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ABSTRACT

Recently much attention has been given to the design of time-
domain equalizers or TEQs for discrete multitone modulation (DMT)
systems. In this paper, we present a new method for the design of
such equalizers which minimizes both the intersymbol interference
(ISI) and noise power observed in a DMT system. Furthermore,
we show how this method can be used for the design of fraction-
ally spaced equalizers or FSEs. Experimental results are presented
showing that our design method performs better than other known
techniques in terms of achievable bit rate. 1

1. INTRODUCTION

In recent years, one problem which has been of great interest has
been the design of time-domain equalizers or TEQs for discrete
multitone modulation or DMT systems [1, 4, 6]. Due to the long
impulse response of typical channels encountered in DMT sys-
tems such as twisted pair telephone lines [7], TEQs are needed to
shortenthe overall channel response to one sample more than the
length of the cyclic prefix used.

Several methods previously proposed for the design of such
TEQs involve the design of the effective channel and not the equal-
izer coefficients directly [1, 4]. With these methods, the equalizer
coefficients must then be chosen to best fit the desired optimal
effective channel. A new method, however, was recently intro-
duced [6] which deals directly with the equalizer coefficients. In
this method, the objective was to minimize the delay spread of
the overall channel. The optimal equalizer coefficients were found
to be related to an eigenvector of a particular matrix. In [8], we
generlized this method to also account for the noise present in the
system. The equalizer coefficients were chosen to minimize an ob-
jective function consisting of a convex combination of a channel
shortening objective and a noise-to-signal ratio objective.

In this paper, we consider minimizing a different objective
function consisting of a weighted sum of the intersymbol inter-
ference (ISI) power and the output noise power. Much like the
methods of [6, 8], the optimal equalizer coefficients will also be
found to be related to an eigenvector of a particular matrix. Fur-
thermore, we will show that our results can be extended for the
design of fractionally spaced equalizers or FSEs. Though FSEs
have not been traditionally used as TEQs for DMT systems, the
results shown here give merit to their possible future use.

1Work supported in part by the ONR grant N00014-99-1-1002, USA.
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Fig. 1. SIMO-MISO channel and equalizer model.

2. THE TEQ DESIGN PROBLEM

Suppose we have the single-input multiple-output (SIMO) channel
and multiple-input single-output (MISO) equalizer model shown
in Figure 1. When K = 1 we obtain the classical symbol spaced
equalizer (SSE) model. In Section 4 we show that the fractionally
spaced equalizer (FSE) is a special case of this model. We make
the following assumptions here.

• The channel C(z) is FIR of length Lc.

• The equalizer H(z) is FIR of length Le.

• The input x(n) is zero-mean and white with variance σ2
x.

• The noise vector sequence η(n) is a zero-mean WSS ran-
dom process uncorrelated with x(n) and with autocorrela-
tion sequence Rηη(k).

Denote the impulse responses of C(z) and H(z) by c(n) and
h(n), respectively. The effective channel is ceff(n) = h(n)∗c(n)
and has length Lc + Le − 1. Here, the output y(n) is of the form,

y(n) = xf (n) + q(n)

where xf (n) and q(n) are, respectively, the filtered input signal
and output noise sequences given by the following.

xf (n) = ceff(n) ∗ x(n) , q(n) = h(n) ∗ η(n)

We wish to choose H(z) to shorten the effective channel to a
length Ld < Lc. In other words, we wish to choose H(z) such
that most of the substance of ceff(n) resides in a window W∆ �
[∆, ∆ + Ld − 1], where ∆ represents the delay of the desired
shortened channel. Here we must have 0 ≤ ∆ ≤ Lc+Le−Ld−1.
To that end, we define the following responses.

cdes(n) = w∆(n)ceff(n) (desired response)

cres(n) = (1 − w∆(n)) ceff(n) (residual response)



where w∆(n) is the following rectangular window function.

w∆(n) =

{
1 , ∆ ≤ n ≤ ∆ + Ld − 1

0 , otherwise

In this case, we can write xf (n) as,

xf (n) = xdes(n) + xres(n)

where we have,

xdes(n) = cdes(n) ∗ x(n) , xres(n) = cres(n) ∗ x(n)

With this decomposition, we wish to choose the coefficients of
H(z) to accomplish the following goals.

