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Abstract—The problem of variable sample rate conversion
(SRC) has received much attention on account of its applications
in software defined radios (SDRs) that must support a wide
variety of data rates. In this paper, we investigate the spectral
properties of variable SRC and focus on the interpolation error
obtained using any two interpolation kernels. We show that SRC
is a generalization of decimation for both rational and irrational
conversion ratios. In addition, a frequency domain expression for
the mean-squared interpolation error is derived and simplified.
Simulations presented show the degradation effects of using
practical piecewise polynomial based interpolants as opposed to
the underlying bandlimited sinc function for several input signals.

I. INTRODUCTION

A primary challenge facing the development of software de-
fined radios (SDRs) is the ability to accommodate a variety of
data rates subject to fixed system architectures [1], [2]. Exam-
ples of these architectures are the analog-to-digital converter
(ADC) used at the front end and the tracking loops (carrier
synchronization, symbol timing, etc.) used subsequently.

To conform to both of these types of fixed systems pragmat-
ically, the sample rate must be converted digitally. This can be
achieved using a variable sample rate conversion (SRC) system
[2]. An intermediate frequency (IF) SDR receiver employing
variable SRC is shown in Fig. 1. In this system, an analog data-
modulated signal at data rate R is sampled at a fixed rate Fs to
produce a real digital IF signal. Upon quadrature conversion, a
complex baseband signal sampled at rate F ′s = Fs

2 is formed.
The signal of interest is then centered at zero frequency using
a tunable numerically controlled oscillator (NCO).

At this point, the sample rate must be altered to fit the fixed
redundancy factor (# of samples/symbol) stipulated for the
tracking loops. For example, if the loops require a redundancy
of K as in Fig. 1, the sample rate coming into them should
be F ′′s = KR. The purpose of the variable SRC system is to
adjust this rate from F ′s to F ′′s . Prior to this, the SRC system
should also remove out-of-band artifacts to prevent aliasing.

In this paper, we first focus on the spectral properties of vari-
able SRC for the interpolation kernel signal model typically
assumed [2]. Though this model has received much attention in
the literature (i.e., see [3], [4], [5]), most of the consideration
has consisted of time domain analysis. With the derived
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Fig. 1. Block diagram of an IF SDR receiver employing variable SRC.

spectral characterization of the variable SRC output, we show
the relation between SRC and decimation [6]. Specifically, we
show that variable SRC is a generalization of decimation for
both rational and irrational rate conversion ratios.

We then turn our attention to interpolation error analysis for
the variable SRC signal model. Using the spectral properties
of this model, we derive a simplified frequency domain ex-
pression for the mean-squared interpolation error for any two
interpolation kernels. Simulation results presented elucidate
the degradation associated with using practical piecewise poly-
nomial based interpolation kernels instead of the underlying
bandlimited sinc function. In line with intuition, we show that
as the output rate conversion factor increases, so that the input
samples appear less redundant, the error increases. It is also
shown that for a fixed rate conversion factor, higher order
interpolation kernels always outperform lower order ones.

A. Outline

In Sec. II, we review the interpolation kernel signal model
assumed throughout the paper. The variable SRC problem
is explored in Sec. III. Spectral properties of the variable
SRC output are derived in Sec. IV, where the connection
between variable SRC and decimation is established. In Sec.
V, we derive a simplified frequency domain expression for
the mean-squared interpolation error. Simulation results of the
interpolation error are presented in Sec. VI for several practical
scenarios. Concluding remarks are made in Sec. VII.

B. Notations

All notations used are as in [7]. In particular, continuous-
time (analog) and discrete-time (digital) normalized frequen-
cies are denoted as F and f , respectively. Parentheses and
square brackets are respectively used for continuous-time and
discrete-time function arguments. For example, x(t) would
denote a continuous-time function for t ∈ ℝ, whereas y[n]
would denote a discrete-time function for n ∈ ℤ.



