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Abstract—Systematic research on noncoding RNAs (ncRNAs)
has revealed that many ncRNAs are actively involved in various
biological networks. Therefore, in order to fully understand the
mechanisms of these networks, it is crucial to understand the roles
of ncRNAs. Unfortunately, the annotation of ncRNA genes that
give rise to functional RNA molecules has begun only recently,
and it is far from being complete. Considering the huge amount of
genome sequence data, we need efficient computational methods
for finding ncRNA genes. One effective way of finding ncRNA
genes is to look for regions that are similar to known ncRNA genes.
As many ncRNAs have well-conserved secondary structures, we
need statistical models that can represent such structures for this
purpose. In this paper, we propose a new method for representing
RNA sequence profiles and finding structural alignment of RNAs
based on profile context-sensitive hidden Markov models (pro-
file-csHMMs). Unlike existing models, the proposed approach
can handle any kind of RNA secondary structures, including
pseudoknots. We show that profile-csHMMs can provide an effec-
tive framework for the computational analysis of RNAs and the
identification of ncRNA genes.

Index Terms—Noncoding RNA (ncRNA) gene prediction, pro-
file context-sensitive hidden Markov model (profile-csHMM),
RNA similarity search, sequential component adjoining (SCA)
algorithm.

I. INTRODUCTION

THEvariouscellularmechanismsthatsustainthelifeof living
organisms are carried out by the elaborate collaborations of

numerous biomolecules, such as DNA, RNA, and proteins. For a
long time, proteins have been believed to be the most important
moleculesamongthem,whichperformmostof thestructural,cat-
alytic, and regulatory roles in all cells. In the meanwhile, DNA
has been mainly viewed as the reservatory for protein coding in-
formation, and RNAs have been regardedaspassive intermediary
molecules that simply interconnect DNA and proteins.

However, a number of recent observations in molecular
biology indicate that this traditional view may have been too
restrictive and incomplete to explain many biological functions
in complex multicellular organisms, such as plants, insects,
and animals. Recent studies on various genomes have revealed
that there are numerous noncoding RNAs (ncRNAs), which are
RNA molecules that are not translated into proteins but directly
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function as RNAs, that play crucial roles in various biological
processes [7], [16], [25]. In addition to the well-known ex-
amples such as transfer RNAs (tRNAs) and ribosomal RNAs
(rRNAs), functional ncRNAs have been found to be abundant,
and the functions of the ncRNAs that have been identified till
now are truly diverse. For example, ncRNAs are known to be
involved in gene silencing [24], RNA processing [31], RNA
modification [23], and translation and transcription control
[29], just to name a few.

As RNAs can directly interact with other RNA and DNA
molecules in a sequence-specific manner, they can be espe-
cially useful in regulatory mechanisms, where the recognition
of a specific nucleotide sequence is required [7]. In fact, it
has been shown that many ncRNAs are actively involved in
controlling various gene regulatory networks [12]. Examples
of such regulatory RNAs include miRNAs (microRNAs) [2],
riboregulators [9], and riboswitches [26]. In higher organisms
such as mammals, the genomic output seems to be dominated
by ncRNA transcripts, which suggests that the greater portion of
their genome may be dedicated to regulating the development
of cells [16].

Based on these observations, it becomes clear that we cannot
fully understand the precise mechanisms of various biological
networks, unless we first understand the roles of ncRNAs in these
networks. Unfortunately, the annotation of ncRNA genes, which
are regions in the DNA that give rise to functional ncRNAs, has
begun only recently, and it is still far from being complete [17].
Although several systematic screenings of various genomes have
identified many ncRNAs, it is believed that there still exist nu-
merous ncRNAs that have not been discovered yet. Given the
enormous amount of genome sequence data that is still growing
at a fast pace, finding ncRNA genes solely by experimental means
is practically infeasible. For a fast annotation of ncRNA genes in
genomesequences, it iscrucial todevelopefficientcomputational
methods for finding these genes.

One effective method for finding new ncRNA genes is to
search for regions that look similar to known ncRNA genes.
This is typically called a similarity search or a homology search.
As many ncRNAs have secondary structures that are well-con-
served among different species, it is important to incorporate
this structural information in the search. In fact, scoring schemes
that effectively combine contributions from the sequence simi-
larity and the structural similarity are known to be much more
discriminative than schemes that are based on sequence simi-
larity alone [8].

Until now, a number of statistical models have been proposed
that can be used for representing RNA secondary structures
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and implementing scoring schemes that combine sequence sim-
ilarity and structural similarity [5], [21], [15]. However, these
models can handle only a limited class of RNA secondary struc-
tures. For example, the covariance models (CMs) [6], which
have been widely used in RNA sequence analysis, and the pair
hidden Markov models on tree structures (PHMMTSs) [21],
which are a more recent development, cannot handle RNAs that
have pseudoknots.1 As there exist many RNAs with function-
ally important pseudoknots [13], [27], this can be potentially a
serious limitation. Recently, another method has been proposed
based on pair stochastic tree adjoining grammars (PSTAGs) [15]
that can handle many known pseudoknots, but not all of them.

In this paper, we propose a new method for representing
RNA sequence profiles and building RNA sequence analysis
tools. The proposed method is based on profile context-sensi-
tive hidden Markov models (profile-csHMMs) [38], and it can
in principle handle any kind of pseudoknot. To demonstrate the
effectiveness of the new approach, we build a structural align-
ment tool for RNAs, which can be directly used for computing
the similarity score between two RNAs. Experimental results
will show that the profile-csHMM-based approach can achieve
high prediction ratios at a relatively low computational cost,
providing an effective framework for building tools for finding
ncRNA genes.

A. Scope and Outline

The purpose of this paper is twofold. We first present
an overview of recent results on context-sensitive HMMs
(csHMMs) and profile-csHMMs, and then we present new
results on the application of profile-csHMMs in RNA sequence
analysis. The paper is organized as follows. In Section II, we
begin with a review of RNAs and the RNA secondary structure,
and we give a brief overview of an RNA similarity search.
In Section III, we review the concept of csHMMs that has
been proposed in [32] and [37]. Context-sensitive HMMs are
extensions of traditional HMMs that can effectively describe
long-range correlations between distant symbols, and they have
been shown to be useful in RNA sequence analysis [33], [34],
[39]. In Section IV, we elaborate on profile-csHMMs [38],
which are a subclass of csHMMs that are especially useful in
representing RNA sequence profiles. A dynamic programming
algorithm that can be used for finding the optimal path in
a profile-csHMM is described in Section V. In Section VI,
we propose a new method for finding structural alignments
of RNAs based on profile-csHMMs. Experimental results of
the proposed method are presented in Sections VII and VIII,
where it is compared with other existing methods. The paper is
concluded in Section IX.

II. REVIEW OF STATISTICAL MODELS FOR REPRESENTING

RNA SEQUENCES

A. RNA Secondary Structure

RNA is a nucleic acid polymer that consists of four types
of nucleotides. The nucleotides are denoted by A, C, G, and
U, which stand for adenine, cytosine, guanine, and uracil. In

1RNA secondary structures that have crossing base-pairs are called pseudo-
knots. A formal definition of a pseudoknot can be found in Section II.

Fig. 1. Examples of RNA secondary structures. The dashed lines indicate the
interactions between bases that form complementary base-pairs. (a) RNA with
a hairpin (stem-loop) structure. (b) RNA with pseudoknots.

