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An eigenfunction of the Fourier transform operator is a function whose shape is identical to that
of its Fourier transform. The Gaussian curve, appropriately scaled, is an example. It is well known that
there are infinitely many examples like this. This topic is reviewed in this paper, and many interesting
properties of these eigenfunctions are discussed. Also discussed is a simple way to characterize all

eigenfunctions of the Fourier transform.

1. INTRODUCTION

he Fourier transform of a signal x(f), defined by
the equation

xG) = [

e o]

z(t)e It d,

(D

has importance in all branches of science and
engineering [2, 4]. Flectrical engineers use the Fourier
transform (FT) operator to analyze and design electrical
circuits, linear systems, communication networks, and
feedback control systems. The inverse of the FT is
given by

z(t) = %/ X (jw)e“tdw
—00

(2)

We say that x(¢) and X(j®) form an FT pair and
write z(t) < X(jw) In this paper we focus on a very
interesting aspect of the FT which is often not
emphasized in the class room. This is the notion of
eigenfunctions of the Fourier transform. If x(¢) is a
nonzero function such that the Fourier transform has

the same shape, that is,
X(jw) = Az(w) 3)

for constant A, we say that x(f) is an eigenfunction of

the FT operator with eigenvalue A. Thus, the shape is
invariant to the FT operation. A commonly mentioned
example is the Gaussian function, based on the
following Fourier transform pair:

) =e? & G(w)=vme? (4

Thus, g() is an eigenfunction with eigenvalue
A= +/2x. The function g(f), properly scaled, is the
Gaussian probability density e-t*/2/y/2gx. For
convenience we shall refer to the above pair (4) as the
Gaussian FT pair.” Another example of an eigenfunction
is the impulse train made from Dirac delta functions.
This arises from the following Fourier transform pair

[4]:

sty= 3 st-nT) o S(jw)=2% 3 5(w—2’rT”) )

n=—oo n=-—00

where s(f) is the sampling function. For the specific
spacing T = +/2x, the function s(f) becomes an
eigenfunction, and the eigenvalue is again ) = /27, as
in the first example.

These examples bring up the following questions.
(a) Are there more examples of eigenfunctions of the

FT operator? (b) Are eigenvalues always equal to /277
A A
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Fig 1

The Gaussian g(f) and its Fourier transform G(jw). These plots have exactly identical shape,

so the Gaussian is an eigenfunction of the Fourier transform operator
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2 Notice that a time-dilated version such as x(f) = e*/2"

is not an eigenfunction because X(jw) =

—w202/2‘ This

2no2e

X(jw) has Gaussian shape all right, but it is dilated differently in frequency.
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In this paper we shall answer these questions. In
fact we shall go beyond that. We will give a complete
list of all possible eigenvalues: there are only four! But
then, there is an infinite number of eigenfunctions. We
shall provide a complete characterization of all
eigenfunctions. We will give a recipe capable of
constructing every possible eigenfunction. The recipe
is so simple, you can start from almost any Fourier
transformable function and change it into an
eigenfunction. Even though the eigenfunctions of the
Fourier and related transforms have been discussed by
a few authors (McClellan and Parks, 1972), (Soares,
et al., 2003), and (Pei and Ding, 2007), the presentation
given here is simple and direct, and readily accessible
to students with only an introductory background in
signals and systems.

2.  AMETHOD TO CONSTRUCT EIGEN
FUNCTIONS

First we point out a very simple trick to generate
eigenfunctions. This will show that there is an unlimited
number of these. From the inverse FT formula (2) we
notice that

() = / ” X (jw)e it dw 6)

Thus, if we take the Fourier transform of the
Fourier transform we get the original function x(f)
modified in two ways: (¢) it is time reversed, and
(D) it is multiplied by the factor 2. Consider a real
function x (f) and assume this is even, that is,

x () = x(-1) (7

Then its transform X (jw) is also real and even
[4]:

Xe(jw) = Xe(—jw). ()

Now consider the time domain function X (jr),
and take its FT. Then the result is 27x (—@) (from

(6)) which in turn equals 27tx (@) (by (7)). If we now
define the sum

Xe(g

then its Fourier transform is

yi(6) 2 ze(t) +

e (w)

Var
Xe(jw) + V2rze(w)

— VEr (o) + 222)) = Vam )

Y1(jw) Xe(jw) +

Thus the Fourier transform ¥,(j®) is exactly the
original function y (f) scaled by /27, Summarizing,
given any nonzero real even function x (), the function
»,() defined as in (9) is an eigenfunction of the FT
operator! In this example the eigenvalue is /27 and the
eigenfunction y, (f) is real and even, as in the Gaussian
and impulse-train cases. Notice that given an arbitrary
function x(f), we can generate an eigenfunction from
it by taking the even part of the real part and using it
as x(f) in the above construction.