II. INTERPOLATION KERNEL SIGNAL MODEL

All equivalent complex baseband analog signals input to the
system of Fig. 1 are assumed to be of the following form [2].

x(t) =

∞∑
k=−∞

cd[k]ℎ

(
t

T
− k
)

(1)

The signal model of (1) is referred to as the interpolation
kernel signal model [2] where ℎ(t) denotes the dilated inter-
polation kernel [2], T represents the kernel spacing interval,
and cd[k] is the basis coefficients sequence [2].

Several interesting classes of signals are generated using
the model given in (1) [8]. For example, from the Nyquist
sampling theorem [6], if x(t) is bandlimited to FBL (meaning
X(j2�F ) = 0 for ∣F ∣ ≥ FBL), then x(t) is of the form,

x(t) =

∞∑
n=−∞

x(nTs) sinc

(
t

Ts
− n

)
(2)

where the sinc function is defined as sinc (x) ≜ sin(�x)
�x and

Ts is given by Ts = 1
2FBL

. Comparing (2) to (1), it can be
seen that all bandlimited signals can be expressed in terms of
the interpolation kernel model where we have,

ℎ(t) = sinc (t) , cd[k] = x(kTs) , T = Ts (3)

For this reason, any signal bandlimited to FBL can be recov-
ered from uniform sampling at a rate of Fs = 1

Ts
= 2FBL

(called the Nyquist rate [7], [6]), as this will automatically
yield the basis coefficients sequence cd[k] as seen from (3).

After uniform sampling of the signal x(t) from (1), which is
attained here after quadrature conversion of the ADC output,
we will have access to the sequence xd[n] ≜ x(nTs), where
Ts denotes the sampling interval. For the remainder of this
paper, we will assume that Ts = T . Then, from (1), we have,

xd[n] = x(nTs) =

∞∑
k=−∞

cd[k]ℎ(n− k) = cd[n] ∗ ℎd[n] (4)

where the discrete-time sequence ℎd[n] is defined as ℎd[n] ≜
ℎ(n). In other words, from (4), xd[n] is simply the discrete-
time convolution of the basis coefficients sequence cd[n] with
the sampled interpolation kernel sequence ℎd[n].

To reconstruct the original analog signal x(t) from (1) at
some prescribed value of time t = t0, which is necessary for
variable SRC, the only quantity needed is the basis coefficients
sequence cd[n], assuming that the interpolation kernel ℎ(t) is
a known function. From the sampled sequence xd[n] from (4),
it can be seen that cd[n] can be obtained as follows.

cd[n] = gd[n] ∗ xd[n] (5)

where gd[n] is the convolutional inverse of ℎd[n] [7]. In the
z-domain, (5) becomes,

Cd(z) = Gd(z)Xd(z) , where Gd(z) =
1

Hd(z)
(6)

Here, Cd(z), Xd(z), Gd(z), and Hd(z) denote the z-
transforms of cd[n], xd[n], gd[n], and ℎd[n], respectively. Thus,
cd[n] can be obtained using the system shown in Fig. 2 [8].

- Gd(z) = 1
Hd(z)

-xd[n]

sampled

analog signal convolutional inverse of

sampled interpolation kernel

cd[n]

basis coefficients

Fig. 2. Discrete-time system used to obtain the interpolation basis coefficients
sequence cd[n] from the sampled continuous-time signal x(nTs) = xd[n].

For the special case in which xd[n] = cd[n], we say that
ℎ(t) is interpolating [8]. Otherwise, it is non-interpolating. It
can be easily shown that ℎ(t) is interpolating iff we have,

ℎ(n) = �[n] ∀ n ∈ ℤ ⇐⇒ ℎd[n] = �[n] (7)

where �[n] is the Kronecker delta function [7].
Combining (5) with (1), it follows that x(t) can be expanded

in terms of an effective interpolating kernel ℎeff(t) as follows.

x(t) =

∞∑
k=−∞

xd[k]ℎeff

(
t

T
− k
)

(8)