DNA, uracil is replaced by thymine (T), and they are chemically
similar to each other. A-U and C-G can form hydrogen-bonded
base-pairs, which are called Watson-Crick base-pairs. In addi-
tion to the canonical A-U and C-G pairs, noncanonical pairs do
also exist, where the most common noncanonical pair is the G-U
wobble base-pair. Bases that can form a base-pair are typically
said to be complementary to each other. Unlike DNA, which ex-
ists in a double-stranded form (called DNA double helix), RNA
molecules are generally single-stranded.

Due to the interactions between the complementary bases,
an RNA molecule often folds onto itself to form a number of
stacked base-pairs. The two-dimensional structure that results
from this intramolecular folding is called the RNA secondary
structure. In contrast, the one-dimensional nucleotide sequence
is called the primary sequence of the RNA. Examples of RNA
secondary structures are shown in Fig. 1. For example, the RNA
shown in Fig. 1(a) forms three base-pairs after folding. These
stacked base-pairs are called a stem. The unpaired bases that
are bounded by the base-pairs are called a loop. For this reason,
the secondary structure in Fig. 1(a) is usually called a stem-loop
structure (or a hairpin structure, due to its shape). Fig. 1(b)
shows another interesting example of an RNA secondary struc-
ture. Unlike the RNA in Fig. 1(a), where all base-pairs occur
in a nested manner, the RNA shown in Fig. 1(b) has crossing
base-pairs. To be more precise, let us consider a base-pair be-
tween the positions and ( ) and another base-pair be-
tween the positions and ( ). If the base-pairs and

satisfy

or

then we say that the two pairs are nested. On the other hand, if
they satisfy

or

then we say that these pairs are crossing. RNA secondary struc-
tures that have crossing base-pairs are typically called pseudo-
knots. In most cases, the base-pairs in an RNA secondary struc-
ture occur in a nested manner. However, there exist also many
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Fig. 2. Illustration of an RNA similarity search.

RNAs with pseudoknots [13], [27]. Crossing base-pairs intro-
duce some complications in RNA sequence analysis, as will be
shown later.

B. Scoring Scheme for Comparing RNA Sequences

For many ncRNAs, their secondary structures play pivotal
roles in carrying out their biological functions. As a result, many
RNA families have characteristic secondary structures that are
commonly shared by their members [5]. Sometimes, this sec-
ondary structure can be still observed when there is little simi-
larity between the primary sequences of two members. For this
reason, it is important to consider both the primary sequence
and the secondary structure when performing an RNA similarity
search.

In an RNA similarity search, we scan a sequence database to
look for regions that closely resemble the reference RNA that is of
our interest. Generally, we use a sliding window and compare the
target RNA that is located inside the window with the reference
RNA. This is illustrated in Fig. 2. Note that the size of the sliding
window need not be fixed. In general, we use a variable window,
with restrictions on its minimum and maximum lengths. If the
target RNA is “similar enough” to the reference RNA, we report
it as a putative member that is likely to belong to the same family
as the reference RNA. In order to decide whether the two RNAs
are similar or not, we need a scoring scheme that can give us a
quantitative measure of the similarity between them. As homol-
ogous RNAs conserve their primary sequences as well as their
secondary structures, this scoring scheme should be able to rea-
sonably combine the contributions from sequence similarity as
well as structural similarity. In fact, it has been observed that such
a combined scoring scheme can significantly enhance the speci-
ficity of an RNA similarity search [8].

Let us consider how we can devise such a scoring scheme.
Measuring the similarity between two primary sequences is rel-
atively straightforward. Conceptually, we can simply align the
sequences and see where the two sequences differ from each
other. We can assign negative scores for base substitutions and
gaps, while assigning positive scores for identical bases. For ex-
ample, let us consider the following alignment:

A C C G U
C G G A U

(1)

If we assign , , and , respectively, for each base substi-
tution, gap, and identity, the primary sequence similarity score
for the alignment shown in (1) will be

Fig. 3. Comparing the structural similarity between two RNAs. (a) A reference
RNA with a stem-loop structure. (b) A target RNA with an unknown structure.
We can investigate its base correlations to see whether the given RNA can fold
to the same secondary structure as the reference RNA.

Since there can be many different ways for aligning the two
sequences, one immediate question is which alignment should
be used for computing the similarity score. A reasonable and
widely used solution is to find the optimal alignment that max-
imizes the score, and use this maximum score as a quantitative
measure of their similarity. There are efficient algorithms for
finding the optimal alignment [5].

However, it is not immediately obvious how we can com-
pare the secondary structures of two RNAs. Given a reference
RNA with a specific secondary structure, how can we figure out
whether this structure is conserved in the target RNA? In order
to answer this question, let us consider the example in Fig. 3(a).
The reference RNA shown in Fig. 3(a) has a stem-loop structure.
As mentioned earlier, this secondary structure results from the
interactions (shown in dashed lines) between the complemen-
tary bases that make the RNA molecule fold onto itself. Now, let
us consider a target RNA with an unknown structure, as shown
in Fig. 3(b). If this RNA is to fold to the same structure as the
reference RNA, what kind of conditions should be satisfied by
its primary sequence? From Fig. 3(b), we can easily see that,
in order for this to be true, the bases , , and

should form complementary base-pairs. For example,
“GAACACUUC” and “ACGAAACGU” can fold to the same
secondary structure, while “CCCAAAUUU” cannot.

This shows that we can represent an RNA secondary struc-
ture in terms of base correlations in the primary sequence of the
RNA. Therefore, in order to develop a scoring scheme that can
properly combine the contributions from sequence similarity
and structural similarity between a reference RNA and a target
RNA, we need a statistical model that can effectively represent
the base correlations in the reference RNA.

C. Modeling RNA Secondary Structures

Now, what kind of statistical models can we use for mod-
eling the base correlations that arise from a conserved RNA
secondary structure? We can find the answer by examining the
so-called Chomsky hierarchy of transformational grammars [3].
A transformational grammar can be viewed as a set of “symbol
rewriting rules (production rules)” that can be repetitively used



YOON AND VAIDYANATHAN: STRUCTURAL ALIGNMENT OF RNAS USING PROFILE-CSHMMS 13

Fig. 4. Chomsky hierarchy of transformational grammars.

to generate a set of symbol sequences over a given alphabet.
Chomsky categorized transformational grammars into four
classes, namely, regular grammars, context-free grammars,
context-sensitive grammars, and unrestricted grammars, in the
order of increasing descriptive power. The Chomsky hierarchy
is illustrated in Fig. 4.

An RNA with a secondary structure contains one or more
symmetric regions (or, more precisely, reverse complementary
regions) in the primary sequence, due to the complementary
base-pairs that make the RNA fold. In this sense, we can
view RNAs with conserved secondary structures as biological
palindromes. Palindromes are symmetric sequences that read
the same in either direction. Due to the symmetry, palindromes
have strong correlations between distant symbols.

It is known that the regular grammars, which are the simplest
among the four classes in the Chomsky hierarchy, cannot
describe palindrome languages [3], [5]. The hidden Markov
models (HMMs), which have been widely used in various
applications, can be viewed as stochastic regular grammars,
hence they cannot be used for describing palindrome languages.
It is of course possible that an HMM generates palindromes,
but the important point is that we cannot construct an HMM
that generates only such palindromes. For this reason, HMMs
cannot effectively discriminate between palindromes and non-
palindromes, which makes them unsuitable for developing an
RNA scoring scheme.

In order to model palindrome languages, we have to use
higher order grammars, such as the context-free grammars.
Context-free grammars can effectively describe symbol corre-
lations that occur in a nested manner. As most RNA secondary
structures have nested base-pairs, stochastic context-free gram-
mars (SCFGs) have been extensively used in RNA sequence
analysis [5], [8].2 However, context-free grammars are inher-
ently incapable of describing crossing correlations. As a result,
SCFGs cannot handle RNA pseudoknots, which can be poten-
tially a serious limitation. In order to overcome this problem,
two subclasses of context-sensitive grammars (CSGs) have
been proposed relatively recently [15], [18]. These grammars
can handle a large number of known pseudoknots, but neither
of them can handle all pseudoknots.

