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ABSTRACT

Recently, much attention has been given to the design of optimal fi-
nite impulse response (FIR) compaction filters. Such filters, which
arise in the design of optimal signal-adapted orthonormal FIR filter
banks, satisfy a magnitude squared Nyquist constraint in addition
to the inherent FIR assumption. In this paper, we focus on the least
squares optimal design of FIR filters whose magnitude squared re-
sponse satisfies a Nyquist constraint. Using a complete charac-
terization of such systems in terms of Householder-like building
blocks, an iterative gradient based greedy algorithm is proposed to
design such filters. Simulation results provided show the merit of
the proposed technique for designing FIR compaction filters.1

1. INTRODUCTION

In recent years, much attention has been given to the design of
signal-adapted orthonormal filter banks [5, 8, 1], which find ap-
plications in data compression. The typical signal model in this
setting is the M -channel uniform maximally decimated filter bank
shown in Fig. 1 [7]. Here, the input x(n) is assumed to be cyclo
wide sense stationary of period M (CWSS(M )) [7], which is tan-
tamount to saying that its M -fold blocked version x(n) is wide
sense stationary (WSS) with some power spectral density (psd)
Sxx(z). If the analysis/synthesis filters of Fig. 1 are constrained
to satisfy an orthonormality condition [7] but are of unconstrained
order, then the optimal filter bank for a number of objectives hap-
pens to be an infinite order principal component filter bank (PCFB)
for the psd Sxx(z) [8, 1]. Such filter banks are simultaneously op-
timal for several relevant data compression objectives such as cod-
ing gain and multiresolution. The optimal analysis/synthesis filters
in this case turn out to be a series of compaction filters [5, 8]. In
many practical cases of inputs (for example, if x(n) is itself WSS),
these filters are ideal bandpass filters [8] and hence unrealizable.

If we restrict our attention to finite impulse response (FIR)
analysis/synthesis filters, then the design of such optimal filter
banks becomes far more difficult, since a PCFB in general does
not exist [1]. As such, the filters must be designed to optimize
a specific objective. In [10], the authors considered maximizing
the coding gain, whereas in [3], the authors focused on optimiz-
ing a multiresolution criterion. For both methods, numerical opti-
mization techniques must be employed which are not guaranteed
to reach a globally optimal solution. However, in [3], it was shown
that for the multiresolution criterion considered, the design prob-
lem could be greatly simplified since the entire filter bank can be
constructed by designing a single FIR compaction filter, followed
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Fig. 1. Uniform maximally decimated M -channel filter bank.

by an appropriate Karhunen-Loève transform (KLT). This is pos-
sible due to the complete parameterization of FIR paraunitary sys-
tems in terms of Householder-like building blocks as shown in [9].

As such, much attention in the signal processing community
has focused on the design of FIR compaction filters [3, 2, 6]. In
addition to the FIR constraint inherent on such filters, they also sat-
isfy the condition that their magnitude squared response satisifies
the Nyquist(M ) property [7]. The authors in [3] proposed a linear
semi-infinite programming (SIP) method for the design of such
filters. Though their method is globally optimal for the problem
considered, the resulting magnitude squared response only satis-
fies the Nyquist(M ) constraint on a discrete set of frequencies.
Furthermore, their method becomes overly computationally com-
plex as the filter order increases. In [2], a window method for
the design of FIR compaction filters was proposed. Though this
method is not prohibitively computationally complex for large fil-
ter orders, it is inherently suboptimal. In [6], the authors proposed
a method for the design of a globally optimal FIR compaction filter
based on an appropriate state-space decomposition of the magni-
tude squared response. Though this method is globally optimal,
it only applies for the special case in which the input signal x(n)
is WSS and, like the SIP method, becomes very computationally
intensive as the filter order increases.

In this paper, we focus on the least squares design of FIR fil-
ters whose magnitude squared response is constrained to satisfy
the Nyquist(M ) property. Using the complete Householder-like
factorization of such systems from [9], an iterative algorithm is
proposed for the design of such filters. The proposed technique is a
greedy algorithm in that the observed mean squared error is always
monotonic nonincreasing as a function of iteration. Furthermore,
it can be applied for a wide variety of design problems and is com-
putationally inexpensive as it only involves the numerical compu-
tation of integrals and eigenvectors. Simulation results provided
show that this method can yield FIR compaction filters that are
very close to the infinite order ideal bandpass compaction filters.



