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ABSTRACT

Recently much attention has been given to the design of time-
domain equalizersor TEQsfor discrete multitone modulation (DMT)
systems. In this paper, we present a new method for the design of
such equalizerswhich minimizes both theintersymbol interference
(I'Sl) and noise power observed in a DMT system. Furthermore,
we show how this method can be used for the design of fraction-
ally spaced equalizers or FSEs. Experimental results are presented
showing that our design method performs better than other known
techniques in terms of achievable bit rate. *

1. INTRODUCTION

In recent years, one problem which has been of great interest has
been the design of time-domain equalizers or TEQs for discrete
multitone modulation or DMT systems [1, 4, 6]. Due to the long
impulse response of typical channels encountered in DMT sys-
tems such as twisted pair telephone lines [7], TEQs are needed to
shortenthe overall channel response to one sample more than the
length of the cyclic prefix used.

Several methods previously proposed for the design of such
TEQsinvolve the design of the effective channel and not the equal -
izer coefficients directly [1, 4]. With these methods, the equalizer
coefficients must then be chosen to best fit the desired optimal
effective channel. A new method, however, was recently intro-
duced [6] which deals directly with the equalizer coefficients. In
this method, the objective was to minimize the delay spread of
the overall channel. The optimal equalizer coefficients were found
to be related to an eigenvector of a particular matrix. In [8], we
generlized this method to aso account for the noise present in the
system. The equalizer coefficients were chosen to minimize an ob-
jective function consisting of a convex combination of a channel
shortening objective and a noise-to-signal ratio objective.

In this paper, we consider minimizing a different objective
function consisting of a weighted sum of the intersymbol inter-
ference (ISI) power and the output noise power. Much like the
methods of [6, 8], the optimal equalizer coefficients will aso be
found to be related to an eigenvector of a particular matrix. Fur-
thermore, we will show that our results can be extended for the
design of fractionally spaced equalizers or FSEs. Though FSEs
have not been traditionally used as TEQs for DMT systems, the
results shown here give merit to their possible future use.
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Fig. 1. SIMO-MISO channel and equalizer model.

2. THE TEQ DESIGN PROBLEM

Suppose we have the single-input multiple-output (SIMO) channel
and multiple-input single-output (MISO) equalizer model shown
in Figure 1. When K = 1 we obtain the classica symbol spaced
equalizer (SSE) model. In Section 4 we show that the fractionally
spaced equalizer (FSE) is a specia case of this model. We make
the following assumptions here.

e Thechannel C(z) isFIR of length L.
e Theequalizer H(z) isFIR of length L..
e Theinput z(n) is zero-mean and white with variance 2.

e The noise vector sequence n(n) is a zero-mean WSS ran-
dom process uncorrelated with z(n) and with autocorrela-

tion sequence Ry (k).
Denote the impulse responses of C(z) and H(z) by ¢(n) and
h(n), respectively. The effective channel iscg(n) = h(n) xc(n)
and haslength L. + L. — 1. Here, the output y(n) is of the form,

y(n) = zy(n) + q(n)
where z¢(n) and g(n) are, respectively, the filtered input signal
and output noise sequences given by the following.
zy(n) = cet(n) x x(n), q(n) =h(n) «n(n)

We wish to choose H(z) to shorten the effective channel to a
length Ly < L.. In other words, we wish to choose H(z) such
that most of the substance of cg(n) residesin awindow Wa £
[A;A+ Lg — 1], where A represents the delay of the desired
shortened channel. Herewemusthave0 < A < L.+L.—Lg—1.
To that end, we define the following responses.

(desired response)
(residual response)

wa (n)cet(n)
(1 —wa(n)) cai(n)

Cdes(n)

cres(n) =



where wa (n) isthe following rectangular window function.

(n) 1, A<n<A+L;j-1
w n)=
2 0, otherwise

In this case, we can write z s (n) as,
zf(n) = Tdes(n) + Tres(n)
where we have,
Zdes(n) = cdes(n) * x(n) , Tres(n) = cres(n) * z(n)

With this decomposition, we wish to choose the coefficients of
H(z) to accomplish the following goals.

e Minimizethe ISl power of xres(n).
e Minimize the noise power of g(n).

We wish to minimize both of these quantities with respect to the
desired signal power of zges(n2). To that end, we propose to choose
H(z) to minimize the following objective function.
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Here, « isatradeoff parameter between minimizing the IS power
of zres(n) and the noise power of ¢(n). In practice, the delay pa-
rameter A should be varied over all admissible values and chosen
so asto minimize J in (1). We now proceed to analyze J.