• Minimize the ISI power of xres(n).

• Minimize the noise power of q(n).

We wish to minimize both of these quantities with respect to the
desired signal power of xdes(n). To that end, we propose to choose
H(z) to minimize the following objective function.

J � ασ2
xres + (1 − α)σ2

q

σ2
xdes

, 0 ≤ α ≤ 1 (1)

Here, α is a tradeoff parameter between minimizing the ISI power
of xres(n) and the noise power of q(n). In practice, the delay pa-
rameter ∆ should be varied over all admissible values and chosen
so as to minimize J in (1). We now proceed to analyze J .

3. ANALYSIS OF THE OBJECTIVE FUNCTION J

Let us define the following vectors and matrices.

ceff �
[

ceff(0) ceff(1) · · · ceff(Lc + Le − 2)
]

h �
[

h(0) h(1) · · · h(Le − 1)
]

C �


c(0) c(1) · · · c(Lc − 1) 0 · · · 0

0 c(0) c(1) · · · c(Lc − 1)
.
.
.

.

.

.

.

.

.

.
.
.

.
.
.

.
.
.

.
.
. 0

0 · · · 0 c(0) c(1) · · · c(Lc − 1)



W∆ �

 0∆ 0 0

0 ILd 0

0 0 0Lc+Le−Ld−1−∆


W∆ � ILc+Le−1 − W∆

These quantities have the following sizes.

• ceff : 1 × (Lc + Le − 1)

• h : 1 × KLe

• C : KLe × (Lc + Le − 1)

• W∆,W∆ : (Lc + Le − 1) × (Lc + Le − 1)

Observe that W∆W†
∆ = W∆ and similarly W∆W

†
∆ = W∆.

Also, by the convolution ceff(n) = h(n) ∗ c(n), we have,

ceff = hC

Now, as xdes(n) = cdes(n) ∗ x(n) and since x(n) is white with
variance σ2

x, we have the following.

σ2
xdes

= σ2
x

∑
n

|cdes(n)|2 = σ2
x

∑
n∈W∆

|ceff(n)|2

= σ2
x (ceffW∆) (ceffW∆)† = σ2

xceffW∆W†
∆c†

eff

= σ2
xhCW∆W†

∆C†h† = σ2
xhCW∆C†h† (2)

Similarly, we have,

σ2
xres = σ2

xhCW∆C†h† (3)

Since q(n) = h(n) ∗ η(n), we have,

σ2
q = Rqq(0) =

∑
m,n

h(m)Rηη(n − m)h†(n)

Defining the KLe × KLe matrix Rη as follows,

Rη �


Rηη(0) Rηη(1) · · · Rηη(Le − 1)

Rηη(−1) Rηη(0)
.
.
.

.

.

.

.

.

.

.
.
.

.
.
. Rηη(1)

Rηη(−(Le − 1)) · · · Rηη(−1) Rηη(0)


we can express σ2

q as shown below.

σ2
q = hRηh† (4)

Combining (2), (3), and (4) in (1) yields the following.

J =
ασ2

xhCW∆C†h† + (1 − α)hRηh†

σ2
xhCW∆C†h†

=
h

[
αCW∆C† + (1 − α) 1

σ2
x
Rη

]
h†

hCW∆C†h† (5)

Now, assuming that the KLe × KLe matrix A∆ � CW∆C†

has a full rank of KLe, then it is positive definite. As such, there
exists a nonsingular KLe × KLe matrix G∆ such that [5],

A∆ = G†
∆G∆ (6)

The choice of G∆ is not unique here. One such G∆ is upper
triangular and is called the Cholesky decomposition[5] of A∆.
A comment regarding the nonsingularity of A∆ is in order here.
As A∆ = CW∆C† and W∆ clearly has rank Ld, we have the
following necessary conditions for A∆ to be nonsingular.

