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ABSTRACT

Recently, the problem of blind equalization of multiple-input
multiple-output (MIMO) channels has received much attention
from the communications and signal processing communities. Sev-
eral methods proposed to solve this problem involve computing
the kurtosis of the components of the observed output vector se-
quence. In this paper, we generalize the notion of kurtosis to vec-
tor sequences by proposing a definition for a kurtosis matrix of a
random vector. It is shown that there are many analogies between
our kurtosis matrix and the classical scalar kurtosis. We then use
this matrix to develop a necessary condition for blind equalization
of MIMO channels. Future work will include the development of
a sufficient condition for equalization. 1

1. INTRODUCTION

One problem which has recently received much attention from the
communications and signal processing communities has been that
of blind equalization of multiple-input multiple-output (MIMO)
linear time-invariant (LTI) channels [2]. This arises, for example,
in a multiuser wireless communications system, in which the goal
is to remove inter and intrasymbol interference introduced by the
channel. Typically, processing time is at a premium and as such,
equalization must be done both blindly as well as adaptively.

Several methods have been proposed to solve this problem.
Some involve filter bank precoders [4, 5], while others involve
higher order statistical moments of the observed output sequences.
In particular, the kurtosis, a fourth-order moment, has been found
to be useful for blind equalization. The use of kurtosis for blind
equalization was first pioneered by Shalvi and Weinstein [6] for the
single-input single-output (SISO) case. In that paper, they found a
globally convergent criterion under which equalization would oc-
cur and showed the usefulness of their criterion through examples.

Many attempts have been made to generalize the results of
Shalvi and Weinstein to the MIMO case [1, 3]. In this paper, we
consider generalizing their results along a different direction. We
introduce the notion of a kurtosis matrix for a random vector. It
will be seen that many analogies exist between our kurtosis matrix
and the classical scalar kurtosis. We then use this matrix to obtain
a necessary condition for blind equalization of MIMO channels.
Development of a sufficient condition not yet been done and is the
subject of future research.

1Work supported in part by the ONR grant N00014-99-1-1002, USA.

2. KURTOSIS MATRIX: DEFINITION AND PROPERTIES

The kurtosis of a scalar complex random variable x, which we
denote here by Kx, is classically defined as follows [6].

Kx � E
[|x|4]− 2

(
E
[|x|2])2 − ∣∣E [x2]∣∣2 (1)

Now let x be any N × 1 complex random vector. We define the
kurtosis of x, denoted by Kx, to be the following N × N matrix.

Kx � E

[(
xx†

)2
]
− Tr

(
E
[
xx†

])
E
[
xx†

]
−
(
E
[
xx†

])2

− E
[
xxT

] (
E
[
xxT

])†
(2)

When N = 1, the kurtosis matrix of (2) becomes the scalar kurto-
sis of (1). To justify the definition in (2), we will show that many
analogies exist between the scalar kurtosis and our kurtosis matrix.

One famous property of the scalar kurtosis is that if x is any
complex zero-mean Gaussian random variable, then Kx = 0 [6].
Analogously, we will show that if x is any complex zero-mean
Gaussian random vector, then Kx = 0. First we show that if v is
any M ×1 real zero-mean Gaussian random vector, then Kv = 0.

2.1. Kurtosis of a real zero-mean Gaussian random vector

Theorem 1 Let v be any M×1 real zero-mean Gaussian random
vector with covariance matrix Rv (i.e. v ∼ N (0,Rv)). Then,

Kv = 0

Proof: We have Rv = E
[
vvT

]
, and since v is real, we get,

Kv = E

[(
vvT

)2
]
− Tr

(
E
[
vvT

])
E
[
vvT

]
−
(
E
[
vvT

])2

−
(
E
[
vvT

])2

= E

[(
vvT

)2
]
− (Tr (Rv) I + 2Rv)Rv (3)

For E[(vvT )2], we apply the Mahalanobis transformation [7],

u � R
− 1

2
v v

Note that u ∼ N (0, I). Then, as Rv is a real symmetric matrix,

E

[(
vvT

)2
]

= E

[(
R

1
2
v uuT R

1
2
v

)2
]



= R
1
2
v E

[(
uT Rvu

)
uuT

]
︸ ︷︷ ︸

A

R
1
2
v (4)

Now, if we define uk to be the k-th component of u for 0 ≤ k ≤
M −1, then for the (p, q)-th element of A, we have the following.

