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ABSTRACT

Much attention has recently been given to the construction of signal-
adapted orthonormal filter banks designed to optimize a particular
objective function such as coding gain or a multiresolution crite-
rion. For certain classes of filter banks, the optimum solution is a
principal component filter bank (PCFB), which is simultaneously
optimal for several objectives including the ones mentioned above.
However, for the class of finite impulse response (FIR) filter banks,
a PCFB in general does not exist. For this case, numerical tech-
niques must be employed to find an optimum filter bank for a par-
ticular objective. In this paper, we present an iterative method for
designing an overdecimated FIR filter bank optimized for energy
compaction. The proposed algorithm is an eigenfilter method that
is low in computational complexity. Simulation results show the
merit of the proposed method, in that as the filter order increases,
the filters designed behave more and more like those of the infinite
order PCFB.1

1. INTRODUCTION

The problem of the design of optimal signal-adapted multirate fil-
ter banks has been of interest to the signal processing community
on account of its applications in signal representation and data
compression [5, 1, 8]. Such filter banks are typically chosen to
optimize a particular objective, such as coding gain or a multires-
olution criterion, adapted to the input signal statistics. If no con-
straints are imposed on the orders of the analysis/synthesis filters,
then the optimal filter bank for a number of objectives is an infinite
order principal component filter bank (PCFB) [5, 1]. Such a filter
bank is simultaneously optimal for a wide variety of objectives, in-
cluding those mentioned above. The corresponding optimal analy-
sis/synthesis filters in this case turn out to be a series of compaction
filters [8]. For many practical cases of inputs, these filters have an
ideal bandpass response [8] and as such are unrealizable.

If we restrict the analysis/synthesis filters to be finite impulse
response (FIR) filters, then designing an optimal signal-adapted fil-
ter bank becomes far more difficult, since a PCFB in general does
not exist [1]. As a result, the filters must be designed to optimize
a specific objective. In [10], the authors focused on maximizing
the coding gain, whereas in [4], the authors considered optimizing
a multiresolution criterion. For both methods, suboptimal numer-
ical techniques were employed. Despite this, in [4], it was shown
that for the multiresolution criterion under consideration, the de-
sign problem could be greatly simplified since the entire filter bank
could be constructed by designing a single FIR compaction filter,
followed by an appropriate Karhunen-Loève transform (KLT).
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As such, much attention in the signal processing community
has focused on the design of FIR compaction filters [4, 3, 6]. In
[4], the authors proposed a linear semi-infinite programming (SIP)
method for the design of such filters. Though their method is glob-
ally optimal for the problem considered, the required orthonor-
mality condition is only satisfied on a discrete set of frequencies.
A window method for designing FIR compaction filters was pro-
posed in [3]. Despite its low computational complexity and good
performance, it is inherently suboptimal. In [6], a method for the
design of globally optimal FIR compaction filters was presented.
This method, though globally optimal, becomes very computation-
ally intensive as the filter order increases, and only applies for the
specific case where the input is wide sense stationary (WSS).

In this paper, we present an iterative method to solve the FIR
compaction problem for overdecimated filter banks, described be-
low. The overdecimated filter bank problem we focus on here is a
generalization of the classical compaction filter problem in that it
can be applied to design an arbitrary number of subbands (instead
of only one for the classical problem). Here, the iterative method
comes about by linearizing the quadratic orthonormality constraints.
Having done this, the problem can be easily solved using the eigen-
filter approach [7], which is well known for its low computational
complexity and numerical robustness (i.e. no inversion of ill condi-
tioned matrices is required). Though the method is not guaranteed
to be globally optimal, simulation results provided show its mer-
its. In particular, it can be seen that as the order increases, the
designed filters behave more and more like the ideal compaction
filters of the infinite order PCFB, consistent with intuition.

