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ABSTRACT

Recently, much attention has been given to the design of signal-
adapted filter banks, in which the filter banks are designed to op-
timize a particular objective function, i.e. coding gain or a mul-
tiresolution criterion, for a particular class of input signals. If we
restrict the analysis/synthesis filters to satisfy an orthonormality or
biorthogonality condition, but put no restrictions on filter orders,
then often times it is known how to choose the filters optimally for
the objectives mentioned above. However, such filters are often
unrealizable infinite order filters. In this paper, we consider the de-
sign of optimal analysis/synthesis filters in which the only restric-
tion is that they must be finite impulse response (FIR) filters. We
focus here on minimizing the mean squared reconstruction error
for overdecimated filter banks. An iterative method to alternately
design the analysis and synthesis banks is presented in which the
error is monotonic nonincreasing for each iteration. Simulation
results provided show the merit of the proposed algorithm.1

1. INTRODUCTION

In the past few years, the design of signal-adapted filter banks has
attracted the attention of the signal processing and data compres-
sion communities [5, 9, 4]. Such filter banks are designed to op-
timize a particular objective, i.e. coding gain or a multiresolution
criterion, adapted for a specific class of input signals. For simplic-
ity, the analysis and synthesis filters are often chosen to satisfy an
orthonormality or biorthogonality condition. If no other restric-
tions are put on the filters, then the optimal choice for these filters
is known (see [5, 8, 1] for the orthonormal case and [6, 9, 4] for
the biorthogonal case). In the orthonormal case, the optimal so-
lution is an infinite order principal component filter bank (PCFB)
[8, 1], whereas in the biorthogonal case, the optimal filter bank is
a PCFB with a parallel bank of half-whitening filters in the mid-
dle of the system [9, 4]. Such filter banks, be they restricted to
being orthonormal or biorthogonal, are optimal for a wide variety
of rate-distortion criteria including coding gain and reconstruction
error if only a subset of subbands is preserved (i.e. multiresolution
criterion) [1, 4]. The only problem is that such optimal filter banks
require ideal analysis/synthesis filters and are as such unrealizable.

If we restrict the analysis/synthesis filters to be finite impulse
response (FIR) filters, then in general there is no closed form ex-
pression for an optimal signal-adapted filter bank and numerical
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techniques must be employed. Furthermore, such filter banks are
only optimal for one specific objective, unlike unconstrained order
filter banks which are simultaneously optimal for a wide variety of
objectives. For the orthonormal case, in [3] the authors considered
a multiresolution optimality criterion, whereas in [10], the authors
considered optimizing coding gain. In [4], the authors considered
optimizing a particular rate-distortion function for the more gen-
eral biorthogonal case. For all such cases, complicated nonlinear
optimization techniques were required.

In this paper, we focus on the design of optimal signal-adapted
filter banks in which the analysis/synthesis filters are constrained
to be FIR, but with no other constraints made on the filters. An
iterative algorithm for finding the optimum filter bank, in which
the analysis and synthesis banks are alternately optimized, is pro-
posed. The objective we focus on here is the mean squared re-
construction error obtained when only a subset of the subbands of
a maximally decimated system [7] are kept. At each stage of the
iteration, the optimal analysis/synthesis bank can be computed in
closed form using the principle of least squares. As a result, the
error at each iteration is guaranteed to not increase. Simulation
results provided verify this monotonic behavior.

1.1. Overdecimated Filter Bank Signal Model

For the reconstruction error objective mentioned above, we focus
here on the overdecimated uniform filter bank shown in Fig. 1(a).
By overdecimated, we mean that the number of channels L sat-
isfies L < M , i.e. the number of subbands is strictly less than
the decimation ratio [7]. In such a system, there is always neces-
sarily a loss of information and in general, alias cancellation and
perfect reconstruction are impossible. If we consider the follow-
ing polyphase decompositions [7] of the analysis filters Hk(z) and
synthesis filters Fk(z) for 0 ≤ k ≤ L − 1,

Hk(z) =

M−1∑
�=0

z�Hk,�(z
M ) (Type II)

Fk(z) =

M−1∑
�=0

z−�Fk,�(z
M ) (Type I)

then the system of Fig. 1(a) can be redrawn as in Fig. 1(b), where,

[H(z)]�,m = H�,m(z) , [F(z)]m,� = F�,m(z)

for 0 ≤ � ≤ L − 1 and 0 ≤ m ≤ M − 1. Note that here,
the vector signals x(n) and y(n) denote, respectively, the M -fold
blocked versions [7] of the filter bank input x(n) and output y(n).
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Fig. 1. (a) Uniform overdecimated filter bank (L < M ), (b)
polyphase representation.