Instead of using these grammars, we can use the context-sen-
sitive HMMs that have been recently proposed [32], [37]. As we
will show in the following section, csHMMs can describe any
kind of pairwise symbol correlations, hence they are capable of

2Note that the CM (covariance model) is a SCFG with a special structure.

handling any kind of RNA secondary structures, including pseu-
doknots. For further discussions on RNA sequence analysis, the
reader is referred to [5], [8], and [40].

III. CONTEXT-SENSITIVE HMMS

Context-sensitive HMMs are extensions of conventional
HMMs, and they have been recently introduced in [32] and
[37]. In a csHMM, certain states have variable emission and
transition probabilities that depend on the “context.” Emissions
made at specific states are stored in the memory, and these data
(or the context) are used to adjust the probabilities of some
future states. This context-dependent property is very useful in
modeling long-range correlations between distant symbols, and
it can significantly increase the descriptive power of HMMs.

Unlike conventional HMMs, csHMMs have three different
kinds of hidden states, namely, single-emission states ,
pairwise-emission states , and context-sensitive states .
Single-emission states are identical to regular states in tradi-
tional HMMs, and they have fixed emission probabilities that
do not depend on the context. Pairwise-emission states are
similar to single-emission states in the sense that their emission
probabilities are also fixed. The difference is that the symbols
emitted at pairwise-emission states are stored in the associated
memory,3 so that they can be used to adjust the probabilities at
the context-sensitive states. When we enter a context-sensitive
state, it first accesses the associated memory to retrieve the
symbol that has been previously emitted at the corresponding
pairwise-emission state. The emission probabilities of the
context-sensitive state is adjusted according to the retrieved
symbol. As the pairwise-emission state and the context-sen-
sitive state work cooperatively, they always exist in pairs,
where each state pair is assigned a separate memory. As we
need a context to adjust the emission probabilities at a con-
text-sensitive state, the transition probabilities in the model are
adjusted (based on the status of the memory that is associated
with the context-sensitive state), such that we cannot enter a
context-sensitive state when the memory is empty.

By arranging the pairwise-emission states and the cor-
responding context-sensitive states appropriately, we can
represent any kind of pairwise symbol correlations. For ex-
ample, using a csHMM, we can easily construct a model that
generates only palindromes. An example of such a model is
shown in Fig. 5. As we can see in Fig. 5, the csHMM has a
single-emission state , a pairwise-emission state , and
a context-sensitive state . In this example, the state pair

uses a stack. Initially, the model begins at the pair-
wise-emission state . It can make several self-transitions to
emit a number of symbols, which will be stored in the stack. At
some point, the model will enter the context-sensitive state .
When we enter , we retrieve a symbol from the top of the
stack, and the emission probabilities of are adjusted such
that it emits the same symbol as the retrieved one. Transition
probabilities of are adjusted such that it makes self-transi-
tions until the stack becomes empty. Once the stack is empty,

3The associated memory can be a stack or a queue, depending on the type of
correlations we want to model. For modeling RNA secondary structures, it is
usually more convenient to use a stack.
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Fig. 5. A csHMM that generates only palindromes.

Fig. 6. (a) An example of a csHMM that represents a copy language.
(b) Symbol sequences in a copy language contain crossing correlations.

the model terminates. In this way, the csHMM in Fig. 5 can
generate palindromes that take one of the following forms:

even length

odd length

The underlying state sequences for and will be

respectively. In case we want to generate biological palindromes
that are reverse complementary to themselves, we can simply
adjust the emission probabilities of such that it emits bases
that are complementary to the bases emitted at . By adjusting
the context-sensitive emission probabilities at , we can model
any kind of base-pairs including noncanonical pairs.

Similarly, using a csHMM, we can also construct a model that
generates only symbol sequences of the form

which is a concatenation of two identical sequences. A language
that contains only such sequences is called a copy language.
Fig. 6(a) shows an example of a csHMM that represents a copy
language. Note that the csHMM in Fig. 6(a) uses a queue instead
of a stack. An interesting thing about a copy language is that it
gives rise to symbol correlations that cross each other. This can
be clearly seen in Fig. 6(b). As we have mentioned earlier, such
correlations cannot be described by SCFGs, needless to mention
HMMs.

It would be interesting to find out where the csHMM lies in
the Chomsky hierarchy. This is illustrated in the Venn diagram
shown in Fig. 7. As context-sensitive HMMs are generalizations

Fig. 7. Position of csHMMs in the Chomsky hierarchy.

of conventional HMMs, it completely contains the stochastic
regular grammars (SRGs). The csHMMs have a considerable
overlap with SCFGs, but neither of them fully contain the other
[37]. For example, there are many languages that include se-
quences with crossing correlations, which can be represented
by a csHMM but not by a SCFG. One such example is the copy
language that can be modeled by the csHMM shown in Fig. 6(a).
Similarly, there exist languages that can be described by a SCFG
but not by a csHMM. Such an example can be found in [37].4

There exist efficient algorithms for csHMMs that can be used
for finding the optimal state sequence of an observed symbol
sequence [35], [37], computing the probability of the symbol
sequence [36], [37], and for optimizing the model parameters
[37]. It has been shown that csHMMs can be effectively used in
RNA sequence analysis [33], [34], [39]. For further discussions
on csHMMs and their applications in computational RNA se-
quence analysis, the reader is referred to these references.

IV. PROFILE CONTEXT-SENSITIVE HMM

In the previous section, we have seen that csHMMs can
easily model correlations between nonadjacent symbols by
arranging the pairwise-emission states and the corresponding
context-sensitive states in an appropriate manner. This is indeed
very convenient for describing the base correlations that are fre-
quently observed in RNA sequences, and we can use csHMMs
to represent various kinds of RNA secondary structures [32].
Here, we review the concept of profile context-sensitive HMMs
(profile-csHMMs) [38], which are a subclass of csHMMs with
a special structure. Profile-csHMMs are especially useful for
building probabilistic sequence profiles of RNA families, as we
will show next.

A. Representing Consensus RNA Sequences

Let us assume that we are given a multiple alignment of RNA
sequences that belong to the same RNA family. How can we
construct a model that can statistically represent the common
patterns and the important motifs in this alignment? We typ-
ically call such a representation a probabilistic sequence pro-
file or a consensus sequence of the RNA family. Once we have
constructed this model, it can be used for scoring new RNA se-
quences and finding homologous RNAs.

4In practice, as far as representing RNA secondary structures is concerned,
any structure that can be represented by an SCFG is also representable by a
csHMM.
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One model that has been widely used for building proba-
bilistic profiles of protein coding genes and protein sequences
is the profile-HMM [5]. Profile-HMMs are a subclass of HMMs
that have linear repetitive structures (i.e., state transition di-
agrams). Because of their convenience in modeling sequence
profiles, many coding-gene finders have been built based on
profile-HMMs [5]. Since HMMs are incapable of describing
the base correlations that arise from RNA secondary structures,
profile-HMMs cannot be directly used for representing con-
sensus RNA sequences. However, we can construct csHMMs in
a similar manner so that they become suitable for representing
RNA sequence alignments. Such csHMMs are called profile-
csHMMs [38].

B. Constructing a Profile-csHMM

The structure of a profile-csHMM is similar to that of a con-
ventional profile-HMM. Profile-csHMMs repetitively use three
kinds of states, namely, match states , insert states , and
delete states .