1.1. Overdecimated Filter Bank Signal Model

Here, we focus on the overdecimated uniform filter bank shown in
Fig. 1(a). By overdecimated, we mean that the number of channels
L satisfies L < M , i.e. the number of subbands is strictly less than
the decimation ratio [7]. In such a system, alias cancellation and
perfect reconstruction are in general impossible. If we consider
the following polyphase decompositions [7] of the analysis filters
Hk(z) and synthesis filters Fk(z) for 0 ≤ k ≤ L − 1,

Hk(z) =

M−1∑
�=0

z�Hk,�(z
M ) (Type II)

Fk(z) =

M−1∑
�=0

z−�Fk,�(z
M ) (Type I)

then the system of Fig. 1(a) can be redrawn as in Fig. 1(b), where,

[H(z)]�,m = H�,m(z) , [F(z)]m,� = F�,m(z)

for 0 ≤ � ≤ L − 1 and 0 ≤ m ≤ M − 1. Note that here,
the vector signals x(n) and y(n) denote, respectively, the M -fold
blocked versions [7] of the filter bank input x(n) and output y(n).
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Fig. 1. (a) Uniform overdecimated filter bank (L < M ), (b)
polyphase representation.

2. ORTHONORMAL FIR ENERGY
COMPACTION PROBLEM

2.1. Derivation Of The Energy Compaction Problem

From here on in, we will assume that the input x(n) to the overdec-
imated filter bank of Fig. 1 is cyclo wide sense stationary with pe-
riod M (CWSS(M )) [7], which is tantamount to saying that its
M -fold blocked version x(n) from Fig. 1(b) is WSS. Let us de-
note the autocorrelation sequence and power spectral density (psd)
of x(n) by Rxx(k) and Sxx(z), respectively. In addition to this
stationarity assumption on x(n), we will also assume that the filter
bank is orthonormal. This means that the matrices H(z) and F(z)
from Fig. 1(b) satisfy [7],

H(z) = F̃(z) , F̃(z)F(z) = IL (1)

(For the tilde notation [7] recall that Ã(z) � A† (1/z∗) for any
A(z).) In other words, the matrix F(z) is paraunitary. With the
above assumptions on the input and filter bank, it can easily be
shown that minimizing the error of the output is equivalent to com-
pacting the energy of the signal w(n).

Suppose that we wish to choose H(z) and F(z) subject to the
orthonormality constraint of (1) to minimize the expected mean
squared error between x(n) and y(n), defined as follows.

ξ � E
[||x(n) − y(n)||2] (2)

If we define the blocked filter error e(n) as e(n) � x(n) − y(n)

and denote the psd of e(n) by See(z), then from (2), we have,

ξ = Tr
[
E

[
e(n)e†(n)

]]
=

1

2π

∫ 2π

0

Tr
[
See(e

jω)
]

dω (3)

From Fig. 1(b) and [7], it can be shown that we have,

See(z) = Sxx(z) − F(z)H(z)Sxx(z) − Sxx(z)H̃(z)F̃(z)

+ F(z)H(z)Sxx(z)H̃(z)F̃(z) (4)

Imposing the orthonormality constraint of (1) in (4) yields,

Tr [See(z)] = Tr [Sxx(z)] − Tr
[
F̃(z)Sxx(z)F(z)

]
Substituting this into (3) leads to the following.

ξ =
1

2π

∫ 2π

0

Tr
[
Sxx(ejω)

]
dω

− 1

2π

∫ 2π

0

Tr
[
F†(ejω)Sxx(ejω)F(ejω)

]
dω︸ ︷︷ ︸

σ2
w

(5)

= Tr [Rxx(0)] − σ2
w (6)

Hence, from (6), with the orthonormality constraint of (1) in ef-
fect, minimizing ξ from (2) is equivalent to maximizing σ2

w. But
σ2
w is just the energy of the subband vector process w(n) from

Fig. 1(b), i.e. σ2
w = Tr [Rww(0)], where Rww(k) denotes the

autocorrelation of w(n). Thus, minimizing the mean squared er-
ror of the overdecimated filter bank is equivalent to maximizing
or compacting the energy of the subband process w(n). It can be
shown that if no length constraints are made on the matrix F(z)
from Fig. 1(b), then an optimal set of synthesis filters Fk(z) for
0 ≤ k ≤ L − 1 from Fig. 1(a) which maximize σ2

w from (6) are
the first L ideal compaction filters appearing in the infinite order
PCFB for Sxx(z) [5, 8].