Here, ℎeff(t) is defined as,

ℎeff(t) ≜
∞∑

ℓ=−∞

gd[ℓ]ℎ(t− ℓ) (9)

From (9), we see that ℎeff(t) satisfies (7) and is interpolating.
If H(j2�F ) and Heff(j2�F ) denote the Fourier transforms of
ℎ(t) and ℎeff(t), respectively, then from (9) and (6), we have,

Heff(j2�F ) = Gd
(
ej2�F

)
H(j2�F ) =

H(j2�F )

Hd(ej2�F )
(10)

Plots of the impulse and magnitude responses of several
effective interpolating kernels are shown in Fig. 31(a) and (b),
respectively. All kernels here were interpolating, except for the
cubic B-spline, for which Hd(z) = 1

6z + 2
3 + 1

6z
−1 [9]. As

can be seen, higher order methods yielded behavior closer to
the bandlimited sinc interpolant of (3) than lower order ones.
Specifically, the cubic B-spline yielded the closest fit to the
sinc interpolant of all of the kernels considered.

III. THE VARIABLE SRC PROBLEM

From (2), the quadrature analog input x(t) to the system of
Fig. 1 is assumed to be bandlimited and of the form,

x(t) =

∞∑
m=−∞

xd[m] sinc

(
t

Tin
−m

)
(11)

where Tin denotes the quadrature input sampling interval and
xd[m] ≜ x(mTin) denotes the discrete-time sampled signal
obtained after baseband down-conversion of the ADC output.

To alter the sample interval to say Tout, we need to generate
the sequence yd[n] ≜ x ((n+ �)Tout), where � is a fractional
offset satisfying 0 ≤ � < 1. From (11), yd[n] is calculated as,

yd[n] =

∞∑
m=−∞

xd[m] sinc(�(n+ �)−m) (12)

1Every interpolating kernel ℎeff(t) considered here is real and even,
meaning that Heff(j2�F ) is also real and even [7]. As such, all impulse
and magnitude responses are shown for t ≥ 0 and F ≥ 0, respectively.
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Fig. 3. Effective interpolating kernel responses: (a) time domain impulse
responses and (b) frequency domain magnitude responses.

Here, � is defined as � ≜ Tout

Tin
. If Fin ≜ 1

Tin
and Fout ≜ 1

Tout

denote, respectively, the input and output sample rates, then
� = Fin

Fout
. Hence, � is called the input rate conversion ratio.

Similarly, ℛ ≜ 1
� = Fout

Fin
is the output rate conversion ratio.

To calculate even a single sample of yd[n], the sum in (12)
must be computed over the entire set of input samples {xd[m]}
in general. For variable SRC in which � is adjustable, the sinc
terms in (12) must also be changed accordingly. As this cannot
be done practically, one alternative could be to truncate most
of the terms in (12). However, as the sinc function decays
inverse linearly (i.e., sinc(x) decays as 1

x ), a large number of
terms must be kept to minimize truncation error effects [2].

Instead, what is typically done to achieve variable SRC is
to model the continuous-time input as coming from a different
kernel than the sinc function [3], [4], [5]. Specifically, the input
analog signal v(t) is modeled using (1) as follows.

v(t) =

∞∑
m=−∞

cd[m]ℎ

(
t

Tin
−m

)
(13)

To alter the sampling interval to Tout, we compute yd[n] ≜
v ((n+ �)Tout) as before. From (13), we get the following.

yd[n] =

∞∑
m=−∞

cd[m]ℎ(�(n+ �)−m) (14)

Through careful choice of the kernel ℎ(t), we can achieve
variable SRC in (14) efficiently and with little loss compared to

the underlying sinc model from (12). For example, for piece-
wise polynomial kernels, such as the nearest neighbor, linear,
cubic Lagrange, and cubic B-spline interpolants, yd[n] can be
computed efficiently using the Farrow structure [10], [2].