[A]p,q = E




∑

k,l

uk [Rv]k,l ul


 upuq




=
∑
k,l

[Rv]k,l E [ukulupuq] (5)

for 0 ≤ p, q ≤ M − 1. As u ∼ N (0, I), the components of u are
uncorrelated and hence independent [7]. Thus, for p �= q, only the
terms where k and l are exclusively p or q in (5) are nonzero. So,

[A]p,q = [Rv]p,q + [Rv]q,p = 2 [Rv]p,q , p �= q (6)

For p = q, we have the following.

[A]p,p =
∑

k,l�=p

[Rv]k,l E
[
ukulu

2
p

]
+
∑

k

[Rv]k,p E
[
uku3

p

]
=

∑
l�=p

[Rv]l,l E
[
u2

l u
2
p

]
+ [Rv]p,p E

[
u4

p

]
=

∑
l�=p

[Rv]l,l E
[
u2

l

]
E
[
u2

p

]
+ [Rv]p,p E

[
u4

p

]
=

∑
l�=p

[Rv]l,l + [Rv]p,p E
[
u4

p

]
= Tr (Rv) − [Rv]p,p + [Rv]p,p E

[
u4

p

]
(7)

To calculate E
[
u4

p

]
, recall that up ∼ N (0, 1) for all p since u ∼

N (0, I). So, using integration by parts, we can show that we have,

E
[
u4

p

]
=

1√
2π

∫ ∞

−∞
u4e−

u2
2 du = 3 (8)

Using (8) in (7), we have,

[A]p,p = Tr (Rv) + 2 [Rv]p,p (9)

Combining (6) and (9), we can conclude that we have,

A = Tr (Rv) I + 2Rv

Substituting this into (4) yields the following.

E
[(

vvT
)2]

= R
1
2
v (Tr (Rv) I + 2Rv)R

1
2
v = (Tr (Rv) I + 2Rv)Rv

Finally substituting the above into (3), we find that Kv = 0 and
this completes the proof. ���

To prove that the kurtosis of any complex zero-mean Gaus-
sian random vector is likewise the zero matrix, we must relate the
kurtosis of any complex random vector to that of the real vector
formed by concatenating the real and imaginary parts.

2.2. Relating the kurtosis of a complex random vector to its
real and imaginary parts

Any N × 1 complex random vector x can be decomposed as,

x = xr + jxi (10)

where xr and xi are the real and imaginary parts of x, respectively.
Define the real 2N × 1 vector v as follows.

v �
[

xr

xi

]
(11)

Clearly, x and v are related to each other via the following N×2N
linear transformation.

x = Tv where T �
[

IN jIN

]
(12)

Then we have the following lemma.

Lemma 1 Let x by any N × 1 complex random vector with a
decomposition into real and imaginary parts as in (10). Also, let
v by the vector formed by concatenating the real and imaginary
parts as in (11). Then, we have,

Kx = TKvT
†

where T is the matrix given in (12).

Proof: For simplicity in (2) here, we will exploit the fact that
Tr
(
E
[
yyT

])
= E

[
yT y

]
and Tr

(
E
[
yy†]) = E

[
y†y

]
for

any vector y. Note that we have the following.

xx† = TvvT T† , x†x = vT v

Here, the last equality comes from the fact that x and v have the
same magnitude. Thus, we have,

E

[(
xx†

)2
]

= E
[
xx†xx†

]
= E

[
xvT vx†

]
= E

[
TvvT vvT T†

]
= TE

[
vvT vvT

]
T†

= T

(
E

[(
vvT

)2
])

T† (13)

Also, we have,

E
[
xx†

]
= E

[
TvvT T†

]
= TE

[
vvT

]
T†

E
[
xxT

]
= E

[
TvvT TT

]
= TE

[
vvT

]
TT

Hence, we have the following.

E
[
x†x

]
E
[
xx†

]
= E

[
vT v

]
· TE

[
vvT

]
T†

= T
(
E
[
vT v

]
E
[
vvT

])
T† (14)

(
E
[
xx†

])2

= TE
[
vvT

] (
T†T

)
E
[
vvT

]
T† (15)

E
[
xxT

] (
E
[
xxT

])†
= TE

[
vvT

]
TT T∗E

[
vvT

]
T†

= TE
[
vvT

] (
T†T

)∗
E
[
vvT

]
T† (16)



But note now that we have,

T†T =

[
IN

−jIN

] [
IN jIN

]
=

[
IN jIN

−jIN IN

]

This can be written as,

T†T = I2N + C where C �
[

0 jIN

−jIN 0

]

Note that C∗ = −C. Using the above decomposition of T†T in
(15) and (16), we have the following.