2.2. Imposing The FIR Constraint On The Matrix F(z)

Suppose now that in addition to the orthonormality constraint of
(1), the matrix F(z) is causal and FIR of length N . In other words,
suppose that we have the following,

F(z) =

N−1∑
n=0

f(n)z−n (7)

where f(n) is the M × L impulse response of F(z). Define the
MN × L impulse response matrix f̂ and M × MN block delay
matrix d(z) as follows.

f̂ �
[

fT (0) fT (1) · · · fT (N − 1)
]T

d(z) �
[

IM z−1IM · · · z−(N−1)IM

]
From (7), we clearly have F(z) = d(z)f̂ and F̃(z) = f̂†d̃(z).
Substituting this into (5) yields the following.

σ2
w = Tr

[
f̂†

(
1

2π

∫ 2π

0

d†(ejω)Sxx(ejω)d(ejω) dω

)
︸ ︷︷ ︸

R̂

f̂

]
(8)



Here, the MN × MN matrix R̂ is positive semidefinite and can
be expressed in terms of the autocorrelation of x(n) as follows.

R̂ =


Rxx(0) Rxx(−1) · · · Rxx(−(N − 1))

Rxx(1) Rxx(0) · · · Rxx(−(N − 2))

...
...

. . .
...

Rxx(N − 1) Rxx(N − 2) · · · Rxx(0)


(9)

From (9), note that R̂ is the N -fold block autocorrelation matrix
corresponding to x(n) and that R̂ is a block Toeplitz matrix [2].
In the special case where the scalar input signal x(n) is WSS with
autocorrelation Rxx(k), then we have,

[Rxx(k)]�,m = Rxx(Mk + � − m) , 0 ≤ �, m ≤ M − 1

and so R̂ in this case is actually Toeplitz.
To analyze the orthonormality condition of (1) with the FIR

constraint on F(z) in effect, define G(z) � F̃(z)F(z). Then,
from (1), in the time domain, we require,

g(n) = f†(−n) ∗ f(n) =
∑
m

f†(m)f(m + n) = ILδ(n) (10)

where g(n) is the impulse response of G(z). Assuming F(z) to be
causal and FIR as in (7), then g(n) can only be nonzero for −(N−
1) ≤ n ≤ (N − 1). As g†(−n) = g(n), the orthonormality
conditions of (10) only need to be satisfied for 0 ≤ n ≤ N − 1.
For n = 0, (10) can be expressed in terms of the matrix f̂ as,

f̂† f̂ = IL (11)

For 1 ≤ n ≤ N−1, (10) can be expressed in terms of f̂ as follows.

0 f†(0) f†(1) · · · f†(N − 2)

0 0 f†(0) · · · f†(N − 3)

.

.

.
.
.
.

. . .
. . .

.

.

.

0 0 · · · 0 f†(0)


︸ ︷︷ ︸

C


f(0)

f(1)

.

.

.

f(N − 1)


︸ ︷︷ ︸

f̂

=


0

0

.

.

.

0


︸ ︷︷ ︸

0

(12)
It should be noted that C from (12) is a function of the impulse
response coefficients f(n). As such, the constraint in (12) is an
implicit quadratic constraint. Combining (8), (11), and (12), the
energy compaction problem in the presence of the FIR constraint
on F(z) can be expressed as follows.

Maximize σ2
w = Tr

[
f̂†R̂f̂

]
subject to f̂† f̂ = IL and Cf̂ = 0L(N−1)×L

(13)

with R̂ and C as in (9) and (12), respectively.
In general, the optimization problem of (13) is nonlinear and

nonconvex in terms of the elements of the matrix f̂ . What makes
the problem difficult to solve is the implicit quadratic constraint
Cf̂ = 0 from (12). Using the iterative approach for solving the
optimization problem of (13) to be discussed in the next section, it
is possible to turn this implicit quadratic constraint into an explicit
linear constraint. Once this constraint becomes linear, the opti-
mization at each iteration can be solved exactly using the eigen-
filter technique [7], which is low in complexity and numerically
stable. Before showing this, we will first formally present the iter-
ative algorithm for solving the optimization problem of (13).