3. ANALYSISOF THE OBJECTIVE FUNCTION J

L et us define the following vectors and matrices.

cef = [ car(0) cer(1) ceff(Le + Le — 2) ]
h = [ h(0) h(1) h(Le —1) |
c(0)  e(1) c(Le — 1) 0 0
C2 B c(0)  <(1) e(Le — 1)
: . : o
o - 0 <(0) e(1) e(Le — 1)
oA O 0
Wy 2 0 I 0
0 0 OLC+L6—Ld—1—A
Wa £ Ipgz.-1—Wa

These quantities have the following sizes.
o ceff 11X (Le+ Le — 1)
e h:1x KL,
¢ C: KL X (Le+Le—1)
WA, Wa:(Le+Le—1) x (Le + Le — 1)

Observe that WaW', = WA and similarly WAWh = Wa.
Also, by the convalution cef(n) = h(n) * c(n), we have,

cgf = hC

Now, as zges(n) = cges(n) * z(n) and since z(n) is white with
variance o2, we have the following.

Ore = 02 lcds(n)]® =02 > |car(n)[’
n

neWwa
= 02 (cafWa) (cettWa)' = oZcat Wa Wi el
= 02hCWAWLCh! = c2hCWACThT (2
Similarly, we have,
02 = 02hCWACTh! ©)
Since g(n) = h(n) * n(n), we have,
75 = Rgq(0) = > h(m)Rayn(n — m)h'(n)

Defining the K' L. x K L. matrix Ry, asfollows,

Rnn(g) Rn'n(l) Rnn(Le - 1)
RJ77 L Rnn.(*l) Ryn(0)
; Rapn (1)
Ryn(—(Le — 1)) Ryn(—=1) Rnn(0)
we can express o, as shown below.
05 = hRyh' @

Combining (2), (3), and (4) in (1) yields the following.
ao2hCWACTh' 4 (1 — a)hRyh!
02hCWACtht
h[aCWAC!H + (1 - a)ﬁRn} n'

- hCW ACTht ®)

J =

Now, assuming that the K L. x K L. matrix Ax £ CWAC!
has afull rank of K L., then it is positive definite. As such, there
existsanonsingular K L. x K L. matrix G a such that [5],

Ar =GLGa (6)

The choice of G is not unique here. One such Ga is upper
triangular and is called the Cholesky decompositiofd] of Aa.
A comment regarding the nonsingularity of A isin order here.
AsAar = CWACT and Wa clearly has rank L., we have the
following necessary conditions for A A to be nonsingular.

¢ KLe < (Le+ Le—1) <= Lo < =L
o KL, <Lg+ L <%

Notethat both of these conditions put an upper boundn thelength
of our equalizer. Assuming for now that A A isindeed of full rank,
then we can expressthe objective function J asaRayleigh quotient
[5] using the decomposition of (6). Defining the K L. x 1 column
vector v asfollows,

va 2 Gabhl = h=vi (G}’
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Fig. 2. Discrete-time model of a K-fold FSE.

we have from (5),

vi[a(ex!) eWaci (63 +(-0) b (c3") Ra(e3!)|va
T

VAVA
More compactly, we have,
viTav
J = ALTAVA
vaA

where we have,

Ta 2a (G "owact (Ga') +a- )% (ea") "R, (ea")
Since W A and Ry, areHermitian, sotoois T a. Assuch, we have
thus expressed J as a Rayleigh quotient. By Rayleigh’s principle
[5], it followsthat as va varies over all nonzero vectors, the min-
imum value of the objective function J is Ax min, Where Ax min
denotes the smallest eigenvalue of Ta. Furthermore, this mini-
mum value is achieved if va = VA min, Where v4 min denotes an
eigenvector of T a corresponding to Ax min. (More generally, the
minimum value of J isachieved iff v isin the eigenspace corre-
sponding to Ax min. However, for sake of clarity, we will ignore
this scenario.) Hence, if Jopt and hopt denote the optimum value
of J and optimizing equalizer coefficients, respectively, we have,

Jopt = )\A,min

hopt = VTA,min(Ggl)T

The vector hopt is called an eigenfilter[11, 8] as its elements are
filter coefficients derived from an eigenvector of a matrix. We now
show that the FSE is a special case of the structurein Figure 1.

4. RELATION TO FRACTIONALLY SPACED
EQUALIZERS

The discrete-time model of a K-fold FSE is shown in Figure 2
[9, 10]. Here, Ck(z) and Hx (=) represent, respectively, a K-
fold oversampled version of our origina channel and equalizer.
The noise process n(n) issimilarly a K'-fold oversampled version
of our origina noise process. Consider the following polyphase
decompositions [11] of C'k (z) and Hk (z) below.

K-1 K-1
Cr(z) =Y 2"Re(z"), Hr(2) = > 2 "Ex(z")
k=0 k=0

Using the noble identitieq11], the structure in Figure 2 can be
redrawn asin Figure 1 where we have,

[C(z)]k,o = Ri(2), [H(Z)}o,k = Ex(2), [n(n)}k,o =n(Kn—k)

for 0 < k < K — 1. Because of this, if our god is to choose
the coefficients of the equalizer Hx (z) tojointly minimizethe S|
and noise power of the overall system, then these coefficients can
be found using the eigenfilter approach of the previous section.