(
E
[
xx†

])2

= T
(
E
[
vvT

])2

T†+TE
[
vvT

]
CE

[
vvT

]
T†

(17)

E
[
xxT

] (
E
[
xxT

])†
= T

(
E
[
vvT

])2

T†

− TE
[
vvT

]
CE

[
vvT

]
T† (18)

Clearly, the terms in (17) and (18) with the matrix C will cancel
each other out when we compute Kx. Combining (13), (14), (17),
and (18), we have the following.

Kx = T

[
E

[(
vvT

)2
]
− E

[
vT v

]
E
[
vvT

]
−2
(
E
[
vvT

])2
]
T† (19)

But since v is real, we have,

Kv = E

[(
vvT

)2
]
− E

[
vT v

]
E
[
vvT

]
− 2

(
E
[
vvT

])2

Using the above equation in (19), we find that Kx = TKvT
†

which completes the proof. ���
Combining Theorem 1 and Lemma 1, we can prove the fol-

lowing theorem.

2.3. Kurtosis of a complex zero-mean Gaussian random vector

Theorem 2 Let x be any N × 1 complex zero-mean Gaussian
random vector. Then, we have,

Kx = 0

Proof: Recall that a complex Gaussian random vector is one for
which the real and imaginary parts are jointly Gaussian [7]. In
other words, a complex vector x with decomposition into real and
imaginary parts as in (10) is a complex Gaussian random vector if
the real vector v formed by concatenating the real and imaginary
parts as in (11) is a real Gaussian random vector. If x is zero-
mean, then certainly v is also. Hence, from Theorem 2, we have
Kv = 0. But from Lemma 1, we know that Kx = TKvT

†.
Thus, Kx = 0 and this completes the proof. ���

In the next section, we focus on the kurtosis of certain random
processes and will continue to see many analogies between our
kurtosis matrix and the classical scalar kurtosis.

3. KURTOSIS OF RANDOM VECTOR PROCESSES

In general, the kurtosis of a random vector process x(n), namely
Kx(n), will depend on n. If it does not, then for brevity, we will
denote it by Kx. For the purpose of blind equalization, we focus
on the following types of zero-mean random vector processes.

• Independent, identically distributed (i.i.d.) processes.

• i.i.d. processes passed through MIMO LTI systems.

3.1. Kurtosis of zero-mean i.i.d. processes

We say that a random vector processes x(n) is i.i.d. if all com-
ponents of x(n), both spatial and temporal, are independent and
identically distributed. Then, we have the following theorem.

Theorem 3 Let x(n) be some N × 1 zero-mean i.i.d. process and
let xi(n) denote the i-th component of x(n) for 0 ≤ i ≤ N − 1.
Then, we have,

Kx(n) = Kx = KxI

where Kx is the kurtosis of any component of x(n) given by,

Kx = µx,4 − 2σ4
x − λx,4 (20)

where we have,

µx,4 � E
[|xi(n)|4] , σ2

x � E
[|xi(n)|2] , λx,4 �

∣∣E [x2
i (n)

]∣∣2
for all 0 ≤ i ≤ N − 1 and n ∈ Z.

Proof: As x(n) is an i.i.d. process, we have,

E [xi0(n0)x
∗
i1(n1)xi2(n2)x

∗
i3(n3)] =

Kxδi0,i1,i2,i3δn0,n1,n2,n3 + σ4
xδi0,i1δi2,i3δn0,n1δn2,n3

+ σ4
xδi0,i3δi1,i2δn0,n3δn1,n2 + λx,4δi0,i2δi1,i3δn0,n2δn1,n3

(21)
where δi0,...,iL−1 denotes the Kronecker delta function which is
unity for i0 = · · · = iL−1 and zero otherwise. To justify this,
note that the fourth-order moment from (21) can only take on three
possible nonzero values, namely µx,4, σ4

x, and λx,4. When all
component and temporal indices are respectively equal, then we
should have µx,4, which is the case here. The only other cases in
which a nonzero value occurs are when sets of two component and
temporal indices are exclusively equal, in which case we obtain
either σ4

x or λx,4, depending on how the pairing is done. Thus,[
E

[(
x(n)x†(n)

)2
]]

p,q

=

N−1∑
i=0

E
[
xp(n) |xi(n)|2 x∗

q(n)
]

=

{
0 , p �= q

µx,4 + (N − 1)σ4
x , p = q

Hence, we have,

E

[(
x(n)x†(n)

)2
]

=
(
µx,4 + (N − 1)σ4

x

)
I (22)

Also, we have,

E
[
x(n)x†(n)

]
= σ2

xI (23)

E
[
x(n)xT (n)

] (
E
[
x(n)xT (n)

])†
= λx,4I (24)
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Fig. 1. MIMO LTI system.