3. PROPOSED ITERATIVE ALGORITHM FOR
SOLVING THE FIR COMPACTION PROBLEM

In what follows, let fk(n) denote the impulse response f(n) at the
k-th iteration. Also, define the MN × L matrix f̂k and L(N −
1) × MN matrix Ck as follows.

f̂k �
[

fT
k (0) fT

k (1) · · · fT
k (N − 1)

]T
(14)

Ck �


0 f†k(0) f†k(1) · · · f†k(N − 2)

0 0 f†k(0) · · · f†k(N − 3)

...
...

. . .
. . .

...

0 0 · · · 0 f†k(0)

 (15)

Then, the proposed iterative algorithm is as follows.

Initialization:

Choose any f0(n) which satisfies the orthonormality con-
straints of (10). This can be easily done using the complete
characterization of FIR paraunitary systems in terms of de-
gree one Householder-like building blocks [9, 7]. Compute
f̂0 from f0(n).

Iteration: For k ≥ 1, do the following.

1. Compute the constraint matrix Ck−1.

2. Solve the linearized optimization problem,

Maximize σ2
w,k = Tr

[
f̂†kR̂f̂k

]
subject to f̂†k f̂k = IL and Ck−1 f̂k = 0L(N−1)×L

(16)

3. To measure the convergence of the iteration to an or-
thonormal solution, calculate the orthonormality er-
ror matrix at the k-th iteration defined by,

εk � Ck f̂k (17)

As we need εk = 0 in theory (from (12), (14), (15),
and (17)), terminate the iteration when we have,

||εk||F < δT (18)

where ||εk||F denotes the Frobenius norm of εk [2]
and δT is a some small threshold value.

Before proceeding, it should be noted that there is no guar-
antee that the iterative algorithm will converge to an orthonormal
solution, although in simulations it often does so as shown below.
At present, there is no known method as to what should be done if
the iteration fails to converge to an orthonormal solution. Further-
more, even if there is convergence, there is no guarantee that the
resulting solution is globally optimal.

Despite this, often times in simulations such as those presented
below, the algorithm performs well in terms of approaching the
behavior of the ideal compaction filters of the infinite order PCFB.
Also, the algorithm can be used for relatively large orders N , as
the linearized optimization problem of (16) can be solved using the
eigenfilter approach [7]. We now proceed to show how to solve the
linearized optimization problem of (16).



4. SOLUTION TO THE ITERATIVE
OPTIMIZATION PROBLEM

Consider the linear constraint Ck−1 f̂k = 0 from (16). This con-
straint holds iff the columns of f̂k lie in the null space of Ck−1

[2]. Let Uk−1 denote a unitary matrix whose columns span the
null space of Ck−1. If ρ denotes the dimension of the null space
of Ck−1, then Uk−1 is MN ×ρ. As the columns of f̂k must lie in
the null space of Ck−1, f̂k must be of the form f̂k = Uk−1a for
some arbitrary ρ × L matrix a. Hence, we have,

Ck−1 f̂k = 0 ⇐⇒ f̂k = Uk−1a (19)

Given that Ck−1 is L(N − 1) × MN , we can easily argue that
the dimension of its null space ρ satisfies ρ ≥ L. Hence, the linear
constraint Ck−1 f̂k = 0 transforms the problem of finding f̂k into
that of finding the ρ × L matrix a. The quantity a is arbitrary but
must be such that the unitary constraint f̂†k f̂k = IL from (16) is
satisfied. Clearly, from (19), we have,

f̂†k f̂k = IL ⇐⇒ a†a = IL

upon exploiting the unitarity of Uk−1. As can be seen, the con-
straints of (16) transform the problem of finding f̂k into that of
finding a where a is allowed to by any ρ×L unitary matrix. Hence,
the optimization problem of (16) can be recast as follows.

Maximize σ2
w,k = Tr

[
a†Rk−1a

]
where Rk−1 � U†

k−1R̂Uk−1

subject to the constraint a†a = IL

(20)
The solution to this problem follows from a generalization of Rayleigh’s
principle [2, p. 191] and is as follows. Suppose that Rk−1 has the
following unitary diagonalization.