5. EXPERIMENTAL RESULTS

We now proceed to analyze how our design method compares with
other known ones. One important figure of merit used to mea-
sure the performance of a TEQ in aDMT system is the maximum
achievable hit rate. In atraditional DMT system, the subchannels
are modeled as independent parallel Gaussian channels [7]. Asa
result, the number of bits b, per real dimension to allocate in the
k-th subchannel is given by the following [7].

be = L log, (1+ SNR’“) L 0<k< Nppr—1
2 T

where Npger denotes the size of the Discrete Fourier Transform
(DFT) used. Here, T"isa“gap” quantity that depends on the coding
and modulation format used as well as the desired probability of
error. (For uncoded PAM and QAM constellations, I' = 9.8 dB
for a symbol error probability of 1077 [7].) Also, SNR;, denotes
the signal-to-noise ratio in the k-th subchannel and isgiven by [2],

7 |Cas(”¥) |2
02|Cres(e3¥k)[2 + Sqq ek )’

_ 27k

SNRy, = =
. Noer

()

Wk

where here, Ly = Ncp + 1 and N¢p isthe cyclic prefix length.
In order to test our TEQ design method in a practical setting,

such as the downstream link of atypical asymmetric digital sub-

scriber line (ADSL) system, we make the following assumptions.

e Input signal consists of QAM symbols.
e Desired probability of erroris 1077,

e Sizeof DFT is Nppr = 512.

e Length of cyclic prefix is Ncp = 32.

Astheinput consists of two-dimensional QAM symbols, the num-
ber of bitsto allocate in the k-th subchannel is given by,

SNRy,
T

bk:{10g2(1+ )J,OSkSNDFr—l

withI" = 9.8 dB and SNR;, asgivenin (7).
Datafor the channel and noise was obtained fromthe Mat | ab
DMITEQ Tool box [3]. We chose the following parameters.

e Input power iso2 = 14 dBm.
e Length of equalizeris L. = 16 (for K = 2, L. = 8).

e Carrier servicearea (CSA) loop # 1 was used as the channel
(Le = 1,024).

e Input noise consists of near-end crosstalk (NEXT) noise
plus additive white noise with power density —110 dBm/Hz.

e Sampling frequency is fs = 2.208 MHz.

Here we took the given channel ccsa (1) to be the K -fold oversam-
pled channel for the FSE. As such, we took the decimatedrersion
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Fig. 3. Origina and equalized channel impulse responses
(or = 0.984).
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Fig. 4. Plot of b, versus k using proposed method (o =
0.984).

¢(n) = ccsa(Kn) to be the observed channel for the SSE. For our
simulations, weused K = 2. Thebit rate R;, was calculated using,

Nppr—1

R b
b= (NDFr+Ncp g F

Here, o in (1) wasvaried in order to obtain the largest possible
Ry. The best SSE obtained was for « = 0.984. The original and
equalized channel impulse responses are shown in Figure 3. Also,
in Figure 4, we plotted b, as a function of the subcarrier index &
for this equalizer. Only the values for & = 0,..., Nppr/2 are
shown due to the mirror symmetry inherent in b, due to the fact
that the channel, equalizer, and noise are al real here.

In addition to our method, we also tested the following ones.

e Delay spread minimization by Schur and Speidel [6].
e Eigenapproach of Farhang-Boroujeny and Ding [4].
e Geometric SNR maximization by Al-Dhahir and Cioffi [1].

The observed bit rates for the TEQs tested here are shown in Table
1. Fromit, we can seethat the SSE designed using our method per-
formed better than all other SSEs considered. More interestingly,
however, was the fact that the FSE designed using our method
yielded the best results. The best FSE was obtained when o =
0.898. This helpsjustify the future use of FSEsas TEQsfor DMT
systems. The advantage in bit rate may outweigh the overhead due
to oversampling the output of the channel.

Method Ry, (Mb/s)
Eigenfilter Method - SSE
2.841
(v =0.984)
Schur & Speidel [6] 2.362
Farhang-Boroujeny & Ding [4] 1.542
Al-Dhahir & Cioffi [1] 1.859
Eigenfilter Method - FSE
3.515
(a=0.898)

Table 1. Observed bit rates (R;) for different equalizer
methods.

6. CONCLUDING REMARKS

In terms of achievable bit rate, the TEQs designed using our ap-
proach surpassed those by other methods. Of all TEQs considered,
the FSE designed using our method performed the best. This helps
justify using FSEsfor DMT systems. Using the eigenfilter method
for other objective functions is the subject of ongoing research.
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