1) Building an Ungapped Model: The match state is
used to represent the case when a base in the observed RNA
sequence matches the th base in the consensus RNA sequence
that was used to construct the profile-csHMM. For this reason,
the number of match states in a profile-csHMM is identical to
the length of the consensus RNA sequence. Each match state

can have a different set of emission probabilities, so that we
can describe the observed frequencies of the four bases at each
position.

The main difference between the conventional profile-HMMs
and the profile-csHMMs is that the profile-csHMMs have
three different types of match states. As we have seen in
Section III, csHMMs have three distinct types of states, which
are single-emission states, pairwise-emission states, and con-
text-sensitive states. Each can choose from these three
types, hence there will be single-emission match states, pair-
wise-emission match states, and context-sensitive match states.
Single-emission match states are used to represent the base po-
sitions that are not involved in base-pairing. For two positions
that form a base-pair, we use a pair of pairwise-emission match
state and the corresponding context-sensitive match state to
describe the correlation between these bases.

As an example, let us consider the RNA sequence alignment
shown in Fig. 8(a). Since the length of the consensus RNA se-
quence is five, we need five match states to represent the se-
quence. As we can see in Fig. 8(a), the secondary structure of
the consensus RNA has two base-pairs. In order to model the
base-pair between the first and the fourth bases, we use a pair-
wise-emission state for and the corresponding context-sen-
sitive state for . Similarly, we use a pairwise-emission state
for and a context-sensitive state for . As the third base
does not form a base-pair, we simply use a single-emission state
for . By interconnecting the match states ,
we obtain an ungapped profile-csHMM as shown in Fig. 8(b).
The ungapped model serves as the ’backbone’ of the final pro-
file-csHMM, and it can represent RNA sequences that match the
consensus RNA sequence without any gap.

2) Modeling Additional Insertions and Deletions: After con-
structing the ungapped model, we can add insert states and

Fig. 8. Constructing a profile-csHMM from an RNA sequence alignment.
(a) Example of an RNA sequence alignment. The consensus RNA has two
base-pairs. (b) An ungapped profile-csHMM that corresponds to the consensus
RNA sequence. (c) The final profile-csHMM that allows additional insertions
and deletions in the consensus sequence. (d) A variant of the standard pro-
file-csHMM that allows local alignment.

delete states to obtain the final profile-csHMM. These states
are used to represent insertions and deletions in the observed
RNA sequence. For example, let us consider the case when the
observed RNA is longer than the consensus RNA. In this case,
if we align the two RNAs, there will be one or more bases in the
observed RNA that are not present in the original RNA. Such
bases are modeled by insert states. The insert state is used to
handle insertions between the positions and in the con-
sensus RNA sequence. As the inserted bases are not correlated
to other bases, we use single-emission states for insert states.5

Now, let us consider the case when the observed RNA is shorter
than the consensus RNA. If we align these RNAs, there will be
one or more bases that are present in the consensus RNA but
are missing in the observed RNA. Such deletions can be han-
dled by delete states, where the state is used to model the
deletion of the th symbol in the original RNA. As delete states
deal with “missing” bases, these states are nonemitting states,
which are simply used to interconnect other states. The final pro-
file-csHMM that corresponds to the RNA sequence alignment
in Fig. 8(a) is shown in Fig. 8(c).

5In principle, we can also allow insertions of additional base-pairs. This can
be done by using a pair of a pairwise-emission insert state and a context-sensitive
insert state.
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3) Allowing Local Alignments: Although the pro-
file-csHMM shown in Fig. 8(c) assumes that the observed
target RNAs will be globally aligned to the model, it is quite
straightforward to change the model to allow local alignments
as well. For example, we can simply allow transitions from the
START state to any or states and, similarly, allow tran-
sitions from any or states to the END state. In this way,
we can handle sequences that match the model only locally.
Another way to allow local alignments is to use the structure
shown in Fig. 8(d), which is similar to that of the profile-HMM
variant used in the HMMER package [5]. The states and
are used to model the flanking sequences at the beginning and
the end of the original sequence profile, respectively. and

are nonemitting states, which are respectively used to allow
transitions to (and from) any match state.

C. Descriptive Power of Profile-csHMMs

As we can see in the previous example, profile-csHMMs
provide a simple and intuitive way of representing RNA se-
quence profiles. One important advantage of profile-csHMMs
is their large descriptive power. In fact, profile-csHMMs can
represent any kind of base-pair correlations by arranging the
pairwise-emission match states and the context-sensitive match
states in an appropriate manner. Therefore, profile-csHMMs
are capable of representing any kind of pseudoknots unlike
many existing models. As mentioned earlier, covariance models
(CMs) [6] and pair HMMs on tree structures (PHMMTs) [21]
can only represent RNA secondary structures with nested cor-
relations and are hence incapable of dealing with pseudoknots.
PSTAGs [15] are capable of representing pseudoknots with
exactly a two-crossing property. A secondary structure is said to
have an -crossing property, if there exist base-pairs
in the given secondary structure such that any two pairs in these

base-pairs cross each other. Fig. 9(a) shows an example
of an RNA secondary structure with a two-crossing property.
PSTAGs can handle many known pseudoknots, as a large
portion of known pseudoknots has the two-crossing property.
However, there also exist more complex pseudoknots that are
beyond the descriptive power of PSTAGs. One such example
is the flavivirus 3’ UTR pseudoknot family [22], which will be
considered in our experiments presented in Section VII. It will
be shown that profile-csHMMs can be used for modeling and
predicting the secondary structure of these pseudoknots. Pro-
file-csHMM can also represent RNAs with even more complex
secondary structures as those shown in Fig. 9(b) (RNA with
three-crossing property) and Fig. 9(c) (RNA with four-crossing
property), in a similar manner as described in Section IV-B.

V. COMPUTING THE OPTIMAL ALIGNMENT SCORE BASED

ON PROFILE-CSHMMS

Once we have constructed a profile-csHMM that statistically
represents an RNA sequence family, this model can be used for
finding new RNAs that look similar to the given RNA family.
Let us assume that we are given a new RNA sequence (a “target”
RNA), and we want to find out how close it is to the RNA family
under consideration (the “reference” RNA). How can we com-
pute the similarity score between the target RNA and the RNA

Fig. 9. Various types of RNA secondary structures. (a) RNA with two-crossing
property. (b) RNA with three-crossing property. (c) RNA with four-crossing
property.

family that is used as the reference? One good solution is to
use the maximum observation probability of the target sequence
based on the profile-csHMM that represents the reference RNA
family. When using a csHMM, there can be many different state
sequences (or paths) that give rise to the same symbol sequence,
but each with a different probability. Therefore, in order to com-
pute the maximum probability of an observed symbol sequence,
we have to find the optimal path that maximizes the observa-
tion probability. As this can be viewed as finding the best align-
ment between a symbol sequence and the given model, it is typ-
ically called the optimal alignment problem. Since the number
of paths increases exponentially with the length of the observed
sequence, we need an efficient algorithm for finding the optimal
path in a systematic way. When using traditional HMMs, we can
utilize the Viterbi algorithm [28] for finding the optimal path and
computing the maximum observation probability. For SCFGs,
we can use the Cocke–Younger–Kasami (CYK) algorithm [5]
for this purpose.

However, as profile-csHMMs can describe many compli-
cated symbol correlations that cannot be described by HMMs
nor SCFGs, we need a more general algorithm that can deal
with such correlations. Although we cannot directly use the
existing algorithms, we can generalize them to develop an
optimal alignment algorithm for csHMMs. In this section, we
describe a dynamic programming algorithm called the sequen-
tial component adjoining (SCA) algorithm that can be used for
the optimal alignment of profile-csHMMs. The basic idea of
the SCA algorithm has been proposed in [38]. In the following,
we describe the algorithm in more detail, with additional
discussions on several important issues, such as the adjoining
order of the algorithm and the computational complexity for
handling RNAs with various secondary structures.

