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ABSTRACT
The eigenvalue decomposition (EVD) of a Hermitian matrix
in terms of unitary matrices is well known. In this paper, we
present an algorithm for the approximate EVD (AEVD) of
a para-Hermitian (PH) system. Here, the approximate diag-
onalization is carried out successively by applying degree-1
finite impulse response (FIR) paraunitary (PU) transforma-
tions. The system parameters are chosen to make the zeroth
order diagonal energy (ZODE) nondecreasing at each stage.
Simulation results presented for the design of a signal-adapted
PU filter bank (FB) show close agreement with the behavior
of the infinite order principal component FB (PCFB).

Index Terms— matrix decomposition, approximation
methods, polynomial approximation

1. INTRODUCTION

A well known result in matrix theory is the eigenvalue de-
composition (EVD) of a Hermitian matrix in terms of unitary
matrices [1]. Specifically, if A denotes a p×p Hermitian ma-
trix (i.e., A† = A), then A can be expressed as follows [1].

A = UΛU† (1)

Here, U is a p× p matrix of eigenvectors of A that is unitary
(i.e., U†U = Ip), while Λ is a p×p diagonal matrix of eigen-
values of A. A method to compute this EVD is given in [1].

With the advent of multiple input multiple output (MIMO)
theory [2] has come interest in para-Hermitian (PH) systems
[3, 4]. AnM×M MIMO transfer function A(z) with impulse
response a[n] is said to be PH iff A†(1/z∗) = A(z) for all
z or equivalently a†[−n] = a[n] for all n. If z = ej2πf for
0 ≤ f < 1 is contained in the region of convergence (ROC)
[5] of A(z), then A(z) is PH iff A†

(
ej2πf

)
= A

(
ej2πf

)
for

all 0 ≤ f < 1, meaning that A
(
ej2πf

)
is Hermitian for all f .
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Assuming z = ej2πf is in the ROC of A(z), then an EVD
for A

(
ej2πf

)
can be computed in theory as follows from (1).

A
(
ej2πf

)
= U

(
ej2πf

)
Λ
(
ej2πf

)
U†
(
ej2πf

)
∀ f (2)

Here, U
(
ej2πf

)
is an M × M matrix of eigenvectors of

A
(
ej2πf

)
that is paraunitary (PU) (i.e., U†

(
ej2πf

)
U
(
ej2πf

)
=

IM for all f [2]), while Λ
(
ej2πf

)
is an M ×M diagonal ma-

trix of eigenvalues of A
(
ej2πf

)
. Since (2) must hold for all

f , the EVD in (2) is said to be pointwise in frequency [6].
The problem with computing an exact EVD of a PH sys-

tem as in (2) is that in general, the PU system U
(
ej2πf

)
may

not be realizable [6]. More emphasis has thus been on obtain-
ing an approximate EVD (AEVD) using realizable PU func-
tions, such as finite impulse response (FIR) PU systems [3, 4].

Here, we present an AEVD algorithm for PH systems via
successive degree-1 FIR PU transformations. We show how
to choose the parameters of such a FIR PU system to make
the zeroth order diagonal energy (ZODE) of the resultant PH
system nondecreasing. As more transformations are applied,
the PH system approximately becomes more diagonal.

This algorithm is similar to the sequential best rotation
(SBR2) method [3], but with two main differences. As our
aim is to maximize the ZODE, the entire impulse response of
the PH system need not be known. The algorithm can thus run
in the time or frequency domain, unlike SBR2 which must op-
erate in the time domain. Also, at each stage of our algorithm,
the FIR PU system degree increases by 1. This is in contrast
to SBR2, which has a variable degree increase at each step.

1.1. Outline

We review FIR PU transfer functions in Sec. 2, where we in-
troduce Vaidyanathan’s canonical decomposition of such sys-
tems [2]. In Sec. 3, we discuss the different roles that the
parameters of a degree-1 FIR PU transformation of a PH sys-
tem have on increasing the ZODE of the resultant system. We
present our successive algorithm for AEVD of PH systems in
Sec. 4. The parameter choices selected to increase the ZODE



are detailed in Sec. 4.1 and 4.2. Simulation results for signal-
adapted PU filter bank (FB) design are given in Sec. 5, where
we show the close agreement between the FIR PU FBs gen-
erated and the infinite order principal component FB (PCFB)
[6]. Concluding remarks are made in Sec. 6.