Combining (22), (23), and (24), we obtain the following from (2).

Kx(n) =
(
µx,4 + (N − 1)σ4

x

)
I − Nσ4

xI − σ4
xI − λx,4I

=
(
µx,4 − 2σ4

x − λx,4

)
I

As Kx(n) does not depend on n, we denote it by Kx. Using the
definition of Kx as given in (20), this completes the proof. ���

Note that if x(n) is a zero-mean i.i.d. process, then its auto-
correlation matrix Rx = E

[
x(n)x†(n)

]
is given by Rx = σ2

xI,
which is analogous to the result proven in Theorem 3. This further
justifies the definition of the kurtosis matrix proposed in (2).

3.2. Kurtosis of a filtered zero-mean i.i.d. process

Theorem 4 Suppose that the N ×1 zero-mean i.i.d. process x(n)
is input to the M ×N MIMO LTI system of Figure 1 with impulse
response h(n). Then the M × 1 output process y(n) has kurtosis,

Ky(n) = Ky = Kx

(∑
m

h(m)Λ(m)h†(m)

)

where Kx is as in (20) and Λ(m) is a diagonal N × N matrix
such that,

[Λ(m)]k,k =
[
h†(m)h(m)

]
k,k

(25)

Proof: By convolution, we have,

y(n) =
∑
m

h(m)x(n − m)

If we define hp,q(n) � [h(n)]p,q and denote the k-th component
of y(n) by yk(n), then we have,

yk(n) =
∑
m

N−1∑
l=0

hk,l(m)xl(n − m) , 0 ≤ k ≤ M − 1

Using this along with (21), we can show that we have,[
E

[(
y(n)y†(n)

)2
]]

p,q

=

Kx

(∑
m

N−1∑
l=0

hp,l(m)

(
M−1∑
i=0

∣∣hi,l(m)
∣∣2) h∗

q,l(m)

)

+ σ4
x

(∑
m

M−1∑
i=0

N−1∑
l=0

∣∣hi,l(m)
∣∣2)(∑

m

N−1∑
l=0

hp,l(m)h∗
q,l(m)

)

+ σ4
x


 ∑

m0,m1

∑
i,l0,l1

hp,l0 (m0)h∗
i,l0

(m0)hi,l1 (m1)h∗
q,l1

(m1)




+ λx,4


 ∑

m0,m1

∑
i,l0,l1

hp,l0 (m0)hi,l0 (m0)h∗
i,l1

(m1)h∗
q,l1

(m1)




From this, we can see that we have the following.

E

[(
y(n)y†(n)

)2
]

= Kx

(∑
m

h(m)Λ(m)h†(m)

)

+ σ4
xTr

(∑
m

h(m)h†(m)

)(∑
m

h(m)h†(m)

)

+ σ4
x

(∑
m

h(m)h†(m)

)2

+ λx,4

(∑
m

h(m)hT (m)

)(∑
m

h(m)hT (m)

)†

(26)

with Λ(m) as in (25). Also, we have,

Ry = E
[
y(n)y†(n)

]
= σ2

x

∑
m

h(m)h†(m) (27)

E
[
y(n)yT (n)

] (
E
[
y(n)yT (n)

])†
=

λx,4

(∑
m

h(m)hT (m)

)(∑
m

h(m)hT (m)

)†

(28)

Combining (26), (27), and (28) with (2), we obtain,

Ky(n) = Ky = Kx

(∑
m

h(m)Λ(m)h†(m)

)

which completes the proof. ���
We now proceed to use the results of Theorem 4 to establish

a criterion analogous to the one proposed by Shalvi and Weinstein
[6] for blind equalization.

4. APPLICATION TO BLIND EQUALIZATION

Regarding the blind equalization problem, we typically assume
that we have an N × 1 zero-mean i.i.d. input, say x(n), only
whose statistics are known. This input is applied to an L × N
unknown channel C(z) with L ≥ N , and the goal is to cascade
this channel with an N × L equalizer E(z) such that the output
y(n) is as close to the input x(n) as possible upto a permutation
as well as a scaling and delaying of the components. If H(z) de-
notes the N ×N cascade of the channel and the equalizer, namely
H(z) = E(z)C(z), then we say that we have achieved equaliza-
tion if we have the following [1].