A. Two Generalizations

The SCA algorithm iteratively finds the optimal state se-
quence in a similar way as the Viterbi algorithm and the CYK
algorithm. Given an observation sequence, the SCA algorithm
first finds the optimal state sequences of short subsequences,
and then it uses this information to find the optimal state
sequences of longer subsequences. This process is repeated
until we find the optimal state sequence of the entire observed
sequence. In order to handle more complex correlations, the
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SCA algorithm makes the following generalizations to the
existing algorithms.

First, instead of using a subsequence that has a single interval,
the SCA algorithm can use a subsequence that consists of mul-
tiple nonoverlapping intervals. In order to define a subsequence,
the SCA algorithm uses an ordered set of variable number of
closed intervals. Let us consider an observed symbol sequence

. We define a set of nonoverlapping intervals
, where denotes the in-

terval . The subscript indicates the th interval,
and the superscripts and are used to designate the “left” and
the “right” ends of the given interval, respectively. We assume
that the intervals in are ordered, such that they satisfy

for (2)

Based on the set , the subsequence is defined as follows:

Note that is generally not a partition of
the entire interval , hence the subsequence usually
contains only a portion of the observation sequence .

Using this notation, we can define subsequences of as fol-
lows:

This generalization considerably increases the number of ways
in which the intermediate subsequences (used during the iter-
ative process of finding the optimal state sequence) can be de-
fined, extended, and adjoined. As we continue these iterations,
the set that defines the intermediate subsequence will ap-
proach a partition of the entire range , ultimately covering
the entire sequence.

Second, the SCA algorithm allows us to explicitly define how
the optimal state sequences of shorter subsequences can be ex-
tended and adjoined to find the optimal state sequences of longer
subsequences. When using the SCA algorithm, there can be nu-
merous ways to define the intermediate subsequences. These
intermediate subsequences have to be defined in such a way
that can take care of all the correlations in the profile-csHMM.
Therefore, we cannot find the optimal state sequence of the
observed sequence simply by proceeding left-to-right (as the
Viterbi algorithm) or by proceeding inside-to-outside (as the
CYK algorithm). In fact, we have to define a model-dependent
adjoining order that specifies how we should define the interme-
diate subsequences, and how the extension and adjoining rules
should be applied. This is elaborated on in Section V-E in more
detail.

B. Notations

Before describing the details of the SCA algorithm, let us first
define the notations. As before, we denote the observed symbol

sequence as . The underlying state sequence is
denoted as . Note that the length of the state
sequence can be larger than the length of the observation,
since can have one or more nonemitting states (i.e., delete
states ). We assume that the length of the profile-csHMM
(defined as the number of match states in the model) is . The
emission probability of a symbol at a single-emission state
or a pairwise-emission state is denoted by . The emis-
sion probability of a symbol at a context-sensitive state is
denoted by , where is the symbol that was pre-
viously emitted at the corresponding pairwise-emission state.
The transition probability from state to state is denoted by

.
Consider an ordered set of intervals ,

where the intervals satisfy (2). For this set , we de-
fine to be an ordered set of state-pairs

, where and represent the hidden states at the
left and right ends of the th interval . Now, we
define as the observation probability of the
subsequence , whose underlying state sequence is

Since can contain nonemitting states, may not satisfy
. Similarly, we may have . Based on this nota-

tion, we finally define to be the maximum log-proba-
bility of the subsequence

over all possible state sequences that satisfy and
for all . In addition to this, we define two

variables and that will be used for tracing
back the optimal state sequence that maximizes the observation
probability.

C. Initialization

Initially, we begin with computing the optimal log-proba-
bility of subsequences that either consist of a single
base or a single base-pair.

1) For a position ( ) in the profile-csHMM,
where is a single-emission match state, we let

, and initialize

for all positions . Similarly, we let
, and initialize

for all .
2) For positions and ( ), where is

a pairwise-emission state and is the corresponding
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context-sensitive state, we let ,
and compute

for all positions . Furthermore,
we let ,

, and initialize the log-proba-
bility as follows:

for all and ( ).
3) For single bases emitted at insert states, we let

, , and initialize

for all and .

D. Adjoining Subsequences

After computing the optimal log-probabilities of all subse-
quences that consist of a single base or a single base-pair, we
recursively adjoin these subsequences to obtain the optimal log-
probabilities of longer subsequences. This can be done by ap-
plying the following adjoining rules.

1) Rule 1: Consider the log-probabilities and
of the two subsequences and , where

We assume that there is no overlap between the symbol se-
quences and nor between the underlying state
sequences and . In this case, we can compute the
optimal log-probability of the longer subsequence as fol-
lows:

The sets and are unions of the smaller sets

where and the intervals are relabeled such that
they satisfy (2) and corresponds to .

2) Rule 2: Assume that there exist two intervals
that satisfy , which implies that the two inter-

vals and are adjacent to each other. For
simplicity, let us assume that . In this case, we can com-
bine the two intervals and to obtain a larger interval

where the corresponding state-pair is . Now,
the log-probability for

can be computed as follows:

For , we can similarly combine the two adjacent inter-
vals and to obtain the optimal log-probability
for the updated sets and .

For simplicity, we have described the adjoining process in two
distinct steps, namely: 1) adjoining two nonoverlapping subse-
quences and 2) combining adjacent intervals in a single subse-
quence. In practice, we can often combine these rules and apply
them at the same time. This can be more convenient than ap-
plying them one by one. For example, if we know the optimal
log-probability of two adjacent subsequences, where each sub-
sequence consists of a single interval, we can adjoin the two se-
quences and combine the two intervals to compute the optimal
log-probability of a longer subsequence that has also a single
interval.

E. Adjoining Order

As mentioned earlier, when using the SCA algorithm, we
have to specify the adjoining order, according to which the ad-
joining rules should be applied. This adjoining order can be ob-
tained from the consensus RNA sequence that was used to con-
struct the profile-csHMM. Based on the consensus sequence, we
first find out how the bases and the base-pairs in the given se-
quence can be adjoined one by one to obtain the entire sequence.
During this procedure, we try to minimize the number of inter-
vals that is needed to describe the intermediate subsequences,
as a larger number of intervals leads to a higher computational
cost for adjoining the subsequences.

An example is shown in Fig. 10(a), which illustrates how we
can obtain the consensus sequence in Fig. 8(a) by sequentially
adjoining its base and base-pairs. Note that the numbers inside
the squares in Fig. 10(a) indicate the original base-positions.
Fig. 10(b) shows the portion of the profile-csHMM that cor-
responds to the respective RNA subsequence at each step of
Fig. 10(a). Some steps in Fig. 10(a) are subdivided into multiple
steps in Fig. 10(b) for illustration. Following this adjoining
order, we can ultimately compute the maximum log-probability
of the target RNA sequence and find the optimal state sequence
that maximizes the probability. At each step, we compute the
maximum log-probability of every possible subsequence (of
the observed target RNA), whose underlying state sequence
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Fig. 10. (a) The adjoining order for the profile-csHMM shown in Fig. 8(c). This shows how the reference RNA can be obtained by adjoining the base and base-
pairs. (b) Corresponding parts in the profile-csHMM. This illustrates in which order the optimal state sequence can be found.

matches the corresponding portion of the profile-csHMM as
shown in Fig. 10(b).