2. OPTIMIZING THE RECONSTRUCTION ERROR

As mentioned earlier, in general, perfect reconstruction is not pos-
sible for the overdecimated filter bank system of Fig. 1. The ques-
tion then arises as to how to best choose the analysis and syn-
thesis polyphase matrices H(z) and F(z), subject to an FIR con-
straint, such that the error in reconstruction is minimized. Here,
we will assume that the input x(n) is a cyclo wide sense station-
ary process of period M (CWSS(M )) [7], which is equivalent to
saying that its M -fold blocked version x(n) is wide sense station-
ary (WSS). Then, the M -fold blocked version of the output y(n),
namely y(n), is jointly WSS with x(n). The objective that we
seek to minimize is the expected mean squared reconstruction er-
ror between x(n) and y(n), defined as follows.

ξ � E
[||x(n) − y(n)||2] (1)

If we define the blocked filter bank error e(n) as e(n) � x(n) −
y(n) and denote the power spectral densities of x(n) and e(n) to
be Sxx(z) and See(z), respectively, then from (1), we have,

ξ = Tr

[
1

2π

∫ 2π

0

See(e
jω) dω

]
(2)

where See(z) is given by Fig. 1(b) and [7] to be,

See(z) = Sxx(z) − F(z)H(z)Sxx(z) − Sxx(z)H̃(z)F̃(z)

+ F(z)H(z)Sxx(z)H̃(z)F̃(z) (3)

Here G̃(z) � G† (1/z∗) for any G(z) [7].
We will now derive the optimal synthesis/analysis filter bank,

subject to an FIR constraint, for a fixed analysis/synthesis system.

2.1. Optimal Synthesis Bank For Fixed Analysis Bank

Suppose that the analysis bank H(z) is fixed and that the synthesis
bank F(z) is FIR of length Nf and of the form,

F(z) = zP Fc(z)

where P is an advance parameter and Fc(z) is a causal FIR system
of the form,

Fc(z) =

Nf−1∑
n=0

fc(n)z−n

Note that the impulse response fc(n) is an M ×L sequence. If we
define the M×LNf matrix f c and LNf ×L delay matrix d(z) as,

f c �
[

fc(0) fc(1) · · · fc(Nf − 1)
]

d(z) �
[

zP IL zP−1IL · · · zP−(Nf−1)IL

]T

then clearly we have F(z) = fcd(z) and all of the degrees of
freedom in choosing F(z) with the FIR constraint lie in the choice
of the constant matrix fc. From (2) and (3), we have,

ξ = Tr
[
Rxx(0) − B†f

†
c − f cB + f cAf

†
c

]
(4)

where Rxx(k) denotes the autocorrelation sequence of x(n) and
the LNf ×LNf matrix A and LNf ×M matrix B are defined as,

A � 1

2π

∫ 2π

0

d(ejω)H(ejω)Sxx(ejω)H†(ejω)d†(ejω) dω

B � 1

2π

∫ 2π

0

d(ejω)H(ejω)Sxx(ejω) dω

Using the trick of completing the square, the optimal choice of fc

which minimizes ξ in (4) is given by [2],

f c,opt = B†A# (5)

where P# denotes the Moore-Penrose pseudoinverse of the matrix
P [2]. In this case, the optimal error becomes,

ξopt = Tr
[
Rxx(0) − B†A#B

]
With the optimal choice of fc given in (5), the corresponding opti-
mal synthesis bank F(z) can be computed using F(z) = fcd(z).

