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Data-Rate Estimation for Autonomous
Receiver Operation

A. Tkacenko1 and M. K. Simon1

In this article, we present a series of algorithms for estimating the data rate of
a signal whose admissible data rates are integer base, integer powered multiples
of a known basic data rate. These algorithms can be applied to the Electra radio
currently used in the Deep Space Network (DSN), which employs data rates having
the above relationship. The estimation is carried out in an autonomous setting in
which very little a priori information is assumed. It is done by exploiting an elegant
property of the split symbol moments estimator (SSME), which is traditionally used
to estimate the signal-to-noise ratio (SNR) of the received signal. By quantizing
the assumed symbol-timing error or jitter, we present an all-digital implementation
of the SSME which can be used to jointly estimate the data rate, SNR, and jitter.
Simulation results presented show that these joint estimation algorithms perform
well, even in the low SNR regions typically encountered in the DSN.

I. Introduction

In an autonomous radio operation setting, one of the first parameters that we would like to estimate
reliably would be the data rate of the received signal. Knowledge of this parameter is required to carry
out maximum-likelihood (ML) detection [1] of other parameters such as the carrier phase or modulation
type. Though ML estimation of the data rate itself is statistically optimal, given that there is little to
no a priori knowledge of the incoming signal, this approach is often difficult if not impossible to do in
practice.

One mitigating factor for the autonomous radio under consideration is the fact that the data rates
are assumed to come from a set of known values, such as the data rates used in the Electra radio [2]. In
particular, the data rates here are assumed to be related by integer powers of an integer base B. This
assumption, as will soon be shown, allows us to estimate the true data rate based on estimates of the
signal-to-noise ratio (SNR) computed for various assumed data rates. The method for estimating the
SNR here is the split-symbol moments estimator (SSME) discussed in [3]. This estimator is appealing
in that the only parameter required for its operation is the assumed data rate. Hence, estimation of the
data rate can be done jointly with that of the SNR.
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Though this approach provides us with a way to estimate both the data rate and SNR together, it
will be shown that it is sensitive to symbol-timing error or jitter. In fact, the presence of symbol-timing
error can severly degrade the performance of this estimator. To overcome this, a modification is proposed
in which the jitter is quantized and estimated alongside the data rate and SNR. This approach, based
on a so-called generalized likelihood ratio test (GLRT) [4], is robust in the presence of symbol-timing
error and can be used to jointly estimate the data rate, SNR, and symbol-timing error all at once. The
estimates of the symbol-timing error obtained can then be used as coarse initial estimates for the data
transition tracking loop (DTTL) [5], which can be used later in the receiver to obtain a fine estimate of
the timing jitter.

A. Outline

In Section II, we review the received signal model assumptions and show how the SSME can be used
to obtain an estimate of the data rate in the absence of symbol-timing error. This leads to an algorithm
for estimating the data rate, which we present in Section II.C. A slight modification to this algorithm
which resembles a GLRT-type approach is presented in Section II.D.

In Section III, we investigate the effects of the presence of symbol-timing error on the data-rate
estimation algorithm. There, it is shown that the presence of a severe jitter can in fact cause the data-
rate estimator to unequivocally fail.

By quantizing the symbol-timing error, we show in Section IV how to modify the algorithms in Sec-
tions II.C and II.D to account for the presence of symbol-timing error. There, an all-digital implemen-
tation of the SSME-based data-rate estimation system is presented in Section IV.A. This leads to a
joint data rate/SNR/symbol-timing error estimation technique which we describe in Section IV.B and a
GLRT-type modification to this method described in Section IV.C.

Simulation results for the joint data rate/SNR/symbol-timing error estimation techniques of Sec-
tions IV.B and IV.C are presented in Section V. There, the strengths and weaknesses of each of the
proposed techniques are revealed in terms of probability of data-rate misclassification, SNR estimation
error, and jitter estimation error.

Concluding remarks are made in Section VI. There we discuss the ramifications of the proposed
algorithms on the estimation of other parameters of the received signal. In particular, we focus on how
the algorithms can be used to provide side information for estimating these parameters.