1.2. Notations

All notations are as in [5, 2]. The (k, `)-th element of any
p× r matrix A will be denoted [A]k,`. For any p× r transfer
function A(z), we will use the tilde notation to denote its
r × p paraconjugate [2], i.e., Ã(z) , A†(1/z∗). Also, for
any p× r system A(z) with impulse response a[n], we define
the ZODE of A(z), denoted by ζA, to be the energy of the
diagonal components of the zeroth order term a[0], given by,

ζA ,
min(p,r)−1∑

m=0

∣∣∣[a[0]]m,m∣∣∣2 (3)

Finally, for any p× r matrix A, we will denote by ||A||F the
Frobenius norm [1] of A given by ||A||F =

√
Tr [A†A].

2. REVIEW OF FIR PU SYSTEMS

Let F(z) denote a p × r causal FIR PU system of McMillan
degree N [2]. We assume p ≥ r in order to satisfy the PU
condition F̃(z)F(z) = Ir. In [2], Vaidyanathan showed that
any such F(z) could be completely parameterized in terms of
Householder-like [1] degree-1 building blocks. Specifically,
F(z) is a causal degree-N FIR PU system iff it is of the form,

F(z) =

(
1∏

k=N

Vk(z)

)
U (4)

where Vk(z) is a degree-1 building block given by,

Vk(z) = Ip − vkv
†
k + z−1vkv

†
k , 1 ≤ k ≤ N (5)

Here, the p×1 vectors vk are unit norm vectors (i.e., v†kvk =
1) for all k and U is a p × r unitary matrix (i.e., U†U =
Ir). In the special case N = 0, the product appearing in (4)
degenerates to an empty value of Ip and so F(z) = U.

3. USING A DEGREE-1 FIR PU TRANSFORMATION
TO INCREASE THE ZODE OF A PH SYSTEM

For the degree-1 case of p = r =M , we get, using (5) in (4),

F(z) =
(
I− vv† + z−1vv†

)︸ ︷︷ ︸
V(z)

U (6)

where I , IM and v , v1. Let A(z) be some M ×M PH
system and consider the degree-1 FIR PU transformation,

Y(z) , F̃(z)A(z)F(z) = U†
(
Ṽ(z)A(z)V(z)

)
︸ ︷︷ ︸

X(z)

U (7)

The key to choosing v and U from (6) to ensure that the
ZODE of transformed PH system Y(z) is greater than or
equal to that of the original A(z) lies in recognizing the dif-
ferent roles that v and U have for accomplishing this goal.

From (6), we see that v governs memory effects in (7),
whereas U only has a memoryless impact. Heuristically, this
implies that v can temporally move energy, whereas U can
spatially allocate it. Hence, to increase the ZODE, we opt
to pick v to collect energy in the zeroth order term, and then
choose U to distribute it along the diagonal elements.

Quantitatively, if a[0], x[0], and y[0] denote, respectively,
the zeroth order terms of A(z), X(z), and Y(z) from (7),
then v and U are chosen as follows. First, v is selected to col-
lect the energy of A(z) so that the following condition holds.

||x[0]||2F ≥ ||a[0]||
2
F ≥ ζA (8)

Note that the second inequality in (8) is always satisfied by
exploiting the ZODE definition from (3). Once v has been set,
U is chosen to distribute the energy of x[0] along the diagonal
components. Namely, as x[0] is Hermitian, we select U such
that y[0] = U†x[0]U is diagonal, which by (1), is possible.
This ensures that ζY = ||x[0]||2F , and so by (8), we have,

ζY ≥ ζA (9)

and thus the ZODE of the transformed system Y(z) from (7)
is greater than or equal to that of the original PH system A(z).

To see why Y(z) is heuristically more diagonal than
A(z), note that they have the same energy. That is, if EH is
the energy of a system H(z) with impulse response h[n],

EH ,
∫ 1

0

∣∣∣∣H(ej2πf)∣∣∣∣2
F
df =

∑
n∈Z
||h[n]||2F

then EY = EA from (7) as F(z) is PU. If (9) holds, then some
of the off-diagonal zeroth order energy and non-zeroth order
energy of A(z) was thus shifted to the ZODE of Y(z).

By applying additional degree-1 FIR PU transformations,
we can further improve the diagonalization of the original PH
system by ensuring that the ZODE of the resultant systems are
nondecreasing. This forms the basis for the AEVD algorithm.