Rk−1 = Vk−1Λk−1V
†
k−1

where Vk−1 is a ρ×ρ matrix of eigenvectors of Rk−1 and Λk−1 is
a diagonal matrix consisting of the eigenvalues of Rk−1. In addi-
tion, suppose that Λk−1 = diag (λk−1,0, λk−1,1, . . . , λk−1,ρ−1)
and that the eigenvalues have been ordered in decreasing order, i.e.
λk−1,0 ≥ λk−1,1 ≥ · · · ≥ λk−1,ρ−1. Then, the solution to the
optimization problem of (20) is given to be [2],

σ2
w,k =

L−1∑
i=0

λk−1,i

which occurs iff we have,

a = Vk−1b

where b is a ρ × L matrix of the form,

b =

[
B

0(ρ−L)×L

]
(21)

and B is any L×L square unitary matrix. In other words, the op-
timal a is a such that its columns are unitary combinations of the
first L eigenvectors of Rk−1. Once an optimal a has been found,
the corresponding optimal f̂k can be found using f̂k = Uk−1a.
As computing the optimal synthesis filter matrix f̂k requires the
eigendecomposition of a particular matrix, it follows that the orig-
inal linearized optimization problem of (16) is an eigenfilter type
problem [7]. The simulation results presented in the next section
shown the merit of the proposed iterative eigenfilter method.
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5. SIMULATION RESULTS

To test the proposed iterative eigenfilter algorithm, we chose the
input process x(n) to be a real WSS autoregressive process of or-
der 4 (AR(4)) whose power spectrum Sxx(ejω) is plotted in Fig.
2. For all of the simulation results here, we used M = 7, i.e. the
block size of the filter bank used was chosen to be 7. Also, the
matrix B from (21) was chosen to be IL for all examples.

We first considered the design of a single channel of the overdec-
imated system (i.e. L = 1). The observed error in orthonormality
using the iterative eigenfilter method is shown in Fig. 3 in dB for
two values of orders, namely N = 3 and 10. In order to observe
the behavior of our algorithm, we ran it for 500 iterations and opted
not to choose a stopping threshold value δT from (18). As can be
seen from Fig. 3, proposed method is indeed converging toward
an orthonormal solution for both cases of filter orders. The error
||εk||F saturates at around −300 dB for both cases, most likely
due to quantization effects as a result of finite precision arithmetic.

To gauge the performance of the algorithm, a plot of the mag-
nitude squared response of the resulting synthesis filter F0(z) from
Fig. 1(a) is shown in Fig. 4 for the two orders N = 3 and 10,
along with that of the first filter of the infinite order PCFB. As can
be seen, both FIR filters have a response close to that of the ideal
compaction filter. Furthermore, the higher order filter offers a bet-
ter approximation than the lower order one, in line with intuition.

For a quantitative measure of the performance of the algo-
rithm, we opted to calculate the compaction gain of the designed
filters. This quantity is defined as [8],

Gcomp �
1
2π

∫ 2π

0

∣∣F0(e
jω)

∣∣2 Sxx(ejω) dω

σ2
x
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Fig. 4. Magnitude squared responses of the designed FIR synthesis
filter F0(z) along with the first filter of the infinite order PCFB
(L = 1, M = 7).
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The ideal compaction filter maximizes this quantity over all filters
satisfying the required orthonormality condition of (1) [8]. A plot
of the observed compaction gain as a function of the filter order
parameter N is shown in Fig. 5. Though the compaction gain in-
creases monotonically as N increases, it appears to saturate well
below the ideal compaction gain. At this time, it is not known why
this phenomenon occurs. Despite this, however, for small orders,
the observed compaction gain is reasonably large.

To further test the algorithm, we then considered the design of
two channels of the overdecimated system (i.e. L = 2) and fixed
the order to be N = 10. The observed error in orthonormality (in
dB) as a function of iteration is shown in Fig. 6. As before, it can
be seen that the algorithm is converging to an orthonormal solu-
tion. The magnitude squared responses of the designed synthesis
filters F0(z) and F1(z) are shown in Fig. 7 along with those of
the first two filters of the infinite order PCFB. From this, it is clear
that the proposed algorithm is yielding filters close to the ideal
compaction filters of the infinite order PCFB, as desired.

6. CONCLUDING REMARKS

An iterative eigenfilter method for designing overdecimated FIR
compaction filter banks was proposed and shown to be useful in
simulations. Future research includes finding ways to guarantee
the convergence toward an orthonormal solution and improving
the performance of the algorithm in terms of compaction gain.
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