II. Data-Rate Estimation Based on the Mean of the SSME SNR Estimator

A. Signal Model and Assumptions

The baseband signal received at the autonomous radio is assumed to consist of a constant amplitude
digital data stream corrupted only by artifacts due to the conversion from IF to baseband as well as
additive noise. Mathematically, the received signal y(t) is assumed to have the following form:

y(t) = A

( ∞∑
k=−∞

dkp
(
t − (k + ε)T

))
ej(ωrt+θc) + n(t) (1)
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Here, we have the following:

A = signal amplitude

dk = kth data symbol (typically assumed to be an M -PSK symbol [1])

p(t) = data pulse shape (typically either a non-return-to-zero (NRZ) or a Manchester pulse [1])

T = symbol period of the data

ε = symbol-timing error (jitter) (assumed to be uniform over the interval [0, 1))

ωr = residual frequency offset after demodulation

θc = carrier phase (assumed to be uniform over the interval [0, 2π))

n(t) = complex additive white Gaussian noise (AWGN) [1] whose real and imaginary parts are
uncorrelated, zero mean processes with power spectral density (psd) N0/2

Prior to estimating parameters such as the carrier phase θc or the frequency offset ωr, we would like
to estimate the data rate given by R �= 1/T . As with the Electra radio [2], we assume that the set of
possible data rates {R} comes from a known finite set of values of the form

R = B�Rb, 0 ≤ � ≤ �max (2)

where B, �, and �max are nonnegative integers and Rb
�= 1/Tb is the basic (or lowest) data rate. In

other words, every possible data rate is a base power of the lowest basic rate. Here B is called the rate
base, whereas � is referred to as the rate power. We denote the maximum rate power by �max and so the
number of possible data rates is given by (�max + 1) as can be seen from Eq. (2). For the Electra radio,
we have [2],

• B = 2

• �max = 12

• Rb = 1 ksymbol/s

With regard to estimating the data rate of the signal y(t) from Eq. (1), it is assumed that we know
both the rate base B as well as the basic data rate Rb. Hence, from Eq. (2), the only ambiguity of the
data rate that exists is the rate power �. This greatly simplifies the data-rate estimation problem, since �
only varies over a finite set of known integers. In what follows, we will assume that the symbol-timing
error ε is zero. The case for which ε �= 0 will be considered in Section III.

B. Relation of the SSME SNR Estimator to Data-Rate Estimation

A block diagram of the SSME system for estimating the SNR of the signal y(t) from Eq. (1) is shown
in Fig. 1 for the case of a rectangular NRZ pulse shape. (For different pulse shapes, the only thing that
needs to be changed is that the half-symbol integrate and dump (I&D) circuits need to be replaced with
half-symbol matched filters.) Here, Ts denotes the assumed symbol period of the system, Ns denotes the
number of system observations, and ωsy, ĥ+, and ĥ− denote frequency and phase compensation factors
as described in [3].
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Fig. 1.  SSME for a rectangular NRZ pulse shape.

From [3], it is known that if the system data rate Rs
�= 1/Ts and Ns satisfy

Rs = LR, Ns = LN

for some positive integers L and N , then the mean of the SNR estimate R̂� is given as follows:

E
[
R̂�

]
=

RN + 1
LN − 1

=

R

L
+

1
LN

1 − 1
LN

=
R

L
+

1
LN

(
R

L
+ 1

)
+ O

(
1

N2

)

where R is the true SNR given by R = A2T/N0. For large N , this simplifies within O (1/N) to become

E
[
R̂�

]
≈ R

L
(3)

In other words, if the assumed data rate Rs is an integer multiple L of the true data rate R, then the
SSME still works as before, but formulates an estimate of the reduced SNR R/L, when the number of
observations is large enough. As we shall soon see, it is this property that will allow us to use the SSME
system to estimate the data rate.

To see how the SSME can be used to estimate the data rate, suppose first that the SSME operates at
the highest possible rate, which is simply Rs = B�maxRb from Eq. (2). As R = B�Rb, we have Rs = LR
where L = B�max−�. Then, from Eq. (3), we have,

E
[
R̂0

]
=

R

B�max−�
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If the SSME is operated at the next lower rate (i.e., Rs = B�max−1Rb), then we have L = B�max−�−1

and so from Eq. (3), we have

E
[
R̂1

]
=

R

B�max−�−1
= BE

[
R̂0

]

In other words, lowering the rate by one step increases the mean of the SNR estimate by a factor of B.