4. ALGORITHM FOR AEVD OF PH SYSTEMS VIA
SUCCESSIVE FIR PU TRANSFORMATIONS

Let A(z) be any M ×M PH system with impulse response
a[n] and let N denote the desired degree of an FIR PU ap-
proximate diagonalizer of A(z). Then, do the following.

1. Compute A0(z) as follows.

A0(z) , U†0A(z)U0 =
∑
n∈Z

a0[n]z
−n (10)

Here, U0 is calculated as described in Sec. 4.2, i.e., U0 di-
agonalizes a[0] and arranges the eigenvalues in descending
order. Set the index variable k to 1.



2. If k = N + 1, stop as we are done. Otherwise, define
Vk(z), Bk(z), and Ak(z) as follows.

Vk(z) , I− vkv
†
k + z−1vkv

†
k (11)

Bk(z) , Ṽk(z)Ak−1(z)Vk(z) =
∑
n∈Z

bk[n]z
−n (12)

Ak(z) , U†kBk(z)Uk =
∑
n∈Z

ak[n]z
−n (13)

Here, vk is computed from (16) in Sec. 4.1, while Uk is
calculated as described in Sec. 4.2, i.e., Uk diagonalizes
bk[0] and arranges the eigenvalues in descending order.

3. Update the index variable k to k → k + 1 and go to 2.

At the end of the AEVD algorithm, A(z) is approximately
diagonalized to AN (z), which is given by the following.

AN (z) = F̃N (z)A(z)FN (z)

Here, FN (z) is an FIR PU system of degree N as follows.

FN (z) = U0

(
N∏
k=1

Vk(z)Uk

)

4.1. Selected Choice of vk

As motivated in Sec. 3 via (8), the role of vk in (11)-(12) is to
collect as much energy as possible into the zeroth order term
bk[0]. This is done by maximizing ||bk[0]||2F . Combining
(11) into (12), we have, after some algebraic manipulation,

||bk[0]||2F = ||ak−1[0]||2F + 2ξk(vk) (14)

Here, ξk(vk) is the quartic objective function,

ξk(vk) , v†k

[
Ck(I− vkv

†
k)C

†
k −Dk(I− vkv

†
k)Dk

]
vk

(15)
and Ck , ak−1[1] and Dk , ak−1[0]. Note that because of
the choice of Uk−1 (see Steps 1 and 2 of the above algorithm
and Sec. 4.2), ak−1[0] = Dk is a diagonal Hermitian matrix.

Ideally, ||bk[0]||2F from (14) or equivalently ξk(vk) from
(15) should be maximized subject to the quadratic constraint
v†kvk = 1. Unfortunately, there does not appear to be a closed
form solution to this optimization problem. Instead, we opt to
maximize ξk(vk) from among the set of eigenvectors of Dk,
which is the set of unit element vectors {e`} [1]. Any such
choice ensures that ξk(vk) is nonnegative since the nonposi-
tive term involving Dk from (15) is annihilated and thus,

ξk(e`) = e†`

[
Ck(I− e`e

†
`)C

†
k

]
e` ≥ 0

Hence, we opt to choose vk as follows here.

vk = e`opt
, `opt = arg max

0≤`≤M−1
ξk(e`) (16)

4.2. Selected Choice of Uk

As alluded to in Sec. 3, the role of Uk in (10) and (13) is
to distribute the energy of the zeroth order term ak[0] along
the diagonal components. Note that a0[0] = U†0a[0]U0 and
ak[0] = U†kbk[0]Uk from (10) and (13), respectively. Also
note that a[0] and bk[0] for all k are Hermitian. Thus, from
(1), ak[0] can be diagonal by choosing Uk to be a matrix of
eigenvectors of a[0] for k = 0 and bk[0] for 1 ≤ k ≤ N .

Similar to the Karhunen-Loève transform (KLT) [6], we
opt to choose Uk such that the eigenvalues are arranged in de-
scending order. Hence, Uk is chosen so that ak[0] is diagonal
with the diagonal elements arranged in descending order.