2.1. Some specific examples

For a specific example, let x () be the rectangular
pulse p(f) shown in Fig 2a, which is real and even. Its
Fourier transform is the sinc function

Piv) = 5 12) (10)
shown in Fig 2b. The function
n(t) = p(t) + =212 (1n

Ver

shown in Fig 3 (top) is therefore an eigenfunction of
the FT operator. Next let x_(f) be taken as the triangular
pulse

12

-1<t<1
otherwise.

q(t) = {0 ~

This is nothing but the convolution of the pulse
p(t) with itself. So the Fourier transform is

Q- (22

(12)

(13)

The eigengfunction y (1) constructed from g(r) is
therefore

(t) = a0+ —=(

This is also shown in Fig 3 (bottom). Notice that
the first term in (11) is not continuous and the second
term decays like 1//t/ for large /t/. In (14) the first
term (triangle) is continuous and the second term decays
faster, like 1/t 1f we convolve the pulse with itself
one more time, the first term of (14) is replaced with
a quadratic, which is not only continuous but also
differentiable (even at the point where it becomes zero
permanently). The corresponding second term is
proportional to the cube of the sinc function. Repeating
this idea, we can generate a whole family of real even
eigenfunctions by replacing the first term with the
“pulse convolved with itself N times”. The second
term then becomes the sinc function multiplied with
itself N times. This is called a spline function (a
B-spline to be more specific), and its properties have

sin(t/2) ) 2

2 (14)
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Fig 2 The rectangular pulse and its Fourier transform
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The eigenfuncation created from the rectangular pulse and its FT (top), and the

eigenfunction created from the triangular pulse and its FT (bottom)

been studied extensively [9]. As N increases, the first
term (the spline) becomes smoother and smoother
(differentiable more and more number of times), and
the second term decays faster and faster. Notice also
that the second term is infinitely differentiable for any
N. Thus we can generate a whole family of
eigenfunctions from this example, which have specified
smoothness and decay properties.

2.2. More general constructions

The preceding construction immediately reveals
many other ways to get eigenfunctions of FT. For
example if we replace (9) with

A Xe(jt)
t) £ zo(t) — =2

then we find that Y,(jo) = —v/2my,(w). So y,(f) is a
real-even eigenfunction, but the corresponding
eigenvalue value is —,/27 instead of ,/27. Next, let
x(f) be a real and odd function. Then the Fourier
transform X (jw) is imaginary and odd [4]. Define the

real and odd function
Xo(5t
) 2 ,(0) + XYY

e (10

Then
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Ya(iu) = Xo(jw)+2”;°—\/(_,zlw“’)
= X,(jw) — jV2rz,(-w)
= X,(jw) + jV2rz,(w)
_ j\/ﬁ(zo(w)+%)=j\/ﬂys(w)

proving that y.(r) is an eigenfunction with eigenvalue
jv/2r. Finally, if we change the example to

A _ Xo(jt)

t) = zo(t
Ya(t) = zo(t) IV (17)
which is also a real and odd function, we get
Yy(jw) = —jV2mya(w) (18)

That is, y,(f) is an eigenfunction with eigenvalue
—j+/2x. Summarizing, we have produced families of
realeven eigenfunctions with eigenvalues +/27, and
families of real-odd eigenfunctions with eigenvalues
+4+/2x. The reader can create an unlimited number of
examples by substituting any nonzero real-even function
x (1) into (9) or (15) or any nonzero real-odd function
x,(f) into (16) or (17).