For every step in the adjoining order, we first compute the
log-probability of those subsequences, whose terminal
states (i.e., , ) do not contain insert states. For example,
in STEP 1, we compute for ,

and , using
the initialization rules described in Section V-C. Note that the
states in correspond to the third base position in the original
consensus sequence. Similarly, we compute the log-probability

in STEP 2 (and also in STEP 4) based on the
base-pair initialization rules in Section V-C. At some steps, the
optimal log-probability is obtained by combining the log-prob-
abilities computed in the previous steps. For example, in STEP

3, we can compute for ,
by combining and

as follows:

where , and
, .

As shown in the above equation, we consider all possible
transitions from state to state and choose
the one that maximizes the log-probability. In the example
shown in Fig. 10, the log-probability is computed in
STEP 1 and is computed in STEP 2.

After computing these log-probabilities, we move on to com-
pute the log-probabilities of those subsequences that have one

or more insertions at the beginning and/or the end of some in-
tervals. For example, at STEP 1, we can compute for

and from

where , ,
, and . In a similar manner, we can also deal

with a left insertion as well as multiple insertions.

F. Termination

By iteratively applying the adjoining rules, we can obtain the
log-probability for and ,
for all and . Let us de-
fine to be the probability that the profile-csHMM
will begin at the state , and as the probability that
the model will terminate after . The maximum log-probability
of the entire observation sequence can be computed as fol-
lows:
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where is the optimal state sequence that maximizes the ob-
servation probability.

G. Trace-Back

Once we have computed the maximum log-probability
, we can trace-back the adjoining process to find

the optimal state sequence that gave rise to this log-prob-
ability. To describe the trace-back algorithm, let us define

and a stack . The trace-back algorithm proceeds
as follows.

1) Let ( ).

2) Push onto the stack .

3) Pop from . If , go to 6).
Otherwise, proceed to 4).

4) If , push onto . Otherwise,
, for all and the corresponding

. (Note that, when , we
have and .)

5) If , push onto .

6) If is empty, proceed to 7). Otherwise, go to 3).

7) Let and terminate.

At the end of the trace-back procedure, we can find the op-
timal state sequence in the profile-csHMM that maximizes
the observation probability of .

H. Principle of Optimality

In order to ensure that the “optimal state sequence” ob-
tained in Section V-G is indeed optimal, the following condi-
tions should be satisfied. First, when adjoining optimal subse-
quences (or combining intervals in an optimal subsequence), we
have to make sure that: 1) all possible state transitions are con-
sidered for every adjoining point; 2) all possible adjoining po-
sitions are compared to each other; and 3) the conditions that
maximize the probability are chosen. Second, the probabilities
of the subsequences that are adjoined should be independent of
each other. These two conditions ensure that all possible state
sequences have been considered in finding the optimal proba-
bility of the new subsequence, and that there is no other partition
of the given subsequence that will make the probability higher.
Hence, the new subsequence that is obtained by optimally ad-
joining shorter optimal subsequences will be also optimal. In
fact, for a given profile-csHMM, if we define the adjoining order
as in Fig. 10(a) and proceed to find the optimal state sequence
as described in Section V-E [and illustrated in Fig. 10(b)], the
aforementioned conditions are naturally satisfied. Therefore, at
the end of the algorithm, it is guaranteed that the resulting state
sequence will be indeed optimal.

I. Computational Complexity of the SCA Algorithm

Unlike the Viterbi algorithm and the CYK algorithm, the
computational complexity of the SCA algorithm is not fixed,
and it depends on the adjoining order. As the adjoining order

is specified based on the correlation structure of the pro-
file-csHMM, the computational cost ultimately depends on the
secondary structure of the consensus RNA sequence that was
used to construct the model. For example, when we are dealing
with an RNA that has a stem-loop structure, the complexity for
finding the optimal alignment will be in the order of ,
where is the length of the profile-csHMM and is the length
of the target RNA. For this RNA, the SCA algorithm can simply
proceed inside-to-outside (like the CYK algorithm) to find the
optimal alignment. Therefore, its complexity is essentially
identical to the complexity of using the CYK algorithm for
parsing a CM without any “bifurcation rule” (used to gen-
erate multiple stems) [5]. Similarly, if the consensus RNA has
multiple stems (without crossing correlations) like the tRNA
cloverleaf structure, the complexity will be . Again,
this is identical to the complexity for using the CYK algorithm
for parsing a general CM with bifurcation rules.

For RNAs with pseudoknots, which cannot be represented by
SCFGs, the complexity becomes higher. In order to deal with
crossing base correlations, we have to define intermediate sub-
sequences with at least two intervals. As we have to consider all
possible positions for the intermediate subsequences, there are

possibilities for choosing their positions. Furthermore,
since the number of adjoining steps in the SCA algorithm is
proportional to the length of the profile-csHMM (which is
identical to the length of the reference RNA) as illustrated in
Fig. 10, the computational complexity6 of the SCA algorithm
becomes at least . As a comparison, note that the com-
putational complexity of the PSTAG algorithm is also at least

, and it can be as large as depending on the
structure of the PSTAG tree [15].

VI. STRUCTURAL ALIGNMENT OF RNAS USING

PROFILE-CSHMMS

As we have shown in the previous section, profile-csHMMs
provide a convenient framework for statistically representing
RNA sequence families, developing RNA similarity scoring
schemes that can reasonably combine contributions from
sequence similarity and structural similarity, and ultimately,
building RNA homology search tools. To demonstrate the
effectiveness of the proposed method, we have built a program
that can be used for structural alignment of RNA sequences
including pseudoknots.7 Similar to the PSTAG-based alignment
tool developed by Matsui et al. [15], it uses a single structured
RNA sequence as a reference and aligns unfolded RNA se-
quences to it. However, unlike PSTAGs that can only handle
pseudoknots with two-crossing property, the given program can
deal with a much larger class of RNAs.

The program proceeds as follows. It first constructs a profile-
csHMMbasedonthereferenceRNAanditsstructuralannotation.
Instead of using a fully stochastic model with position-dependent
emission probabilities, in this implementation, we have used
the nonstochastic scoring matrix proposed in [11], as it
has been used by several RNA analysis tools with good

6The complexity for aligning pseudoknots in the Rivas&Eddy (R&E) class
[18] will be at mostO(L K), which can be verified by a similar reasoning. For
RNAs outside R&E class, the computational complexity can be even higher.

7The software and its C++ source code are available upon request.
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performance. Second, the program automatically finds the
adjoining order that can be used for predicting the optimal
state sequence of the profile-csHMM. The adjoining order is
obtained in the following way. Let us consider a subsequence

of the reference RNA that consists of ( ) intervals.
We define as the number of base-pairs that are fully
contained in the subsequence . For a given , we try to split
it into two subsequences and , where each of them may
have up to intervals, such that
is maximized. We begin this process by finding the best
“division” for the entire sequence and proceed in a recursive
manner until we reach the point where every subsequence
consists of a single base or a single base-pair. The adjoining
order of the profile-csHMM can be simply obtained by
reversing this division process.

Currently, the program can deal with RNA secondary struc-
tures which can be handled by the SCA algorithm using subse-
quences with up to two intervals ( ). This corresponds
to the entire class of RNA secondary structures that can be rep-
resented by the grammar proposed by [18]. The so-called R&E
class is regarded as the most general RNA class that is known
today, and it covers almost all RNA secondary structures that
have been identified until now [4]. Although the current imple-
mentation of the structural alignment program covers only the
Rivas&Eddy class, it has to be noted that the capability of the
profile-csHMMs and the SCA algorithm goes beyond the R&E
class. For RNAs that are outside of the R&E class, we can easily
extend the current program to handle them.