If we continue to run the SSME, lowering the assumed data rate Rs by a factor of B at each run, then
on the (�max − �)th run, we will obtain an SNR estimate based on the true data rate R, in which case we
have

E
[
R̂�max−�

]
= R = B�max−�E

[
R̂0

]

Note that, up to this point, we have

E
[
R̂i

]
= BiE

[
R̂0

]
(4)

In other words, the mean of the SNR estimate monotonically increases by a factor of B each time the
rate is lowered until the true data rate (and hence the true SNR) is reached.

If the assumed data rate is lowered one more step so that Rs = B�−1Rb = R/B, then the SSME will
attempt to create an SNR estimate based on B successive data symbols. This will severely degrade the
performance of the estimator since the data symbols fluctuate randomly. To see this, consider the case
where B = 2 and the data come from a binary phase-shift keying (BPSK) constellation [1]. In this case,
the signal portion of the I&D outputs y0,k and y1,k can either constructively or destructively interfere
depending on whether adjacent data symbols are the same or different, respectively. This is illustrated
in Fig. 2.

When two adjacent data symbols are the same, as in Fig. 2(a), we will get a valid contribution to the
SNR estimate, since

∣∣u+
k

∣∣2 from Fig. 1 will be an approximate measure of the signal power plus the noise
power, whereas

∣∣u−
k

∣∣2 will be a measure of the noise power. However, when two adjacent data symbols
are different as in Fig. 2(b), the opposite scenario takes place, i.e.,

∣∣u+
k

∣∣2 becomes a measure of the noise
power whereas

∣∣u−
k

∣∣2 becomes a measure of the signal-plus-noise power. This will result in a severely
degraded estimate of the SNR since half of the time adjacent data symbols will be the same and half of
the time they will be different. (The reason for this is that the data sequence is assumed to come from
an independent, identically distributed (i.i.d.) source [1].) This degradation may even lead to negative
estimates of the SNR which are clearly absurd.

For the purpose of data-rate estimation, this degradation can be used to indicate that the assumed
data rate of the SSME system was lowered excessively by one step. The elegance of this method of
estimating the data rate is the rapid degradation that is expected once the assumed data rate has been
lowered beyond the true data rate. Recall from Eq. (4) that up until the true data rate is reached, the
mean of the SNR estimate will increase by a factor of B until the true SNR is reached. Once the assumed
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data rate is lowered by one more step, however, the mean of the SNR estimate will decrease significantly.
Hence, the SSME provides us with a way to estimate the data rate via a sharp transition in the estimate
of the SNR.

An algorithm to estimate the data rate based on this phenomenon is presented below.

C. SSME Data-Rate Estimation Algorithm

(1) Assume that the data rate is the maximum rate, i.e., set Rs = B�maxRb. Run the SSME
and compute an estimate of the mean of the SNR and call it µ̂

R̂0
. Set i = 1.

(2) Lower the SSME data rate by a factor of B, i.e., set Rnew = Rold/B. Compute an estimate
of the SNR mean and call it µ̂

R̂i
.

(3) If µ̂
R̂i

≥ µ̂
R̂i−1

, then increment i by 1 and go to Step (2). Otherwise stop and estimate the

SNR to be µ̂
R̂

= µ̂
R̂i−1

and the data rate to be R̂ = B�max−(i−1)Rb.

In practice, the estimate of the SNR mean µ̂
R̂i

is computed as an ensemble average of observed SNR

estimates R̂i calculated over several blocks of the received signal. If a large enough ensemble of blocks is
used, then we will have µ̂

R̂i
≈ E

[
R̂i

]
as desired.

It should be noted that this algorithm terminates as soon as µ̂
R̂i

< µ̂
R̂i−1

. In other words, the assumed
data rate of the SSME is lowered only until the condition µ̂

R̂i
≥ µ̂

R̂i−1
is not satisfied. Although this

approach works in theory assuming that the number of observations is large enough, in practice this can
often lead to a premature termination of the algorithm depending on the value of the variance of the
SSME SNR estimate. (See [3] for more details.) For cases where the SNR is low, such as in the Deep
Space Network (DSN), this can lead to a perturbation in the calculation of the mean of the SNR such
that the condition µ̂

R̂i
< µ̂

R̂i−1
will occur before it should, causing the algorithm to halt prematurely.