The next question is “Is this all there is to it, or
are there more eigenfunctions out there?” It turns out
that the only possible eigenvalues of the FT operator
are indeed /27, —/2m, jv/27, and —jv/2r as we shall
show next. The set of all eigenfunctions is bigger than
the four families of examples y (1), v, (1), y,(1) and y,(1)
given above. But it is only “slightly bigger” as we shall
see (Sec. 4).

3. SET OFALL EIGENVALUES

We now show formally that the Fourier transform
operator can have only four possible eigenvalues. Let
x(f) be an eigenfunction of the FT. Then its FT is
Ax(w). Taking FT again we get Ax(w). If we take the
Fourier transform four times on x(f) we will get

(D). (19)

But we know that taking FT twice always yields
2mx(—t) (see beginning of Sec. 2). So, taking FT four
times must actually yield (27)%x(¢) for any x(f). So we
necessarily have

() = (2m)=(1) (20)
This means that we necessarily have
A= (2m)? (20

This yields four possible choices for the
eigenvalue, namely

A =V2r, —V2r, jVor, —jVor (22)

It is clear from this derivation that these are the
only possible eigenvalues of the FT operator. All of
these possibilities have been demonstrated with the
constructions shown in Sec. 2. Notice in particular
that A? = +2m.

4. COMPLETE FAMILY OF EIGENFUNCTIONS

We now make some general observations about
eigenfunctions of the Fourier transform operator. This
will also lead to a complete characterization.

4.1. Complex eigenfunctions

Even though all our examples so far have been
real valued functions, complex examples are readily
generated. Thus, if x (1) and x (1) are real eigenfunctions
with the same eigenvalue +/2x,, then x (1) + jx,(¢) has
the FT

X1(jw) + 1 Xa(jw) = V2 (21(0) + joa(w))  (23)

Thus x (1) + jx,(f) is a complex eigenfunction
with the same eigenvalue. The real and imaginary parts
do not have to be related in any way. We now prove
an important property of eigenfunctions:

Lemma 1. Let x(/) be an eigenfunction (possibly
complex) of the Fourier transform operator, with
eigenvalue A. Then the following are true:

1. x(r) is necessarily an even or odd function. In
particular, the real and imaginary parts are
individually both even or both odd.

2.  Both the real and imaginary parts
eigenfunctions with the same eigenvalue A.

are

Proof. Given any eigenfunction x(f), if we take the
FT twice we get A%x(f). This should also be equal to

2mx(—1) (see beginning of Sec. 2). Since A* = 27
(Sec. 3) we conclude
_Jz(=t) ifr=+£Vor
o) = {—z(—t) if A = +5v/27 (24)

Thus x(f) is even when A = ++/2x and odd when
A= *jv2r . Writing x(f) = x (1) + jx,(f) this means
that the real part x (f) and imaginary part x(f) are both
even or both odd. Now look at

Xjow) = X (o) + jX,(jo) = A & (@) +jx(®) (25)

If x (#) and x (1) are both even then their Fourier
transforms are real and even. Since A = + /37 from
(24), eqn. (25) therefore implies

X (o) = Ax (o), X,(jo) = Ax(aw), (26)
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That is, the real part and imaginary part are
eigenfunctions with the same eigenvalue. The other
possibility is that x (f) and x (1) are both odd. Then
their Fourier transforms are imaginary and odd. Since
A = 42x from (24), eqn (25) again implies (26).
Again, the real part and imaginary part are both
eigenfunctions, with the same eigenvalue.

Thus, writing the eigenfunction in the form
(1) = x, (D) + jxn) (27)

where x () and x(f) are real, there are precisely four
possibilities as shown below:

A z1(t) and z2(t)
(eigenvalue) | (both real eigenfunctions)
V2r even
—V2r even
JVor odd
—jv2r odd

Conversely, notice that if x,(f) and x(#) fall under any
of the four cases listed above, then it is clear that x(f)
is an eigenfunction with the same eigenvalue A. We
can summarize all these results as follows:

Theorem 1. The function x(f) is an eigenfunction of
the Fourier transform operator with eigenvalue A if
and only if its real and imaginary parts x (1) and x,(1)
are both eigenfunctions with eigenvalue A, and satisfy
one of the four cases: either they are both even with
common e¢igenvalue /27 or —/2m, OF they are both

odd with common eigenvalue j/2x or —jv/2m.