One advantage of the given program is that it does not reject
RNAs even if they are outside the descriptive capability of the
current implementation. For example, if the reference RNA has
a complex structure that is outside the R&E class, the program
chooses the subset with maximum number of base-pairs such
that the resulting secondary structure is contained in the R&E
class.

Now, the constructed profile-csHMM can be used for car-
rying out a structural alignment between the reference RNA
and a target RNA with unknown structure. We can follow the
adjoining order that has been obtained in the previous step to
find the optimal state sequence of the target RNA, which in turn
yields the prediction of its secondary structure.

In implementing the SCA algorithm, we have introduced a
parameter , which is the length of the search region for finding
the matching bases in the sequence alignment. This is moti-
vated by the following observation. When we align two RNA
sequences that are biologically relevant, the matching bases in
the reference RNA and the target RNA are usually located very
close to each other. Fig. 11(a) shows an example of a typical se-
quence alignment, where the maximum distance between a base
in the reference sequence and the matching base in the target
sequence is two. Alignments with a large distance between the
matching bases, as the one shown in Fig. 11(b), are generally
less probable. Based on this observation, we limit the search re-
gion as illustrated in Fig. 12. When looking for the base in the
target RNA that matches the th base in the refer-
ence RNA, we only consider the bases between
and , hence the maximum length of the search
region is .

Fig. 11. Matching bases in an RNA sequence alignment. (a) The maximum
distance between the matching bases is two. (b) The maximum distance between
the matching bases is seven.

Fig. 12. Limiting the search region for finding the matching bases can signifi-
cantly reduce the overall complexity of the structural alignment.

Restricting the search region has several advantages. First of
all, it significantly reduces the overall complexity of the align-
ment algorithm, making the program practically usable in real
applications. The computational complexity of aligning pseu-
doknots will be reduced from to (or from

to in the worst case). For example, assume
that we want to align two pseudoknots in the TOMBUS_3_IV
RNA family (seed alignment) in the Rfam database [13]. The av-
erage length of these RNAs is around , and is suf-
ficient for finding the optimal alignment between any two mem-
bers in the given family. In this case, limiting the search region
reduces the overall complexity to around
of the original. Second, when the structural alignment score
obtained from the SCA algorithm is used for finding homo-
logues of an RNA family, restricting the search region can yield
better discrimination between homologues and nonhomologues,
as long as is sufficiently large to obtain the optimal alignment.
As the optimal alignment of homologues is contained within the
search space, the imposed restriction does not affect the align-
ment score of homologous sequences. However, limiting the
search region will lead to an overall decrease in the alignment
score of nonhomologues, hence providing better discrimination
between homologues and nonhomologues.

A good way of choosing is to compute the range be-
tween the matching bases in the original sequence alignment,
and make it slightly larger than this range. Another method
for estimating is to construct a simple profile-HMM from
the sequence alignment and find an (sequence-based) align-
ment between the target sequence and the profile-HMM. This
alignment can be found very quickly, since the computational
complexity for aligning a profile-HMM is only . Then,
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Fig. 13. Structural alignments of RNAs with various secondary structures. (a)
A structure similar to the structure of CORONA_PK3 RNA family. (b) A structure
similar to the structure of FLAVI_PK3 RNA family. (c) A structure with the three-
crossing property.

we compute the maximum distance between the matching
bases in the given alignment and use it to estimate . This
is indeed a very efficient strategy that results in a tremendous
reduction in the CPU time needed for finding the structural
alignments while providing a good prediction performance, as
will be demonstrated in Section VII.

Fig. 13 shows a few examples of structural alignments ob-
tained from the program that has been just described. RNAs
illustrated in Fig. 13(a) and (b) have two-crossing properties
and Fig. 13(c) has a three-crossing property. In each example, a
target RNA with unknown structure is aligned to the reference
RNA whose structure is known. As we can see in this example,
the proposed approach can find good structural alignments for
RNAs with various secondary structures.

VII. NUMERICAL EXPERIMENTS

We tested the performance of our program using several
pseudoknots included in the Rfam database [13]. The Rfam
database provides a large collection of various RNA families,
where the member sequences in each family are aligned to each
other. In our experiments, we have used the sequences in the
“seed alignment” of each RNA family, as they are hand-curated
and have reasonably reliable structural annotation. For each
sequence family, we chose one of its members as the reference
RNA and used it along with its structural annotation to predict
the secondary structure of all the other sequences in the same
family. The predicted secondary structure has been compared
with the annotated structure in the database, and we counted the
number of correctly predicted base-pairs (true-positives: TP),
the number of incorrectly predicted base-pairs (false-positives:
FP), and the number of base-pairs in the annotated structure that
were not predicted by the program (false-negatives: FN). These
numbers have been used to compute the sensitivity (SN) and
the specificity (SP) of the program that are defined as follows:

TABLE I
PREDICTION PERFORMANCE OF PROFILE-CSHMM AND PSTAG

To obtain reliable estimates of these quantities, we performed
a cross-validation experiment by repeating the previous process
for every member in the given RNA family and computed the
overall prediction ratios.

In order to compare the performance of the proposed method
with that of PSTAGs, we first tested the program for three RNA
families, CORONA_PK3, HDV_RIBOZYME, and TOMBUS_3_IV,
which have all pseudoknot structures. Table I shows the pre-
diction result of the proposed method along with the prediction
result of PSTAGs.8 In each case, the higher prediction ratio is
boldfaced. As we can see in Table I, profile-csHMMs yielded
accurate prediction results that are comparable to PSTAGs for
all three RNAs that have been tested. However, profile-csHMMs
are more general than the PSTAGs, as will be demonstrated in
the next example.

Second, we tested the performance of the proposed method
for the FLAVI_PK3 family that has a more complex secondary
structure than the previous RNA families, which cannot be han-
dled by the PSTAGs. The secondary structure of FLAVI_PK3 is
similar to the example shown in Fig. 13(b), which has two stems
and additional base-pairs that cross the base-pairs in both stems.
As we have already seen in Fig. 13(b), profile-csHMMs are ca-
pable of dealing with such structures. Fig. 14 shows a structural
alignment of two RNAs in the FLAVI_PK3 family obtained using
the proposed approach. Note that most base-pairs have been cor-
rectly predicted. There were two false-positives and a false-neg-
ative in the predicted structure when compared with the anno-
tated structure in Rfam.

Despite the generality of the proposed method, its computa-
tional cost was much smaller than that of the PSTAGs. It can be
seen that the profile-csHMM approach runs significantly faster
than the PSTAG approach, despite its larger descriptive power.
Table II shows the average CPU time that was needed for finding
the structural alignment between two sequences in each RNA
family.9 In our experiments, the parameter was automatically
estimated by performing a simple sequence-based alignment, as
proposed in Section VI. It has to be noted that the initial align-
ment obtained by the profile-HMM is only used for estimating

, and hence it does not affect the final structural alignment of
the profile-csHMM.

In the preceding examples, there is considerable similarity be-
tween the primary RNA sequences in each category. However,
the prediction performance of the proposed method does not de-
pend strongly on the primary sequence similarity. The method
is therefore applicable in cases where the sequences are related
essentially by a common secondary structure alone. In order to
show this, we randomly mutated the RNA sequences that were

8The prediction results of PSTAGs are obtained from [15] and have been
rounded to integer values.

9The experiments have been performed on a PowerMac G5 2.5 GHz with 4
GB memory.



YOON AND VAIDYANATHAN: STRUCTURAL ALIGNMENT OF RNAS USING PROFILE-CSHMMS 23

Fig. 14. Structural alignment of two RNAs in the FLAVI_PK3 family. The secondary structure of the target RNA has been predicted from the given alignment.
Incorrect predictions (one false-negative and two false-positives) have been underlined.