H(z) = PD(z) (29)

where P is a permutation matrix and D(z) is a diagonal matrix of
scales and delays given by,

D(z) = diag
(
c0z

−n0 , c1z
−n1 , . . . , cN−1z

−nN−1
)

For the single-input single-output (SISO) case, the criterion for
blind equalization to occur is equivalent to saying that we have,

h(n) = c0δ(n − n0) (30)

In [6], only the SISO case was analyzed. A necessary and suf-
ficient condition for equalization was derived using the inequality,

∑
m

|h(m)|4 ≤
(∑

m

|h(m)|2
)2

(31)

for any scalar sequence h(n) with equality iff h(n) is as in (30).
The term on the left hand side of (31) is proportional to the output



kurtosis, whereas the right hand side is proportional to the square
of the output variance. By globally maximizing the magnitude of
the output kurtosis subject to keeping the output variance fixed,
we obtain the equalization criterion of (30). Shalvi and Weinstein
showed that this maximization problem had no local extrema and
thus showed that an adaptive algorithm used for the maximization
would converge to the desired criterion of (30) as best as possible.

Here, we consider developing a criterion similar to (31) for the
MIMO case. In our inequality, the left hand side will be related
to the output kurtosis matrix whereas the right hand side will be
related to the output autocorrelation matrix. However, our criterion
will only be a necessary condition for blind equalization.

Theorem 5 Let h(n) denote some M×N matrix sequence. Then,

Tr

(∑
m

h(m)Λ(m)h†(m)

)
≤ Tr

((∑
m

h(m)h†(m)

)2)

where Λ(m) is as in (25). We have equality iff,

h†(m)h(n) = Λ(m)δm,n

Proof: For brevity, we define the matrices A and B as follows.

A �
∑
m

h(m)Λ(m)h†(m) , B �
(∑

m

h(m)h†(m)

)2

Then, if hp,q(n) denotes the (p, q)-th element of h(n), we have,

Tr (A) =
∑
m

∑
l

(∑
k

|hk,l(m)|2
)2

Tr (B) =
∑
m

∑
l

(∑
k

|hk,l(m)|2
)2

+
∑
m

∑
j,k �=j

∣∣∣∣∣∑
l

hl,j(m)h∗
l,k(m)

∣∣∣∣∣
2

+
∑

m,n�=m

∑
j,k

∣∣∣∣∣∑
l

hl,j(n)h∗
l,k(m)

∣∣∣∣∣
2

Clearly we have,

Tr (B) − Tr (A) =
∑
m

∑
j,k �=j

∣∣∣∣∣∑
l

h∗
l,k(m)hl,j(m)

∣∣∣∣∣
2

+
∑

m,n�=m

∑
j,k

∣∣∣∣∣∑
l

h∗
l,k(m)hl,j(n)

∣∣∣∣∣
2

and so Tr (B) − Tr (A) ≥ 0 with equality iff we have,∑
l

h∗
l,k(m)hl,j(m) = 0 ∀ m, j, k �= j (32)

and
∑

l

h∗
l,k(m)hl,j(n) = 0 ∀ m, n �= m, j, k (33)

In matrix form, the first condition in (32) is equivalent to saying,

h†(m)h(m) = D(m)

where D(m) is a diagonal matrix for all m. Obviously, we must
have D(m) = Λ(m) in light of the definition of Λ(m) in (25).
The second condition for equality in (33) is equivalent to saying,

h†(m)h(n) = 0 ∀ n �= m

Combining these conditions, we conclude that,

Tr (A) ≤ Tr (B) with equality iff h†(m)h(n) = Λ(m)δm,n

which completes the proof. ���
When M = N = 1, we obtain the inequality (31) used in [6],

as well as the condition for equality of (30). Despite this analogy,
when M = N > 1, the condition for equality in Theorem 5 does
not guarantee equalization. For example, when M = N = 2,

h(n) =

[
1 1

1 −1

]
δ(n) ⇐⇒ H(z) =

[
1 1

1 −1

]

satisfies the condition for equality in Theorem 5 but H(z) is not of
the desired form of (29). Conversely though, if H(z) is as in (29),
then it can be shown that h(n) will satisfy the condition for equal-
ity in Theorem 5. Thus, for M = N > 1, Theorem 5 establishes
a necessary condition for equalization and not a sufficient one.

5. CONCLUDING REMARKS

We have proposed a definition for a kurtosis matrix and have shown
several analogies between this matrix and the classical scalar kur-
tosis. These analogies promote the validity of our definition. We
have also shown that using the kurtosis matrix we can obtain a
necessary condition for blind equalization of MIMO LTI systems.
Using this matrix to establish a sufficient condition is the subject
of future research. We can then apply the kurtosis matrix to the
problem of blind equalization of MIMO channels in a practical
setting.
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