4.2. Generating all eigenfunctions

From Theorem 1 we see that the set of all
eigenfunctions can be “generated” by generating all
real-even eigenfunctions and real-odd eigenfunctions.
We conclude by showing that any real even
eigenfunction has the form

n(t) 2 zo(t) + % or ya(t) 2 zo(t) — %(28)

where x (1) is a real and even function with Fourier
transform X (jow) (which is also real and even). Similarly
any real odd eigenfunction has the form

8, Xl s Xt
yS(t)—on(t)"‘ j\/2_7r y4(t)— o(t) j\/ﬂ (29)

where x (1) is a real and odd function with Fourier
transform X (jw) (which is imaginary and odd).

Proof: First let y(f) be a real and even eigenfunction.
Since Y (jw) is also real and even, Y (jw) = +
Y (jw) = £v2my(w). SO we can write, rather trivially,

y(t) 4 Y(5t)
2 2V/2r%

y(t) = (30)

Identifying x (1) = 0.5y(f) we see that y(f) indeed
has one of the forms (28). Next let y(f) be a real and
odd eigenfunction. Since Y (jw) is imaginary and odd,
we have Y (jw) = +j4/2ry(w). SO we can write

y@® | Y(Y)
2 2§27

Identifying x (f) = 0.5y(f) we see that y(f) has
one of the forms (29).

y(t) =

3D

Since we have already shown (Sec. 2) that (28)
and (29) are eigenfunctions for any real even x (f) and
real odd x (f), this proves the following:

Theorem 2. A real function is an eigenfunction of the
Fourier transform operator if and only if it has one of
the four forms yk(7) in (28) and (29), where x (1) is a
real even function (with FT denoted as X (jw)) and
x (1) is areal odd function (with FT denoted as Xo(jw)).
The corresponding eigenvalue is (a) /25 for y (1), (b)
—/27 for y,(1), (c) jv/2r for y, (¢), and (d) —jv/2r for
Y, (0.

Summary. Given an arbitrary real-even function x (1)
or real-odd function x (#), define a real function y(f) as
in eqn (28) or (29). Then assuming it is nonzero, yk(7)
is an eigenfunction of the FT operator, with eigenvalue
+4/27 or +j/2x as summarized in Theorem 2.
Furthermore, all real eigenfunctions can be generated
this way. By using two real eigenfunctions x () and
x,(f) with the same eigenvalue (i.e., of the same type
out of the four types in eqn (28) and (29)), we can
generate a complex eigenfuncton x (f)+jx,(f) with the
same eigenvalue. Moreover, all complex eigenfunctions
can be generated this way.

5. OTHER TRICKS
EIGENFUNCTIONS

TO GENERATE

Even though the method described in the
preceding section can generate any eigenfunction of
the FT operator, it is useful to know other methods
which have been around in the literature. Here we
describe a clever method based on derivatives. The
method is based on the following simple observation.
Let x(1) & X(jw) be a Fourier transform pair. Then the
Fourier transform of dx(f)/dt is joX(jw) whereas the
Fourier transform of tx(f) is jdX(jw)/dw [4]. Thus we
have the FT pairs
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da(t)

32
% JwX (jw) (32)
and
dX (jw)
tz(t) & j—" (33)
Subtraction yields the FT pair:
dx(t) . . dX (jw)
ta(t) - =2 & —j(wX (o) - L) Ge)

Now assume that we have a differentiable
eigenfunction f(f) of FT, so that its FT is A/ (w).
Substituting x(1) = /(1) and X(jw) = Af(w) into (34)
we obtain the FT pair:

dfo(t) ( Folw) — dfo( ))

That is, whenever f(f) is an eigenfunction with
eigenvalue A, the signal defined as

dfo(t)
dt

tfo(t) — (35)

FL®)2tfo(t) — (36)

is also an eigenfunction, and has eigenvalue —jA. If
J,(1) is twice differentiable, we can repeat this process,
that is, we can generate a function

dfi(t
£ - B
This is an eigenfunction with eigenvalue —(—jA)

= —A Repeated application of this recursive process
yields eigenfunctions /(1) with eigenvalues

. V2, —jV2r, —V2m, jV2m, ...