2.2. Optimal Analysis Bank For Fixed Synthesis Bank

Suppose now that the synthesis bank F(z) is fixed and that the
analysis bank H(z) is FIR of length Nh and of the form,

H(z) = zQHc(z)

where Q is an advance parameter and Hc(z) is a causal FIR sys-
tem of the form,

Hc(z) =

Nh−1∑
n=0

hc(n)z−n

Note that the impulse response hc(n) is an L × M sequence and
that there are Nh such matrix coefficients. Hence, H(z) is char-
acterized by a total of LMNh degrees of freedom with the FIR



constraint in effect. In order to minimize ξ from (2) in this case,
we need to group all of these degrees of freedom together, which
can be done through the use of the vec operator [2]. For simplicity,
define the LM × 1 column vectors hn as follows.

hn � vec (hc(n)) , 0 ≤ n ≤ Nh − 1

Furthermore, define the LMNh × 1 vector h, the LM × 1 vector
v(z) and the LMNh × LM advance matrix a(z) as follows.

h �
[

h
T
0 h

T
1 · · · h

T
Nh−1

]T

v(z) � vec
(
F̃(z)Sxx(z)

)
a(z) �

[
z−QILM z1−QILM · · · zNh−1−QILM

]T

Note that h contains all of the degrees of freedom of H(z) here. Ex-
ploiting the following properties of the trace and vec operators [2],

Tr
[
A†B

]
= (vec(A))† vec(B)

vec(AXB) =
(
BT ⊗ A

)
vec(X)

where ⊗ denotes the Kronecker product operator [2], then from
(3), we have, after some algebraic manipulation,

Tr [See(z)] = Tr [Sxx(z)] − h
†
(a(z)v(z)) − (ṽ(z)ã(z))h

+ h
† (

a(z)
(
ST

xx(z) ⊗ F̃(z)F(z)
)
ã(z)

)
h

(6)
Using (6) in (2), it can be shown that we have,

ξ = Tr [Rxx(0)] − h
†
g − g†h + h

†
Ch (7)

where the LMNh × 1 vector g and LMNh × LMNh matrix C
are defined as follows,

g � 1

2π

∫ 2π

0

a(ejω)v(ejω) dω

C � 1

2π

∫ 2π

0

a(ejω)
(
ST

xx(ejω) ⊗ F†(ejω)F(ejω)
)
a†(ejω) dω

As before, using the trick of completing the square on ξ from (7),
the optimal choice of h which minimizes ξ is given by [2],

hopt = C#g (8)

In this case, the optimal error becomes,

ξopt = Tr [Rxx(0)] − g†C#g (9)

To summarize the main points of this section, we have derived
closed form expressions for the optimal synthesis/analysis bank
subject to an FIR constraint under the assumption that the cor-
responding analysis/synthesis bank is fixed. The notion of alter-
nately fixing the analysis/synthesis bank and optimizing the syn-
thesis/analysis bank will form the basis of an iterative algorithm
used to obtain an optimal analysis/synthesis pair. It should be
noted that this algorithm is not guaranteed to be globally optimal,
since it will depend on the initialization used. However, the er-
ror at each iteration is guaranteed to not increase since the algo-
rithm is greedy (i.e. at each stage in the iteration, the optimal anal-
ysis/synthesis bank is computed). We now proceed to formally
state the iterative filter bank optimization algorithm.

3. ITERATIVE ANALYSIS/SYNTHESIS FILTER BANK
OPTIMIZATION ALGORITHM

In what follows, let Fk(z), Hk(z), and ξk denote, respectively, the
synthesis bank, analysis bank, and reconstruction error at the k-th
iteration for k ≥ 0. Then, the iterative filter bank optimization
algorithm is as follows.

Initialization:

1. Select a set of prescribed values for the desired filter
bank parameters L, M , P , Nf , Q, and Nh.

2. Choose an initial synthesis bank F0(z).

3. Compute the corresponding optimal analysis bank H0(z)
and filter bank error ξ0 using (8) and (9), respectively.

Iteration: For k ≥ 1, do the following.

