain detailed
information about the signal. The third group of streams is
the least significant group, where the remaining
data streams contain components that are close to zero after the
linear transformation .

5In situations involving the KLT, the discrete cosine transform (DCT) is often
used instead of the KLT since the DCT is signal independent, computationally
efficient, and a good approximation of the KLT for a large class of signals with
low-pass spectra [15]. An analogous low-complexity approximation for the pre-
coder � that arises in the GTD implementation is not known at this time.
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Suppose we adopt the GTD form in (9). We are looking for
a transformation such that the diagonal terms of have the
pattern

diag

where

Here are the eigenvalues of with nonin-
creasing order. is the orthonormal matrix obtained from
the GTD theory. Note that this decomposition exists for any

combination, since the multiplicative majorization
property holds. Because the eigenvalues are in nonincreasing
order, the first substreams actually represent the first
principal components of the vector , and the next sub-
streams represent the next principal components. Suppose
for the significant group the total bit budget is for the
less significant group the total bit budget is and for the
least significant group the average number of bits are zero. As
shown in Fig. 6, for the first and the second group, we use the
local PLT for each of them. It can be seen that the bit-loading
formula under the high-bit-rate assumption will be

for the first group and

for the second group. That is, uniform bit loading is used across
the quantizers within each group. The data streams in the third
group are dropped (i.e., assigned zero bits). It can be seen that
the resulting AM-MSE of this transform coder is

When we only have very low bit budget, we can allocate the
bits to the first group to get the coarse approximation of the
signal. When we have more bits available, the information in
the second group is exploited to get the detailed information of
the signal. Hence the progressive transmission scheme can be
implemented when we are able to use uniform quantizers within
each group. This shows one example of the flexibility that our
proposed GTD-TC scheme can have. One can have more groups
of data streams where each group has a different bit budget.

D. An Illustrative Example

Before we proceed to simulations, we provide a simple nu-
merical example of the GMD and the BID transform coders
for increased clarity of exposition. Suppose the zero-mean input
vector is of size 3 1, with covariance matrix

Fig. 7. The GMD encoder structure for the example.

Fig. 8. The bidiagonal (BID) encoder structure for the example.

Following the procedures in Section III-A, the matrix can be
calculated by the GMD, which is

The resulting is a unit diagonal lower triangular matrix such
that

The coefficients of are the multipliers in MINLAB
structure implementation of the encoder structure, as shown in
Fig. 7. The signals at the input to the quantizers become uncor-
related, with identical variances [2.8640, 2.8640, 2.8640]. This
allows the optimal bit-allocation scheme to be uniform.

For the same signal , if we use the BID-TC, the orthonormal
matrix can be shown to be

The resulting is a bidiagonal matrix such that

The bidiagonal structure of makes the implementation of
the transform coder less complex (Fig. 8). The signal compo-
nents at the input to the quantizers become uncorrelated, with
the unequal variances [2.8372, 6.3614, 1.3016]. The optimal
bit loading is then calculated according to (5), which in gen-
eral does not yield integer values. Replacing these with integers
reduces the coding gain from its theoretical value.

IV. SIMULATIONS

In this section, we provide the numerical simulations for
GTD-based coders. The signal is generated by a zero-mean
Gaussian vector process with prescribed covariance matrix
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Fig. 9. Performance of different transform coders with optimal bit allocation.
Input covariance matrix has high condition number (10 ).

Fig. 10. Performance of different transform coders with optimal bit allocation.
Input covariance matrix has low condition number (10 ).

. The number of data streams in the experiments.
Uniform roundoff quantizers are assumed. Each quantizer
adapts its step size according to the variance of the Gaussian
input [25, p. 818]. We run the simulation for input covariance
with high and low condition numbers, respectively. In Figs. 9
and 12, the condition number is 10 . In Figs. 10 and 13, the
condition number is 10 . For each case, we run the Monte Carlo
simulations for calculating the AM-MSE. In each trial, we first
generate the input covariance matrix by multiplying a fixed
diagonal matrix with a randomly generated orthonormal
matrix on the left and its transpose on the right. Two choices of

are used. For the so-called high condition number example

diag

and for the low condition number example

diag

Fig. 11. Comparison of coding gain of different transform coders with optimal
bit allocation. Input covariance matrix has high condition number (10 ).

Fig. 12. Performance of different transform coders with uniform bit allocation.
Input covariance matrix has high condition number (10 ).

Fig. 13. Performance of different transform coders with uniform bit allocation.
Input covariance matrix has low condition number (10 ).

Authorized licensed use limited to: CALIFORNIA INSTITUTE OF TECHNOLOGY. Downloaded on January 19, 2010 at 21:16 from IEEE Xplore.  Restrictions apply. 