In terms of the effective interpolating kernel ℎeff(t), the
variable SRC output yd[n] is given as follows from (8).

yd[n] =

∞∑
m=−∞

xd[m]ℎeff(�(n+ �)−m) (15)

IV. VARIABLE SRC OUTPUT SPECTRAL PROPERTIES

It is insightful to consider frequency domain representations
of the variable SRC output yd[n] from (14) and (15). Focus-
ing on (14), if Yd

(
ej2�f

)
denotes the discrete-time Fourier

transform of yd[n], then we have the following [7].

Yd
(
ej2�f

)
≜

∞∑
n=−∞

yd[n]e−j2�fn

=

∞∑
m=−∞

cd[m]

( ∞∑
n=−∞

ℎ(�(n+ �)−m) e−j2�fn

)
(16)

In terms of its inverse Fourier transform [7], ℎ(t) is given by,

ℎ(t) =

∫ ∞
−∞

H(j2�F ) ej2�Ft dF (17)

Using (17) in (16) yields the following after some work.

Yd
(
ej2�f

)
=

∞∑
m=−∞

cd[m]

∫ ∞
−∞

H(j2�F ) ej2�F (��−m)

×

( ∞∑
n=−∞

e−j2�n(F− f� )�

)
dF (18)

Recall the Dirac impulse train [7] Fourier series expansion is,
∞∑

n=−∞
e−j2�nF̂ T̂ =

1

T̂

∞∑
k=−∞

�

(
F̂ +

k

T̂

)
∀ F̂ , T̂ (19)

Here, �(t) is the Dirac delta function [7]. Using (19) in (18)
with F̂ = F − f

� and T̂ = � yields the following after
simplification and exploiting the sifting property of �(t) [7].

Yd
(
ej2�f

)
=

1

�

∞∑
m=−∞

cd[m]

∞∑
k=−∞

H

(
j2�

(
f − k
�

))
× ej2�( f−k� )(��−m)

=
1

�

∞∑
k=−∞

H

(
j2�

(
f − k
�

))
ej2�(f−k)�

×

( ∞∑
m=−∞

cd[m]e−j2�( f−k� )m

)
︸ ︷︷ ︸

Cd

(
e
j2�( f−k� )

)
(20)

Thus, from (20), Yd
(
ej2�f

)
simplifies to the following form.

Yd
(
ej2�f

)
=

1

�

∞∑
k=−∞

H

(
j2�

(
f − k
�

))
Cd

(
ej2�( f−k� )

)
ej2�(f−k)� (21)
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Fig. 4. Illustration of generalized alias-free decimation via variable SRC:
(a) input spectrum before SRC and (b) output spectrum after SRC.

Using (6) and (10) in (21) yields a spectral representation
of the variable SRC output from (15) as follows.

Yd
(
ej2�f

)
=

1

�

∞∑
k=−∞

Heff

(
j2�

(
f − k
�

))
Xd

(
ej2�( f−k� )

)
ej2�(f−k)� (22)

A. Relation to Decimation

Suppose � = 0 and ℎeff(t) = sinc (t). Furthermore, suppose
xd[n] is bandlimited to f = fBL, meaning Xd

(
ej2�f

)
= 0 for

∣f ∣ ≥ fBL for some fBL with 0 ≤ fBL < 1
2 and f ∈

[
− 1

2 ,
1
2

)
.

If fBL < 1
2� , where we assume � ≥ 1 here, then from (22),

Yd
(
ej2�f

)
=

1

�
Xd

(
ej(

2�f
� )
)
, f ∈

[
−1

2
,

1

2

)
(23)

Thus, Yd
(
ej2�f

)
is a scaled and zoomed in version of

Xd

(
ej2�f

)
, where the zoom magnification factor is the input

rate conversion ratio �. Note that (23) is a generalization
of alias-free decimation [6] for both rational and irrational
conversion ratios. An illustration of this is shown in Fig. 4.