Since we expect the largest SNR to occur when the assumed data rate is equal to the true data rate,
one alternative to this algorithm is to run the SSME for all data rates and estimate the data rate as
the one yielding the largest SNR mean. This forms the basis for the GLRT-type data-rate estimation
algorithm presented below.
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D. GLRT-Type SSME Data-Rate Estimation Algorithm

(1) Run the SSME for all data rates and (as before) let µ̂
R̂i

denote the estimate of the mean of
the SNR for the ith largest data rate.

(2) Define the optimal index iopt to be iopt
�= argmax

0≤i≤�max

µ̂
R̂i

. Then, estimate the true SNR and

data rate as follows:

µ̂
R̂

= µ̂
R̂iopt

R̂ = B�max−ioptRb

For a traditional GLRT estimator, the conditional-likelihood function (CLF) [4] of the observables
is maximized over the unknown parameters, as opposed to being averaged over them as is done in ML
estimation. In that sense, this algorithm is a GLRT-like approach in that the SNR is chosen to be
the maximum value obtained over the unknown parameter of the data rate. The data rate, in turn, is
estimated as the rate which yields the largest SNR mean.

As will be shown in Section V through simulations, the GLRT-type data-rate estimation algorithm
outperforms the algorithm of Section II.C for low SNR when the true data rate is the lowest data rate.
The reason for this is that this algorithm calculates an estimate of the SNR for all rates and doesn’t
prematurely terminate as the previous algorithm may do.

Prior to showing simulation results for these algorithms, we first investigate the effects of the presence
of symbol-timing error on estimating the data rate. There, we show that these effects can seriously
adversely affect the performance of the above proposed data-rate estimation algorithms. In Sections IV.B
and IV.C, we present modifications to the algorithms of Sections II.C and II.D, respectively, which account
for the presence of symbol-timing error.

III. Effects of Symbol-Timing Error on Estimating the Data Rate

In the previous section, we assumed that the symbol-timing error or jitter ε was zero. From [3], it
is known that the presence of jitter will have the effect of degrading the estimate of the SNR of the
SSME. Heuristically speaking, the reason for this is that the half-symbol I&D outputs will contain the
contributions of two adjacent data symbols. As the data symbols are i.i.d., the signal components of the
I&D outputs will be degraded similarly to the way in which they were degraded in Section II.B when the
assumed data rate was lower than the true data rate. This effect becomes more pronounced as ε reaches
its worst case value of 1/2.

To mitigate the effects of the presence of a nonzero ε, the approach suggested in [3] was to increase the
data rate of the SSME system by a factor of L. By doing so, the vast majority of the half-symbol I&D
outputs contain contributions due to only one data symbol as desired. The effects due to those containing
contributions from two adjacent data symbols becomes negligible and so the oversampled estimator is
then robust to the presence of jitter.

This principle of oversampling is used in the data-rate estimation algorithms of Section II. There, the
oversampling factor is reduced at each stage until the largest SNR mean is obtained. The problem with
these algorithms in the presence of symbol-timing error is that the SNR will appear to be degraded once
the assumed data rate is lowered to the true data rate and not afterwards. In other words, for nonnegligible
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values of the jitter, the largest SNR mean obtained will not occur when the SSME is operating at the true
data rate, and so the data rate will be estimated erroneously. Furthermore, the estimated SNR will be
far from its true value (approximately off by a factor of a power of B), since the data rate was incorrectly
classified.

As an example to illustrate the adverse effects of symbol-timing error on the estimation of the data
rate, consider the special case where ε = 1/4 and we have BPSK data as in the example in Section II.B.
Suppose that the system data rate of the SSME is equal to that of the true data rate. Then depending
upon whether adjacent data symbols are the same or different, the signal portions of the I&D outputs
y0,k and y1,k will be unaltered or degraded, respectively, as shown in Fig. 3.

Just as with the example considered in Section II.B, when two adjacent data symbols are the same as
in Fig.3(a), we will obtain a valid contribution to the SNR estimate, since y0,k and y1,k will contain the
same signal component support and polarity. However, when the adjacent data symbols are different as
in Fig. 3(b), then we will have y0,k = 0, which will severely degrade the SNR estimate. The reason for
this is that in this case, neither

∣∣u+
k

∣∣2 will be a good measure of the signal plus noise powers, nor will∣∣u−
k

∣∣2 be a good measure of the noise power. Instead,
∣∣u+

k

∣∣2 and
∣∣u−

k

∣∣2 will be measures of essentially the
same quantity, namely a combination of half of the signal power together with the full noise power. This
will result in a poor estimate of the SNR.