• KLe ≤ (Lc + Le − 1) ⇐⇒ Le ≤ Lc−1
K−1

• KLe ≤ Ld ⇐⇒ Le ≤ Ld
K

Note that both of these conditions put an upper boundon the length
of our equalizer. Assuming for now that A∆ is indeed of full rank,
then we can express the objective function J as a Rayleigh quotient
[5] using the decomposition of (6). Defining the KLe × 1 column
vector v∆ as follows,

v∆ � G∆h† ⇐⇒ h = v†
∆

(
G−1

∆

)†



� ↑ K � CK(z) �
��
��

� HK(z) � ↓ K �

�

x(n)

Channel Equalizer

x̂(n)

η(n)

Fig. 2. Discrete-time model of a K-fold FSE.

we have from (5),

J =
v
†
∆

[
α(G−1

∆ )
†
CW∆C†(G−1

∆ )+(1−α) 1
σ2

x
(G−1

∆ )
†
Rη(G−1

∆ )
]
v∆

v
†
∆v∆

More compactly, we have,

J =
v†

∆T∆v∆

v†
∆v∆

where we have,

T∆ � α
(
G−1

∆

)†
CW∆C†

(
G−1

∆

)
+ (1 − α) 1

σ2
x

(
G−1

∆

)†
Rη

(
G−1

∆

)
Since W∆ and Rη are Hermitian, so too is T∆. As such, we have
thus expressed J as a Rayleigh quotient. By Rayleigh’s principle
[5], it follows that as v∆ varies over all nonzero vectors, the min-
imum value of the objective function J is λ∆,min, where λ∆,min
denotes the smallest eigenvalue of T∆. Furthermore, this mini-
mum value is achieved if v∆ = v∆,min, where v∆,min denotes an
eigenvector of T∆ corresponding to λ∆,min. (More generally, the
minimum value of J is achieved iff v∆ is in the eigenspace corre-
sponding to λ∆,min. However, for sake of clarity, we will ignore
this scenario.) Hence, if Jopt and hopt denote the optimum value
of J and optimizing equalizer coefficients, respectively, we have,

Jopt = λ∆,min

hopt = v†
∆,min

(
G−1

∆

)†
The vector hopt is called an eigenfilter[11, 8] as its elements are
filter coefficients derived from an eigenvector of a matrix. We now
show that the FSE is a special case of the structure in Figure 1.

4. RELATION TO FRACTIONALLY SPACED
EQUALIZERS

The discrete-time model of a K-fold FSE is shown in Figure 2
[9, 10]. Here, CK(z) and HK(z) represent, respectively, a K-
fold oversampled version of our original channel and equalizer.
The noise process η(n) is similarly a K-fold oversampled version
of our original noise process. Consider the following polyphase
decompositions [11] of CK(z) and HK(z) below.

CK(z) =

K−1∑
k=0

zkRk(zK) , HK(z) =

K−1∑
k=0

z−kEk(zK)

Using the noble identities[11], the structure in Figure 2 can be
redrawn as in Figure 1 where we have,

[C(z)]k,0 = Rk(z) , [H(z)]0,k = Ek(z) , [η(n)]k,0 = η(Kn−k)

for 0 ≤ k ≤ K − 1. Because of this, if our goal is to choose
the coefficients of the equalizer HK(z) to jointly minimize the ISI
and noise power of the overall system, then these coefficients can
be found using the eigenfilter approach of the previous section.