WENG et al.: GENERALIZED TRIANGULAR DECOMPOSITION IN TRANSFORM CODING 573

The input vector is then generated according to this covari-
ance matrix. In the following, we provide simulation compar-
isons of different transform coders with and without optimal bit
allocation.

Optimal Bit Allocation: Figs. 9 and 10 compare the
AM-MSE performance of different transform coders with
optimal bit allocation for input covariance matrix with high and
low condition numbers, respectively. “Transform-wBL” means
we adopt the specified transform with optimal bit loading.
For example, “KLTwBL” uses the KLT with the bit-loading
formula (2). “PLTwBL” is the method mentioned in [19], with
the optimal bit-loading formula (5). “UNCwBL” is the case
when we have no transform; we directly quantize the input
with optimal bit allocation6

Since the inputs to the quantizers are correlated to each other
in general, direct scalar quantization without transformation re-
sults in performance loss compared to the GTD-TCs even when
the optimal bit loading scheme is applied. “BIDwBL” is the
bidiagonal transform coder discussed in Section III-B. The bit-
loading formula is as in (11). “GMDTFC” is the GMD transform
coder. Since the signal variance in each data stream is the same,
no bit loading is needed. This allows us to build the same scalar
quantizers for all data streams. It can be seen from the figure that
with optimal bit loading, all GTD-TCs perform about the same.
This is consistent with the analysis made in Section III. Direct
quantization without transforms (UNCwBL) results in about 5
bits per data stream performance loss for Fig. 9 and 1.7 bits loss
for Fig. 10.

Fig. 11 plots the coding gain defined as

(14)

which is the ratio of the MSE of direct quantization MSE
(often referred to as pulse coded modulation) to the MSE of the
transform coder MSE . It can be seen that the coding gain
performance of each method is approximately the same in the
high-bit-rate regime.

Uniform Bit Allocation: Figs. 12 and 13 compare the
AM-MSE performance of different transform coders with uni-
form bit allocation for input covariance matrix with high and
low condition numbers, respectively. Here, “transform-nBL”
means we adopt some specific transform with no optimal bit
loading, i.e., we allocate the same number of bits to each
data stream. However, the step size of each scalar quantizer
is adapted according to variance of the Gaussian input [25, p.
818]. “KLTnBL” uses KLT for the transform. “PLTnBL” is the
method mentioned in [19] but with no bit loading. “UNCnBL”
is the case when we have no transform but directly quantize
the input . No bit loading is applied either. “BIDwBL” is
the bidiagonal transform coder discussed in Section III-B with

6We perform a rounding operation on the bit-loading formula to obtain integer
values and adjust it a little bit to fit the bit budget: first we check if the bit budget
is satisfied with equality. If the number of bits is more/less than the bit budget,
we decrease/increase 1 bit from the substream with most/least number of bits.
We repeat this until the bit budget is satisfied with equality. While suboptimal,
we believe this algorithm is not far from optimal in the high-bit-rate case.

no bit loading. “GMDTFC” is the GMD transform coder. It
can be seen from the figure that with no bit loading applied,
GMD performs much better than the other methods, since the
GMD without bit allocation is theoretically as good as the other
methods with optimal bit allocation.

In the simulation results, the reader will notice that for values
of (average number of bits) exceeding three (low condition
number case) and exceeding six (for high condition number
case), the theoretical predictions are indeed verified to be true.7

Namely, with no bit allocation, GMD performs much better than
KLT, PLT, and BID. These latter methods with no bit alloca-
tion have performance comparable to direct quantization. Fur-
thermore, with optimal bit allocation, all these methods (GMD,
KLT, and BID) have identical performances. For small values
of [14], these theoretical predictions (which are based on the
high-bit-rate assumption) are seen to be (understandably) less
and less true. The low-bit-rate effect appears to be more severe
for the case where the input covariance matrix has high condi-
tion number. Also, from the simulations, we see that the coding
gain improvement of the proposed GTD-TC is more significant
for the high condition number case.

V. CONCLUSION

The main purpose of this paper has been to provide a general
framework for a family of linear transform coders based on the
GTD. The GTD has in the past been found to be of great im-
portance in digital transceiver optimization but has hitherto not
been considered for transform coding. The KLT and PLT trans-
forms are special cases belonging to the GTD transform coder
family. Some of the new transform coders that have been pre-
sented as members of this family include the GMD and the BID
coders. The BID has the advantage that the computational com-
plexity of the PLT part is significantly less. The GMD has the
special property that optimal bit allocation is actually a uniform
allocation because all the transformed coefficients have iden-
tical variances or dynamic ranges.
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