2. LEAST SQUARES DESIGN OF FIR MAGNITUDE
SQUARED NYQUIST FILTERS

The design problem we focus on here is as follows. Suppose that
D(ejω) is a desired response that we wish to approximate (in the
least squares sense) with a causal FIR filter F (ejω) of length MN
whose magnitude squared response is Nyquist(M ) [7]. Then, the
problem is to minimize the mean squared error ξ, defined below,

ξ � 1

2π

∫ 2π

0

∣∣∣D(ejω) − F (ejω)
∣∣∣2 dω (1)

subject to the FIR constraint on F (ejω), as well as the constraint,[∣∣∣F (ejω)
∣∣∣2]

↓M

= 1 (2)

Expanding ξ from (1) yields,

ξ =
1

2π

∫ 2π

0

∣∣∣D(ejω)
∣∣∣2 dω +

1

2π

∫ 2π

0

∣∣∣F (ejω)
∣∣∣2 dω

− 1

2π

∫ 2π

0

(
D∗(ejω)F (ejω) + F ∗(ejω)D(ejω)

)
dω (3)

Note that the first term of the right hand side in (3) is just the
�2 norm squared of the desired impulse response d(n), namely
||d(n)||22. Also, using (2), it can be shown that the second term in
(3) is simply unity [7]. Hence, the only quantities in ξ which de-
pend on the filter F (z) are the cross product terms appearing in the
third term in (3). This greatly simplifies the optimization problem.

From Vaidyanathan et al. [9], it is known that F (z) must be of
the form,

F (z) = ã(z)V(zM )u0 (4)

Here a(z) is the M × 1 advance chain vector given by,

a(z) =
[

1 z · · · zM−1
]T

(For the tilde notation [7], recall that Ã(z) � A†(1/z∗) for any
A(z).) The quantity V(z) is an M × M lossless matrix consist-
ing of (N − 1) Householder-like paraunitary degree-one building
blocks of the form,

V(z) =
1∏

i=N−1

Vi(z) (5)

Vi(z) = I − viv
†
i + z−1viv

†
i , 1 ≤ i ≤ N − 1 (6)

where the M × 1 vectors vi are unit norm vectors. Finally, the
quantity u0 is some M × 1 unit norm vector.

As can be seen, F (z) in this case is completely characterized
by the unit norm vectors vi and u0. Though it is difficult to jointly
find the vectors vi and u0 which minimize ξ from (1), it will be
shown that given the rest of the vectors, optimizing only one vec-
tor at a time is very simple. This will serve as the basis for our
proposed iterative technique. Prior to proceeding, let us define V
to be the set of all vis, i.e. V � {vi : 1 ≤ i ≤ N − 1} and, in
accordance with standard set theoretic notation, let V/vk denote
the set V with the element vk removed.

3. SOLVING THE LEAST SQUARES OPTIMIZATION
PROBLEM USING LAGRANGE MULTIPLIERS

In order to minimize ξ from (3) subject to the unit norm constraints
on u0 and the vis, we construct the Lagrangian [4],

J(u0,V) � ξ(u0,V) + λ0

(
1 − u†

0u0

)
+

N−1∑
i=1

λi

(
1 − v†

i vi

)
(7)

where the λis are the Lagrange multipliers which are chosen to
satisfy the unit norm constraints. In what follows, we will consider
the problem of optimizing one vector at a time, assuming that the
rest of the vectors are fixed.

3.1. Optimal choice of u0

To find the optimal choice of u0, we set the conjugate gradient of
J(u0,V) with respect to u0 to be zero. From (7), we have [4],

∇
u
†
0
J = ∇

u
†
0
ξ − λ0u0 = 0 (8)

Using (4) in (3) yields,

ξ(u0,V) = ||d(n)||22 + 1 − b†(V)u0 − u†
0b(V) (9)

where b(V) is the M × 1 vector,

b(V) � 1

2π

∫ 2π

0

V†(ejωM )a(ejω)D(ejω) dω (10)

Differentiating ξ from (9) with respect to u†
0 yields [4],

∇
u
†
0
ξ = −b(V)