Another relation to decimation arises when we set � = 0,
take ℎeff(t) = sinc (t), and choose � = M , where M is any
positive integer. Using the division theorem [6] to set k =
Mq + r in (22) (where q =

⌊
k
M

⌋
and r = k mod M ) yields,

Yd
(
ej2�f

)
=

1

M

M−1∑
r=0

Xd

(
ej2�( f−rM )

)
(24)

Note that (24) is the spectrum obtained by decimating xd[n]
by M [6]. Hence, variable SRC becomes integer decimation
through proper choice of the kernel and conversion parameters.

V. INTERPOLATION ERROR ANALYSIS FOR VARIABLE SRC

To gauge the difference between using any two kernels, we
focus on the mean-squared interpolation error � defined as,

� ≜ E�

[ ∞∑
n=−∞

∣
[n]∣2
]
, where 
[n] ≜ yd[n]− ŷd[n] (25)

Here, yd[n] and ŷd[n] are SRC outputs as in (15) using the
same input xd[m] but different kernels (ℎeff(t) and ℎ̂eff(t), re-
spectively). The expectation in (25) is over the offset �, which
is assumed to be uniform [11] over [0, 1) (i.e., � ∼ U [0, 1)).

From (15), the error sequence 
[n] can be expressed as,


[n] =

∞∑
m=−∞

xd[m] d(�(n+ �)−m) (26)

Here, d(t) ≜ ℎeff(t) − ℎ̂eff(t) is the kernel difference signal.
As (26) is of the same form as (15), we can use (22) to say,

Γ
(
ej2�f

)
=

1

�

∞∑
k=−∞

D

(
j2�

(
f − k
�

))
Xd

(
ej2�( f−k� )

)
ej2�(f−k)� (27)

Here, Γ
(
ej2�f

)
and D(j2�F ) denote the Fourier transforms

of 
[n] and d(t), respectively.
Returning to (25), from Parseval’s theorem [7], � satisfies,

� = E�

[∫ 1
2

− 1
2

∣∣Γ(ej2�f)∣∣2 df] (28)

Using (27) in (28), we get, after some algebraic manipulation,

� =
1

�2

∞∑
k=−∞

∞∑
ℓ=−∞

∫ 1
2

− 1
2

D

(
j2�

(
f − k
�

))
Xd

(
ej2�( f−k� )

)
×D∗

(
j2�

(
f − ℓ
�

))
X∗d

(
ej2�( f−ℓ� )

){
E�

[
e−j2�(k−ℓ)�

]}
df

(29)
As � ∼ U [0, 1), it can be easily shown that we have,

E�

[
e−j2�(k−ℓ)�

]
= �[k − ℓ] (30)

Substituting (30) into (29) yields the following simplifications.

� =
1

�2

∞∑
k=−∞

∫ 1
2

− 1
2

∣∣∣∣D(j2�(f − k�
))

Xd

(
ej2�( f−k� )

)∣∣∣∣2 df
=

1

�

∞∑
k=−∞

∫ 1
2
−k
�

− 1
2
−k
�

∣D(j2��)∣2
∣∣Xd

(
ej2��

)∣∣2 d� (31)

=
1

�

∞∑
m=−∞

∫ m+1
2

�

m− 1
2

�

∣D(j2��)∣2
∣∣Xd

(
ej2��

)∣∣2 d� (32)

=
1

�

∫ ∞
−∞
∣D(j2��)∣2

∣∣Xd

(
ej2��

)∣∣2 d� (33)

Here, (31) follows from the substitution � = f−k
� , (32) from

the summation index m = −k, and (33) from the fact that the
integration intervals in (32) are nonoverlapping and span ℝ.

To simplify � further, note that from (33), we have,

� =
1

�

∞∑
ℓ=−∞

∫ ℓ+ 1
2

ℓ− 1
2

∣D(j2��)∣2
∣∣Xd

(
ej2��

)∣∣2 d� (34)

=
1

�

∞∑
ℓ=−∞

∫ 1
2

− 1
2

∣D(j2�(f + ℓ))∣2
∣∣∣Xd

(
ej2�(f+ℓ)

)∣∣∣2 df (35)

Here, (34) follows from partitioning the integration interval of
(33), while (35) follows from the substitution f = �− ℓ.