This pattern of eigenvalues repeats periodically.
For a specific example let f(f) be the Gaussian
eigenfunction f (1) = e**2 (Sec. 1). Then

fi() = 21e* (39)

Since f(f) has Fourier transform /2xfo(w), the
function f(f) has Fourier transform —j/27f;(w) This
establishes the Fourier transform pair

(37)

(38)

2te™t /%2 & —2jV2r we™<’ /2 (40)
Next,
f2(t) = tfi(t) — dfl( ) = (442 — 2)e /2 (41)

Since f,(1) has the Fourier transform —j+/2x f; (w),
we see that /(1) has the Fourier transform

—Vor(4w? —
Thus /(1) yields the Fourier transform pair

2)e_t2/2 & —V2r(dw? — 2)6_“"2/2.

~il=iVEm ()] = —Verfa(w) = 9)ev?/2 (42)

(42 — (43)

This process can be continued indefinitely. Figure
4 shows plots of the first three eigenfunctions f (1),
J,(1), and f (1) in this series. Notice that /(1) is an odd
eigenfunction for odd k& and even eigenfunction for
even k. The eigenfunctions presented above have the
form

S = H(ne?/2 (44)
where H(f) are polynomials:
Ht) =1, H(1) = 21, H(1) = 47 — 2,... (45)

and so on. It can be veri.ed that these polynomials can
be expressed in the form

_ (_1\k 82 d_k —t?
Hy(t) = (-1 e ) (46)

These are called the Hermite polynomials. The
family of eigenfunctions described above arise naturally
in problems involving Schrodinger’s equation in
quantum mechanics (Davies, 1984).

As a final remark notice that instead of
subtraction in (34) one could add:
( ) .. L dX (jw)
ta(t) + =2 & § (wX () + 5 22) (47)
So if x(t) is an eigenfunction, then the left hand
side is also one, as long as it is nonzero. We can start
from any di.erentiable eigenfunction f(f) and generate
a whole series like this. If we start from the Gaussian
J(D= e*™ then this particular construction is not very
exciting because /(1) = 0, and so all f,(1), k > 1, are
zero!

6. CONCLUDING REMARKS

In this paper we used w as the frequency variable.
If we let w = 27/ and define the Fourier transform to
be

X(f):/ z(t)e I3 ftge, (48)
then the inverse of the FT is given by
z(t) = / X(f)e?*Itaf (49)

This convention is often used in communication
literature. It has the advantage that the transform and
its inverse look symmteric (without the 27 factor
discrepancy). The only difference between (48) and
(49) is the negative sign in the exponent. With the FT
operator defined as the transformation from x(f) to
X(f), the four eigenvalues become

1) 71) j) 7j (50)
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Fig 4 Plots of some of the eigenfunctions derived from the Gaussian. See text.
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That is, the /25 factor is not there. The use of
J therefore makes the results more beautiful. For
example, the impulse-train FT pair (5) becomes, with
7=1,

i 8t —n) < f: 8(f — k)

n=—o0 k=—o00

(1)

We have used w in this paper because it appears
to be more commonly used in introductory classes. It
is interesting here to recall that an N x N unitary matrix
always has eigenvalues of the form ¢ where O is real.
The eigenvalues (50) of the FT operator are therefore
a restricted class of eigenvalues of unitary operators.

Another remark relates to the discrete Fourier
transform or the DFT. This converts a set of N
numbers x(x) into another set of N numbers X[ k| using
the formula

N-1

X[k = Z z(n)Wmk

n=0

(52)

where W = ¢7*"¥, For a finite duration sequence x(n),
the DFT is nothing but the set of samples of the
Fourier transform at N uniformly spaced frequencies
in 0 < w < 27w The DFT operator is nothing but a
matrix-vector multiplication (involving a unitary matrix)
converting a vector of N components into another. An
interesting question is, what are the eigenvalues and
eigenvectors of the DFT operator? This question was
addressed by McClellan and Parks (1972) who showed
that out of the set of N eigenvalues, there are only four
distinct eigenvalues. These are given by

\/Ny _\/Jva J\/Ny _J\/ﬁ

The characterization of the eigenvectors is more
complicated, as described in great detail in (McClellan
and Parks, 1972). Eigenfunctions of many other
operators related to the Fourier transform have been
discussed by some authors. The interested student
should read (Pei and Ding, 2007) and references therein.

(53)
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