�

dk−2

dk−1

t

(k − 1) Ts

(
k − 1

2

)
Ts kTs

(
k − 3

4

)
Ts

y0,k

�

�

y1,k
�

�

dk−2 dk−1

t

(k − 1) Ts

(
k − 3

4

)
Ts

(
k − 1

2

)
Ts kTs

y0,k

�

y1,k

�

(b)(a)

Fig. 3.  Signal component of the I&D outputs y0,k and y1,k when the symbol-timing error is ε = 1/4 for the 
case of (a) identical and (b) different adjacent data symbols.

A. Accounting for the Symbol-Timing Error

To account for the presence of symbol-timing error, typically a digital transition tracking loop (DTTL)
is used [5]. However, a typical DTTL requires knowledge of both the carrier phase and data rate in order
to operate properly. Thus, it appears as though there is a dilemma. The data-rate estimation algorithms
of Sections II.C and II.D cannot reliably estimate the data rate (or the SNR for that matter) in the
presence of symbol-timing error, and the symbol-timing error cannot be estimated without knowledge of
the data rate (as well as the carrier phase).

To overcome this dilemma, we will exploit the fact that on average, the presence of symbol-timing
error only has a deleterious effect on the SNR estimate as shown in [3]. The approach that will be taken
here is to quantize the assumed symbol-timing error to a finite number of levels. Then, for each data
rate, the SSME is run for each quantized jitter value. The SNR is then estimated to be the largest SNR
obtained while the jitter is estimated as the value which yielded the largest SNR mean. In this way, not
only do we obtain an improved estimate of the SNR for each assumed data rate, but we also obtain a
coarse estimate of the symbol-timing error itself.
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Hence, we generalize the data-rate estimation algorithms of Sections II.C and II.D to jointly estimate
the data rate, SNR, and symbol-timing error. Even with a coarse quantization of the symbol-timing
error, this leads to a rather robust estimation of the data rate in the presence of jitter, as will be shown
through simulations in Section V. Once a reliable estimate of the data rate has been made, the DTTL
can then be used to obtain a finer estimate of the symbol-timing error. Furthermore, the coarse estimate
of the jitter can be used as an initial condition for the DTTL, which may reduce the computation time
required for convergence.

It should be noted that this approach is different from the one suggested in [3] in which oversampling
is used to obtain a coarse estimate of the symbol-timing error. There, the data rate is assumed to be
known and the jitter is estimated by exploiting the fact that the presence of symbol-timing error becomes
less noticeable as the oversampling ratio L → ∞. This approach doesn’t necessitate a modification to
the SSME structure shown in Fig. 1, whereas the method suggested here does, as we show in the next
section.

IV. Quantization of the Symbol-Timing Error

As the data rate of the received signal is not known a priori, at the receiver, we are only at liberty
to independently quantize the symbol-timing error corresponding to one specific data rate. The reason
for this is that by quantizing the jitter corresponding to one data rate, the quantized jitter values for
the remaining rates are automatically determined. In order to ensure that we have, say, at least N

ε̂,b

quantization levels for all rates, we must quantize the symbol-timing error corresponding to the highest
rate by at least N

ε̂,b
levels. The reason for this is that if the highest data-rate symbol-timing error is

quantized to N
ε̂,b

steps, then the number of jitter steps at the next lowest rate will be BN
ε̂,b

. By inductive
argument, the number of quantization levels of the symbol-timing error at the kth lowest data rate will
be BkN

ε̂,b
.

Following this logic, at the receiver, the symbol-timing error ε will be assumed to be uniformly quan-
tized to ε̂ = n/N

ε̂,s
for some 0 ≤ n ≤ N

ε̂,s
− 1, where we have

N
ε̂,s

= B�max−�sN
ε̂,b

(5)

Here, N
ε̂,b

denotes the basic number of jitter quantization steps (i.e., the number of steps at the highest
data rate), whereas N

ε̂,s
denotes the system number of jitter quantization steps (i.e., when the assumed

data-rate power is �s).

As the number of quantization steps increases exponentially as the assumed data rate decreases, it
is tempting to think that we will always obtain a better estimate of the data rate, SNR, and symbol-
timing error for lower true data rates than for higher rates. However, this is offset by the fact that for a
fixed observation time interval, we will obtain an exponentially larger number of observations for higher
true data rates than for lower ones. Hence, we have an implicit trade-off between the number of signal
observations and the number of jitter quantization levels for each true data rate.