Continuing further, we have the following simplified for-
mula for the mean-squared interpolation error �.

� =
1

�

∫ 1
2

− 1
2

( ∞∑
k=−∞

∣D(j2�(f − k))∣2
)∣∣Xd

(
ej2�f

)∣∣2 df
(36)

Here, (36) follows from the change of summation index k =
−ℓ and the fact that Xd

(
ej2�f

)
is periodic with period 1.
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VI. SIMULATION RESULTS

For simulation purposes, we will opt to compute the nor-
malized mean-squared interpolation error � defined below.

� ≜
E�

[∑∞
n=−∞ ∣yd[n]− ŷd[n]∣2

]
E�

[∑∞
n=−∞ ∣yd[n]∣2

] (37)

Here, the kernel ℎeff(t) for yd[n] is the sinc function (i.e.,
ℎeff(t) = sinc (t)) and ℎ̂eff(t) for ŷd[n] is some other kernel.

From (36), (37) has the following simplified form.

� =

∫ 1
2

− 1
2

( ∞∑
k=−∞

∣D(j2�(f − k))∣2
)∣∣A(ej2�f)∣∣2 df (38)

Here, A
(
ej2�f

)
is a normalized form of Xd

(
ej2�f

)
satisfying∣∣A(ej2�f)∣∣2 =

∣∣Xd

(
ej2�f

)∣∣2/∫ 1
2

− 1
2

∣∣Xd

(
ej2��

)∣∣2 d�.
To test the interpolation error in an extremal case, in the

spirit of Fig. 4, suppose that
∣∣Xd

(
ej2�f

)∣∣2 is given by,∣∣Xd

(
ej2�f

)∣∣2 =

{
� , ∣f ∣ < 1

2�

0 , ∣f ∣ ≥ 1
2�

, f ∈
[
−1

2
,

1

2

)
(39)

Variable SRC in this case corresponds to maximal decimation
[6], as there will be no redundancy present in the output signal.

A plot of � from (38) for the input of (39) is shown in Fig.
5 as a function of the output conversion factor ℛ = 1

� for
various kernels. For all methods, as ℛ increased, � increased
as well. This is because for larger ℛ, the input samples appear
less redundant, and so any given method is more likely to yield
output samples that are less consistent with the underlying sinc
interpolant. Another observation is that for a fixed ℛ, higher
order methods always outperformed lower order ones.

To test the error in a more practical scenario, suppose the
input to the system of Fig. 1 is a data stream with a square-
root raised-cosine pulse shape [2]. Then, the spectral density∣∣Xd

(
ej2�f

)∣∣2 for f ∈
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− 1

2 ,
1
2

)
is a raised-cosine pulse with,∣∣Xd
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Fig. 6. Normalized mean-squared interpolation error � as a function of
the output rate conversion factor ℛ for the input of (40) with K = 4 and
� = 0.35.

Here, K is the redundancy factor for the tracking loops of Fig.
1, while � is the roll-off factor for the raised-cosine pulse [11].

As a practical case, suppose K = 4 and � = 0.35 [2]. Then,
a plot of � versus ℛ for the input of (40) is shown in Fig. 6 for
various kernels. As with Fig. 5, when ℛ increased, � increased
as well. Also, higher order methods outperformed lower order
ones for a fixed ℛ. Comparing Fig. 6 with Fig. 5, the error
was lower for the input of (40) than for that of (39). This is
because SRC for (40) corresponds to non-maximal decimation
due to the extra redundancy required by the tracking loops.

VII. CONCLUDING REMARKS

In this paper, we derived frequency domain expressions for
the variable SRC output and the mean-squared interpolation
error. Simulations provided revealed the degradation effects of
using a practical interpolation kernel as opposed to the under-
lying sinc function. Extensions of this analysis to more general
interpolation models are the subjects of future research.
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