1. With a fixed analysis bank Hk−1(z), compute the op-
timal synthesis bank Fk(z) using (5).

2. With a fixed synthesis bank Fk(z), compute the op-
timal analysis bank Hk(z) and corresponding recon-
struction error ξk using (8) and (9), respectively.

3. Increment k by 1 and return to Step 1.

As stated earlier, since this algorithm is greedy, the error ξk

is guaranteed to be a monotonic nonincreasing function of the it-
eration index k. Since the error is always lower bounded by zero
(i.e. ξk ≥ 0), ξk is also guaranteed to have a limit as k → ∞ [7].
Simulation results provided here verify this monotonic and limit-
ing behavior. In particular, it will be seen that the error appears to
quickly converge to its limit after only a few iterations.

4. SIMULATION RESULTS

To test the proposed iterative optimization algorithm, we chose the
input process x(n) to be a WSS autoregressive process of order 4
(AR(4)) whose power spectrum Sxx(ejω) is plotted in Fig. 5. For
the filter bank parameters, we chose the following.

L = 1 , M = 3 , P = 0 , Nf = 7 , Q = Nh − 1 , Nh = 7

In other words, we opted to design one subband of a three channel
system in which the synthesis filter F0(z) is a causal FIR filter of
length MNf = 21 and the analysis filter H0(z) is an anticausal
FIR filter of length MNh = 21. Here, we chose the synthesis
filter to be causal and the analysis filter to be anticausal and of the
same length so as not introduce a temporal bias into the filter bank.
For the initialization, the initial synthesis bank F0(z) was chosen
to be a random causal paraunitary system of order (Nf − 1) [7].

A plot of the reconstruction error ξk as a function of the itera-
tion index k is shown in Fig. 2. The total number of iterations we
used here was 20. Despite this small number, it can be seen that
the error indeed is monotonic nonincreasing and appears to be ap-
proaching a limit. After the last iteration, the error was 2.0258 (i.e.
ξ19 = 2.0258). In contrast to this, for the unconstrained order or-
thonormal and biorthogonal solutions, the optimal error is 0.6539.
As we increase the order of the filters (Nf and Nh), the observed
error comes closer to the optimal error in the unconstrained cases
and may in fact surpass this error since we are not enforcing an
orthonormal or biorthogonal constraint. When we ran the same
simulations but increased Nf and Nh both to 8, the observed re-
construction error after 20 iterations was found to be 2.0079.
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In order to analyze the behavior of the solutions obtained with
our algorithm, we opted to calculate the deviation of the observed
solutions from orthonormality and biorthogonality. To measure the
deviation from orthonormality, we considered the metric,

δ⊥,k � 1

2π

∫ 2π

0

∣∣∣∣∣∣IL − F†
k(ejω)Fk(ejω)

∣∣∣∣∣∣2
2

dω

whereas to measure the deviation from biorthogonality, we used,

δBIO,k � 1

2π

∫ 2π

0

∣∣∣∣∣∣IL − Hk(ejω)Fk(ejω)
∣∣∣∣∣∣2

2
dω

In Fig. 3 and Fig. 4, we have plotted, respectively, δ⊥,k and δBIO,k as
functions of k. From Fig. 3, it can be seen that the solution ob-
tained deviates monotonically from orthonormality, whereas in Fig.
4, the solution fluctuates but appears approximately biorthogonal.

Finally, in Fig. 5, we have plotted the input spectrum Sxx(ejω)
along with the magnitude responses of the analysis and synthesis
filters H0(z) and F0(z). As can be seen, the filters appear to try to
capture the significant parts of the input spectrum while suppress-
ing the insignificant portions. This is consistent with the behavior
of the optimal orthonormal and biorthogonal solutions which com-
pact the energy of the input into the first few subbands [8, 9].

5. CONCLUDING REMARKS

An iterative algorithm for computing optimal FIR analysis/synthesis
systems for partial reconstruction in overdecimated filter banks
was proposed and shown to be useful in simulations. Future re-
search includes deriving a similar algorithm for a more general
rate-distortion type objective such as coding gain.
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