Substituting this into (8) yields the optimal choice of u0 given
by u0 = − 1

λ0
b(V). In order to satisfy the unit norm constraint

u†
0u0 = 1, it follows that the optimal u0 is of the form,

u0 = ejα

(
b(V)

||b(V)||
)

(11)

where α ∈ [0, 2π) is some phase factor. To find the optimal choice
of α here, we substitute (11) into (9). This yields,

ξ = ||d(n)||22 + 1 − 2 ||b(V)|| cos α

Clearly, to minimize ξ, we must choose α = 0. Hence, the optimal
choice of u0 and corresponding ξ are given by the following.

u0,opt =
b(V)

||b(V)|| , ξopt = ||d(n)||22 + 1 − 2 ||b(V)|| (12)

3.2. Optimal choice of vk

In order to find the optimal choice of vk assuming that all other
vectors are fixed, we must cleverly extract only those portions of
ξ which depend on vk. For simplicity, let us define the following
M × M matrices.

Lk(z) �


k+1∏

i=N−1

Vi(z) , 0 ≤ k ≤ N − 2

I , k = N − 1

(13)



Rk(z) �


I , k = 1

1∏
i=k−1

Vi(z) , 2 ≤ k ≤ N
(14)

Note that Lk(z) and Rk(z) are, respectively, the left and right
neighbors of the matrix Vk(z) for 1 ≤ k ≤ N − 1 appearing in
V(z) from (5). In other words, we have,

V(z) = Lk(z)Vk(z)Rk(z) , 1 ≤ k ≤ N − 1 (15)

Also note that by construction, we have L0(z) = RN (z) = V(z).
Substituting (15) and (6) into (4) and (3) yields,

ξ = ||d(n)||22 + 1 − 2 Re [c(u0,V/vk)] + v†
kT(u0,V/vk)vk

(16)
where the 1×1 scalar c(u0,V/vk) and M×M matrix T(u0,V/vk)
are defined as follows.

c(u0,V/vk) � 1

2π

∫ 2π

0

D∗(ejω)a†(ejω)

Lk(ejωM )Rk(ejωM )u0 dω (17)

T(u0,V/vk) � A(u0,V/vk) + A†(u0,V/vk), where,

A(u0,V/vk) � 1

2π

∫ 2π

0

Rk(ejωM )u0

(
1 − e−jωM

)
D∗(ejω)a†(ejω)Lk(ejωM ) dω (18)

It should be emphasized that from (17) and (18), the quantities
c(u0,V/vk) and T(u0,V/vk) do not depend on the vector vk.

As before, to find the optimal choice of vk, we set the conju-
gate gradient of the Lagrangian J(u0,V) from (7) with respect to
vk to be the zero vector. From (7), we have [4],

∇
v
†
k
J = ∇

v
†
k
ξ − λkvk = 0 (19)

Differentiating ξ from (16) with respect to vk yields [4],

∇
v
†
k
ξ = T(u0,V/vk)vk

Substituting this into (19) yields,

T(u0,V/vk)vk = λkvk

which is just an eigenvector equation. In order to minimize ξ from
(16), by Rayleigh’s principle [4, 7], vk must be a unit norm eigen-
vector corresponding to the smallest eigenvalue of T(u0,V/vk),
which we will denote here by µk,min. If wk,min denotes any unit
norm eigenvector corresponding to µk,min, then the optimal vk and
corresponding error ξ are given by the following.

vk,opt = wk,min ,

ξopt = ||d(n)||22 + 1 − 2 Re [c(u0,V/vk)] + µk,min

(20)

To summarize the results of this section, we have shown that
using the complete factorization of causal FIR magnitude squared
Nyquist(M ) systems in terms of Householder-like building blocks,
the optimal parameter vectors (u0 and the vis) can be easily found
one at a time assuming that the rest of the vectors are fixed. This
property will form the basis of an iterative algorithm for solving
the original least squares problem.

4. ITERATIVE GRADIENT OPTIMIZATION ALGORITHM

Let ξm denote the error at the m-th iteration for m ≥ 0. Then, the
iterative gradient optimization algorithm is as follows.

Initialization:

1. Generate N random unit norm vectors u0, vi, 1 ≤ i ≤ N−1.

2. Compute the matrix RN (z) using (14).

Iteration: For m ≥ 0, do the following.