5. EXPERIMENTAL RESULTS

We now proceed to analyze how our design method compares with
other known ones. One important figure of merit used to mea-
sure the performance of a TEQ in a DMT system is the maximum
achievable bit rate. In a traditional DMT system, the subchannels
are modeled as independent parallel Gaussian channels [7]. As a
result, the number of bits bk per real dimension to allocate in the
k-th subchannel is given by the following [7].

bk =
1

2
log2

(
1 +

SNRk

Γ

)
, 0 ≤ k ≤ NDFT − 1

where NDFT denotes the size of the Discrete Fourier Transform
(DFT) used. Here, Γ is a “gap” quantity that depends on the coding
and modulation format used as well as the desired probability of
error. (For uncoded PAM and QAM constellations, Γ = 9.8 dB
for a symbol error probability of 10−7 [7].) Also, SNRk denotes
the signal-to-noise ratio in the k-th subchannel and is given by [2],

SNRk =
σ2

x|Cdes(e
jωk)|2

σ2
x|Cres(ejωk)|2 + Sqq(ejωk)

, ωk =
2πk

NDFT

(7)

where here, Ld = NCP + 1 and NCP is the cyclic prefix length.
In order to test our TEQ design method in a practical setting,

such as the downstream link of a typical asymmetric digital sub-
scriber line (ADSL) system, we make the following assumptions.

• Input signal consists of QAM symbols.

• Desired probability of error is 10−7.

• Size of DFT is NDFT = 512.

• Length of cyclic prefix is NCP = 32.

As the input consists of two-dimensional QAM symbols, the num-
ber of bits to allocate in the k-th subchannel is given by,

bk =

⌊
log2

(
1 +

SNRk

Γ

)⌋
, 0 ≤ k ≤ NDFT − 1

with Γ = 9.8 dB and SNRk as given in (7).
Data for the channel and noise was obtained from the Matlab

DMTTEQ Toolbox [3]. We chose the following parameters.

• Input power is σ2
x = 14 dBm.

• Length of equalizer is Le = 16 (for K = 2, Le = 8).

• Carrier service area (CSA) loop # 1 was used as the channel
(Lc = 1,024).

• Input noise consists of near-end crosstalk (NEXT) noise
plus additive white noise with power density −110 dBm/Hz.

• Sampling frequency is fs = 2.208 MHz.

Here we took the given channel cCSA(n) to be the K-fold oversam-
pled channel for the FSE. As such, we took the decimatedversion
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c(n) = cCSA(Kn) to be the observed channel for the SSE. For our
simulations, we used K = 2. The bit rate Rb was calculated using,

Rb =
fs

(NDFT + NCP)

NDFT−1∑
k=0

bk

Here, α in (1) was varied in order to obtain the largest possible
Rb. The best SSE obtained was for α = 0.984. The original and
equalized channel impulse responses are shown in Figure 3. Also,
in Figure 4, we plotted bk as a function of the subcarrier index k
for this equalizer. Only the values for k = 0, . . . , NDFT/2 are
shown due to the mirror symmetry inherent in bk due to the fact
that the channel, equalizer, and noise are all real here.

In addition to our method, we also tested the following ones.

• Delay spread minimization by Schur and Speidel [6].

• Eigenapproach of Farhang-Boroujeny and Ding [4].

• Geometric SNR maximization by Al-Dhahir and Cioffi [1].

The observed bit rates for the TEQs tested here are shown in Table
1. From it, we can see that the SSE designed using our method per-
formed better than all other SSEs considered. More interestingly,
however, was the fact that the FSE designed using our method
yielded the best results. The best FSE was obtained when α =
0.898. This helps justify the future use of FSEs as TEQs for DMT
systems. The advantage in bit rate may outweigh the overhead due
to oversampling the output of the channel.

Method Rb (Mb/s)

Eigenfilter Method - SSE
(α = 0.984)

2.841

Schur & Speidel [6] 2.362

Farhang-Boroujeny & Ding [4] 1.542

Al-Dhahir & Cioffi [1] 1.859

Eigenfilter Method - FSE
(α = 0.898)

3.515

Table 1. Observed bit rates (Rb) for different equalizer
methods.

6. CONCLUDING REMARKS

In terms of achievable bit rate, the TEQs designed using our ap-
proach surpassed those by other methods. Of all TEQs considered,
the FSE designed using our method performed the best. This helps
justify using FSEs for DMT systems. Using the eigenfilter method
for other objective functions is the subject of ongoing research.
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