One of the advantages of uniformly quantizing the symbol-timing error to N
ε̂,s

steps as in Eq. (5) is
that it leads to an efficient all-digital implementation of the SSME system, as we now proceed to show.
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A. All-Digital Implementation of the SSME-Based Data-Rate Estimator

Prior to processing the received signal y(t) from Eq. (1) through the SSME, suppose that it is finely
integrated and sampled to obtain the discrete-time signal ym using the system of Fig. 4. Here, Tmin is
the time resolution period given to be

Tmin
�=

Tb

B�maxN
ε̂,b

=
1

N
ε̂,b

(B�maxRb)

Note that Tmin is N
ε̂,b

times smaller than the shortest possible data symbol interval. Equivalently, 1/Tmax

is N
ε̂,b

times larger than the highest possible data rate, as can be seen from Eq. (2).

To generalize the SSME structure of Fig. 1 to account for the quantized symbol-timing error, it is also
necessary to generalize it to account for computing an ensemble average of the observed SNRs. Recall
from Section II.C that an ensemble average of the observed SNRs is required in order to estimate the
mean of the SNR of the SSME system. To do this, we partition the discrete-time signal ym into blocks
over which the SNR is to be computed. For each block, the SSME computes an estimate of the SNR,
and then an ensemble average of the SNR is computed over the blocks.

Let No denote the basic number of symbols to observe per block to obtain an SNR estimate (i.e., the
number of symbols to observe per block at the lowest rate), and let Nb denote the number of blocks over
which to compute an ensemble average of the SNR. Then, an all-digital implementation of the SSME
system of Fig. 1 that accounts for the quantized symbol-timing error and ensemble averaging of the
observed SNRs is shown in Fig. 5.

There are several things to note regarding the structure shown in Fig. 5. First, notice that the I&D
half-symbol integrators from Fig. 1 can be replaced with discrete summations, which is analogous to the
sampled version of the SNR estimator discussed in [3]. Furthermore, note that all of the signals starting
from the half-symbol integrator outputs are indexed with a semicolon followed by n. This notation was
chosen here to reflect the fact that these quantities are parameterized by the quantized symbol-timing
error ε̂ = n/N

ε̂,s
, where the parameter n is an integer in the range

0 ≤ n ≤ N
ε̂,s

− 1 ⇐⇒ 0 ≤ n ≤ B�max−�sN
ε̂,b

− 1

Finally, note that to form a single SNR estimate a total of B�sNo samples are squared and accumulated.
This was chosen as such here to keep the total observation time interval or epoch per block fixed.

By tracing the temporal indices m, k, and q from Fig. 5 backwards, it can be seen that in order to
have 0 ≤ q ≤ Nb − 1 as desired, we need

0 ≤ k ≤
(
B�sNo

)
Nb − 1

1

Tmin

(m+1)Tmin

mTmin

( . )dt  y(t) ym∫

Fig. 4.  System to finely integrate and sample the continuous-

time signal y(t) to obtain the high-rate discrete-time signal ym.
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Fig. 5.  Digital implementation of the SSME-based data-rate estimation system that accounts for a quantized symbol-

timing error and ensemble averaging of the observed SNRs.

From this, it is clear that k must vary over an interval of Nb blocks each of size B�sNo, as desired and
expected. Finally, from this range of the index k, in order to be able to accommodate all N

ε̂,s
values of

the parameter n, it can be shown that the time index m should vary over the interval

0 ≤ m ≤
(
N

ε̂,b
B�max

)
(NoNb + 1) − 2 (6)

To incorporate the estimation of the quantized symbol-timing error, the only required modification
to the data-rate estimation algorithms of Sections II.C and II.D is that the SNR estimate µ̂

R̂;n
must be

calculated for each n. For a fixed assumed data rate, the SNR is chosen to be the largest value of µ̂
R̂;n

while n is chosen to be the maximizing value of µ̂
R̂;n

. This modification is described in the following
algorithms.

B. SSME Data Rate/SNR/Symbol-Timing Error Estimation Algorithm

(1) Calculate the sequence ym from Fig. 4 over the range of values given in Eq. (6).