1. If m is a multiple of N :

(a) Calculate the optimal vector u0 and corresponding
error ξm using (12) and (10) with V(z) = RN (z).

(b) Compute L0(z) = V(z) and R1(z) = I.

Otherwise, if m ≡ k mod N where 1 ≤ k ≤ N − 1:

(a) From (13), update the left matrix as Lk(z) = Lk−1(z)Ṽk(z).

(b) Calculate the optimal vector vk and corresponding
error ξm using (20), (17), and (18).

(c) From (14), update the right matrix as Rk+1(z) = Vk(z)Rk(z).

2. Increment m by 1 and return to Step 1.

As the iterations progress, the left matrix is shortened by the
old optimal vectors vk whereas the right matrix is lengthened by
the newly computed ones. After all of the vectors vk have been
optimized, the left matrix assumes the value of the right matrix
while the right matrix is then refreshed to be the identity matrix.

Since at each stage in the iteration, we are optimizing one vec-
tor while fixing the rest, the above technique is a greedy algorithm.
As such, the mean squared error ξm is guaranteed to be monotonic
nonincreasing as a function of the iteration index m. Furthermore,
as ξm has a lower bound (i.e. we always have ξm ≥ 0), ξm is guar-
anteed to have a limit as m → ∞ [7]. Simulation results provided
here verify this monotonic and limiting behavior as we now show.

5. SIMULATION RESULTS

Here, we will consider the design of a compaction filter for a WSS
input x(n) with psd Sxx(ejω). In this case, the ideal compaction
filter magnitude response must satisfy [8],∣∣∣D(ejω)

∣∣∣2 =

{
M , ω ∈ ωx

0 , otherwise

where ωx is the set of frequencies defined as follows.

ωx �
{

ω ∈ [0, 2π) : Sxx(ejω) ≥ Sxx

(
ej(ω+ 2π�

M )
)
∀ 1 ≤ � ≤ M − 1

}
For example, if x(n) is a real autoregressive order 4 (AR(4)) process
with psd Sxx(ejω) as in Fig. 2, the magnitude squared response of
the ideal compaction filter for M = 3 is as shown in Fig. 2.

To test our proposed method, we considered designing an FIR
compaction filter with N = 16. Though the phase of an ideal com-
paction filter is arbitrary, we opted for a linear phase spectral factor
with a delay equal to half of the FIR filter order. Namely, we chose,

D(ejω) =
∣∣∣D(ejω)

∣∣∣ ejφ(ω) , where φ(ω) =

(
MN − 1

2

)
ω

(21)
A plot of the observed error ξm as a function of the iteration index
m is shown in Fig. 3 for a total of KN iterations, where we chose
K =

⌈
1,000

N

⌉
. (We opted for an integer multiple of N iterations

to ensure that all of the vectors were optimized the same number
of times.) As can be seen from Fig. 3, the observed error is indeed
monotonic nonincreasing and appears to be approaching a limit. In
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Fig. 4, plots of the magnitude squared responses of the ideal and
FIR compaction filters are shown. It can be seen that the FIR filter
designed here is a good approximation to the ideal response.

To measure the performance of the our designed FIR com-
paction filters, we opted to calculate the compaction gain [8] of
the observed filters. This quantity is defined as [8],

Gcomp �
1
2π

∫ 2π

0

∣∣F (ejω)
∣∣2 Sxx(ejω) dω

σ2
x

The ideal compaction filter maximizes this quantity over all mag-
nitude squared Nyquist(M ) filters. A plot of the observed com-
paction gain as a function of the filter order parameter N is shown
in Fig. 5. Though the compaction gain often does come close to the
optimal gain, it does not monotonically increase with N . Though
this is counterintuitive, it is most likely due to the fact that we are
constraining the desired response to have linear phase as in (21).
Despite this, the observed compaction gain in many cases comes
close to the ideal one. Here, the largest compaction gain observed
was 2.0230 for N = 16 compared to the ideal one of 2.0501.

6. CONCLUDING REMARKS

An iterative gradient based method for designing FIR magnitude
squared Nyquist filters was proposed and shown to be useful in sim-
ulations. Future research includes modifying the algorithm for com-
paction filter design by accounting for the arbitrary phase of the
ideal compaction filter in order to obtain better compaction gains.
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