TABLE II
AVERAGE CPU TIME FOR FINDING A STRUCTURAL ALIGNMENT

TABLE III
PREDICTION RESULTS OF THE PROPOSED METHOD USING RANDOMLY

MUTATED RNA SEQUENCES

used in the previous experiments, such that the sequence simi-
larity between the homologous RNAs got completely removed.
During this process, bases that form complementary base-pairs
were covaried to preserve the original secondary structure. The
experimental results are summarized in Table III. As we can see
in Table III, the prediction ratios have decreased only slightly,
indicating that the proposed approach does not depend too much
on sequence similarity.

VIII. FURTHER COMPARISON

In Section VII, we compared the performance of the proposed
method with that of PSTAG [15]. To the best of our knowl-
edge, PSTAG is the first and the only grammar-based method
that can be used for representing RNA pseudoknots and finding
their structural alignments. Therefore, it was most relevant to
compare the profile-csHMM-based structural alignment method
with PSTAG. Here, we provide further comparison with two
other popular methods, which can be helpful in demonstrating
the effectiveness of the proposed method.

A. Traditional Profile-HMM

Traditional profile-HMMs have been widely used for
modeling protein sequences and protein-coding genes [5].
Profile-HMMs can be easily constructed based on multiple
sequence alignments, and they are especially useful in per-
forming similarity searches for proteins and coding genes.
Given an observation sequence, traditional profile-HMMs find
the optimal alignment between the model and the sequence
solely based on sequence similarity. One interesting question
would be how much we can improve the quality of the RNA
alignments by using the structural alignment method based on
profile-csHMMs, instead of using profile-HMMs. To verify the
advantage of profile-csHMMs, we performed similar cross-val-
idation experiments for predicting the structure of several RNA

TABLE IV
PERFORMANCE COMPARISON BETWEEN PROFILE-CSHMM AND PROFILE-HMM

families, as in Section VII. For this experiment, we used se-
quences in the L20_LEADER, PURINE, and SRP_BACT families
in the Rfam database. Note that the average identity of the
sequences in each of these families is relatively low.10

The structure prediction results of profile-csHMMs and tradi-
tional profile-HMMs are summarized in Table IV. The predic-
tion accuracies of the profile-csHMM method were lower com-
pared to the results in Table I, but still reasonably high. The main
reason for the reduced accuracy is the relatively large structural
variations among the members, rather than their low sequence
similarity. As we have shown in Table III, the performance of
the profile-csHMM based structural alignment method is not sig-
nificantly affected by sequence similarity. In Table IV, we can
alsosee that profile-csHMMs produced significantly better align-
ments than traditional profile-HMMs, whose prediction accura-
cies were around higher. Nevertheless, the compu-
tational cost of the profile-csHMM approach was comparable to
that of the profile-HMM approach.11 In addition to the superior
quality of the resulting alignments, another important advantage
of theprofile-csHMMapproachis that it canyieldgoodalignment
scores that sensibly combine structural similarity and sequence
similarity, which is crucial in RNA similarity search.

B. Iterated Loop Matching

Recently, an efficient heuristic method, called iterated loop
matching (ILM), has been proposed for predicting RNA sec-
ondary structures including pseudoknots [19]. ILM can utilize
thermodynamic and/or comparative information to predict the
secondary structure of individual RNAs or an alignment of
RNAs, and it has been shown that ILM can achieve relatively
high prediction accuracy at a low computational cost. However,
ILM is mainly used for predicting RNA secondary structures,
and it cannot be used for representing RNAs and finding
structural alignments between structured and unstructured
RNAs. Even though ILM is quite different from the proposed

10The average percentage identity is typically used to measure the se-
quence similarity of the members in a given family. The average identities of
L20_LEADER, PURINE, and SRP_BACT RNA families are 55%, 56%, and 50%,
respectively [13].

11The average CPU time of the profile-csHMM approach summarized in
Table IV consists of the time for estimating the search region (based on pro-
file-HMM) and the time for finding the structural alignment using the SCA al-
gorithm.
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TABLE V
PERFORMANCE COMPARISON BETWEEN PROFILE-CSHMM AND ILM

method in its goal and nature, comparing these methods
might be useful in demonstrating the effectiveness of the pro-
file-csHMM approach and showing the respective merits of the
two methods. For this experiment, we again used the sequences
in the FLAVI_PK3 and HDV_RIBOZYME families in Rfam. The
prediction performance of the profile-csHMM method was
measured based on cross-validation experiments as elaborated
in Section VII. The performance of ILM has been measured by
predicting the secondary structure of the individual sequences
and comparing it to the annotated structure in the database.
Predictions have been made using the ILM online server with
the default parameters [20].

The prediction results of the two methods are summarized in
Table V. From this table, we can see that the profile-csHMM-
based structural alignment method provides better performance
than ILM, as it can exploit the structural annotation of the refer-
ence RNA. However, it has to be noted that the structural align-
ment method can only be used when we have a reference RNA
whose structure is known. If we do not have a structured RNA
that can be used as a reference, we have to use ILM or resort to
other structure prediction methods.

IX. CONCLUDING REMARKS

In this paper, we proposed an effective framework for repre-
senting RNAs with various secondary structures including pseu-
doknots. The proposed approach was based on profile-csHMMs,
which can be easily constructed from RNA multiple sequence
alignments in a simple and intuitive manner. Experimental re-
sults indicate that the prediction accuracy of the profile-csHMM
approach is comparable to the state of the art. However, profile-
csHMMs can handle a considerably larger class of secondary
structures at a much lower computational cost.

The good prediction performance of the proposed scheme, as
well as its generality and the relatively low computational cost
makes profile-csHMMs an attractive choice for building ho-
mology search tools for noncoding RNAs. For example, we can
build a family-specific prediction program similar to the tRNA
CM [6], which finds new candidates that may belong to the given
RNA family. Although we have used a nonstochastic scoring
matrix in our program, we can also use a fully stochastic model
with position-dependent probabilities to improve the specificity
of the prediction program. These probabilities can be easily ob-
tained from the multiple sequence alignment of the RNA family
that is under consideration.

Another interesting application would be to build a
BLAST-like tool that uses a single RNA with a known
structure for finding structural homologues. Klein and Eddy
[14] developed a database search program called RSEARCH
that finds homologues of single structured RNAs, and they
showed that it outperforms primary sequence-based programs
(including BLAST) in many cases. As RSEARCH is based on
covariance models, it cannot be used for finding pseudoknots.

We can develop a more general search program based on pro-
file-csHMMs that can practically deal with any kind of RNA
secondary structures.

Although the proposed approach can find structural align-
ments of RNAs in a relatively short time, it is still slow for
scanning a large database. Recently, Weinberg and Ruzzo [30]
suggested the use of heuristic profile-HMM filters to expedite
CM-based searches. They showed that using such filters can
make the scanning speed significantly faster at virtually no loss
of performance. In a similar manner, it is possible to incorporate
profile-HMM-based prescreening filters to speed up the data-
base search based on profile-csHMMs. We are currently inves-
tigating the optimal construction of such a prescreening filter
from a given profile-csHMM, and preliminary results indicate
that considerable improvement in search speed can be achieved
by incorporating this strategy [41].

Even though the main focus of this paper was on RNA sim-
ilarity search, another useful approach for finding ncRNAs is
the comparative sequence analysis. A common strategy of com-
parative methods is to find noncoding regions that are well-con-
served among different species. Once we have identified such
regions, they are investigated further to see whether they also
share a common secondary structure, as this can be an indicator
which shows that these regions correspond to functional RNAs.
Further details on these methods can be found in [17].
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