5. SIMULATION RESULTS

To test our algorithm, we considered the design of a signal-
adapted PU FB [7]. Suppose x[n] is a cyclo wide sense sta-
tionary (WSS) process of period M [2] input to a uniform
M -channel PU FB with M ×M synthesis polyphase matrix
F(z) [2]. Then, theM -fold blocked form of x[n] [2], denoted
x[n], is anM×1 WSS process with some power spectral den-
sity (PSD) Sxx(z) [2]. The M × 1 subband process y[n] is
obtained by filtering x[n] with the analysis polyphase matrix
H(z) = F̃(z) [2]. Thus, the PSD of y[n], denoted Syy(z), is,

Syy(z) = F̃(z)Sxx(z)F(z)

A PCFB is a special PU FB in which Syy

(
ej2πf

)
exhibits

total decorrelation and spectral majorization [6]. This means
F
(
ej2πf

)
is an EVD of Sxx

(
ej2πf

)
in which the diagonal of

Syy

(
ej2πf

)
is in descending order pointwise in frequency [6].

If x[n] is itself WSS, the analysis/synthesis filters of the
PCFB have ideal brick-wall responses [6]. As such filters are
of infinite order, it is insightful to consider the design of a
realizable PU FB formed by an AEVD of Sxx

(
ej2πf

)
.

Suppose x[n] is a real autoregressive (AR) process [5]
with poles at 0.95e±j2π(0.1), 0.8e±j2π(0.45), and that the num-
ber of channels is M = 4. With this setup, the AEVD algo-
rithm was run on Sxx

(
ej2πf

)
for various FIR PU degrees N .

To show the AEVD algorithm behavior relative to the
PCFB, we calculated the subband variance proportion P (L)
from L subbands, where 1 ≤ L ≤M . This is defined as [7],

P (L) ,

∑L−1
k=0 σ

2
yk∑M−1

k=0 σ2
yk

, σ2
yk

=

∫ 1

0

[
Syy

(
ej2πf

)]
k,k

df (17)

Among all PU FBs, the PCFB maximizes P (L) for all L [6].
A plot of P (L) from (17) is shown in Fig. 1 for PU FBs

designed for variousN along with the PCFB. AsN increased,
the FBs designed came closer to the behavior of the PCFB.

To chart the ZODE progression, we designed an FIR PU
FB with N = 100. In Fig. 2, we plotted the evolution of the
ZODE at the k-th step, ζk, normalized by the total energy, Ex.
The ZODE monotonically nondecreased with k as expected.
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Fig. 1. Subband variance proportion P (L) from (17) obtained
by preserving L subbands. (The case N = 0 is the KLT [6].)
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Fig. 2. Evolution of the ZODE of the AEVD transformed
system at the k-th stage ζk, normalized by the total energy Ex.

To assess decorrelating abilities, we measured the off-
diagonal energy at the k-th stage. This quantity, denoted here
by ηk, is defined as follows.

ηk ,
∫ 1

0

∣∣∣∣Sykyk

(
ej2πf

)
− diag

(
Sykyk

(
ej2πf

))∣∣∣∣2
F
df

(18)
Here, Sykyk

(
ej2πf

)
is the AEVD transformed system at the

k-th step and diag (A) denotes a diagonal matrix formed
from the diagonal components of some matrix A.

A plot of ηk from (18) normalized by Ex is shown in Fig.
3 on a dB scale. The off-diagonal energy fluctuated but gener-
ally decreased. Here, ηk/Ex ended at −18.9 dB, correspond-
ing to an off-diagonal energy of 1.3% of the total energy. This
elucidates the decorrelating aspects of the AEVD algorithm.

Finally, to show spectral majorization tendencies, we
looked at the diagonal components of the transformed PSD
forN = 100. In Fig. 4, eachm-th subband PSD Symym

(
ej2πf

)
is shown on a dB scale for 0 ≤ m ≤ 3. For most fre-
quencies f , we have, Sy0y0

(
ej2πf

)
≥ Sy1y1

(
ej2πf

)
≥

Sy2y2
(
ej2πf

)
≥ Sy3y3

(
ej2πf

)
, and so the FIR PU FB al-

most completely spectrally majorized the subbands [6].

6. CONCLUDING REMARKS

Future work consists of enhancing the AEVD algorithm by
improving the choice of the vector vk proposed in Sec. 4.1.
This could be achieved, for example, by using a gradient
based search technique on the objective ξk(vk) from (15).
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Fig. 3. Evolution of the off-diagonal energy ηk from (18) of
the transformed system at the k-th stage, normalized by Ex.
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Fig. 4. Subband signal PSDs after passing through an AEVD
designed FIR PU FB of degree N = 100.
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