(2) Run the SSME of Fig. 5 at the highest data rate, Rs = B�maxRb. Calculate µ̂
R̂;n

for all n

and define n0
�= argmax

n
µ̂

R̂;n
and µ̂

R̂0

�= µ̂
R̂;n0

. Set i = 1.

(3) Lower the assumed data rate by one step, i.e., set Rs,new = Rs,old/B, and run the SSME.
Calculate µ̂

R̂;n
for all n and define ni

�= argmax
n

µ̂
R̂;n

and µ̂
R̂i

�= µ̂
R̂;ni

.

(4) If µ̂
R̂i

≥ µ̂
R̂i−1

, increment i by 1 and go to Step (3). Otherwise, estimate the data rate,
SNR, and symbol-timing error as follows:

R̂ = B�max−(i−1)Rb

µ̂
R̂

= µ̂
R̂i−1

ε̂ =
ni−1

B�max−(i−1)N
ε̂,b

− 1
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As mentioned above, for each assumed data rate, the SSME is run for each value of the quantized
symbol-timing error. The SNR and jitter for that data rate then are estimated to be the largest SNR
and the jitter value leading to this maximum SNR. Like the algorithm of Section II.C, this data-rate
estimation technique halts as soon as the condition µ̂

R̂i
≥ µ̂

R̂i−1
is not satisfied. This may lead to a

premature termination of the algorithm, as described in Section II.C. To prevent a premature halting of
the algorithm, a GLRT-type modification to the algorithm of Section IV.B is proposed, similar to what
was proposed in Section II.D.

C. GLRT-Type SSME Data Rate/SNR/Symbol-Timing Error Estimation Algorithm

(1) Calculate the sequence ym from Fig. 4 over the range of values given in Eq. (6).

(2) Run the SSME for all data rates and all possible quantized symbol-timing error values.
Let µ̂

R̂;(i,n)
denote the estimate of the mean of the SNR for the ith largest data rate with

quantized jitter value n. (Here we have 0 ≤ i ≤ �max − 1 and 0 ≤ n ≤ B�max−iN
ε̂,b

− 1.)

(3) Let iopt and nopt denote the indices for which µ̂
R̂;(i,n)

reaches its maximum value, i.e., iopt

and nopt are such that µ̂
R̂;(iopt,nopt)

= max
i,n

µ̂
R̂;(i,n)

. Then, estimate the data rate, SNR, and

symbol-timing error as follows:

R̂ = B�max−ioptRb

µ̂
R̂

= µ̂
R̂;(iopt,nopt)

ε̂ =
nopt

B�max−ioptN
ε̂,b

− 1

This GLRT-type estimation algorithm is based on the principle that the true data rate and symbol-
timing error should yield the largest value of the mean of the SNR. Incorrect values of these quantities,
on the other hand, should lead to a degraded estimate of the SNR mean. As opposed to the previous
algorithm, which lowers the assumed data rate until the SNR decreases, this algorithm computes the
SNR for all data rates and all jitter values. The advantage to this is that it can prevent the algorithm
from prematurely terminating, which can easily happen when the true SNR is low. This is especially the
case when the true data rate is low, as we show through simulations in the next section.

V. Simulation Results for the SSME-Based Estimation Algorithms

In order to properly evaluate the performance of the estimation algorithms of Sections IV.B and IV.C,
we must consider different metrics for each of the parameters that we wish to estimate. Prior to presenting
simulation results, we introduce these metrics and justify their usage here.

A. Performance Metrics Used for Evaluating the Estimation Algorithms

For all of the following measures used, we assume that the estimation algorithms have each been run
for a total of Nt trials. Parameters estimated at the nth trial (where 0 ≤ n ≤ Nt − 1 for simplicity)
are denoted with a superscript surrounded by parentheses. For example, the data rate estimated at the
nth trial is denoted as R̂(n).

1. Probability of Data-Rate Misclassification. In order to assess the performance of the al-
gorithms with respect to estimating the data rate, one valid measure of performance is the empirical
probability of data-rate misclassification, which is defined as

12



Pm
�=

1
Nt

Nt−1∑
n=0

I
(
R̂(n) �= R

)
(7)

where I (X) is an indicator function that is unity if the event X is true and zero if X is false. From
Eq. (7), it is clear that 0 ≤ Pm ≤ 1 and that Pm is a linear measure of the number of times each algorithm
fails to estimate the data rate correctly.

2. Mean-Squared SNR Decibel Estimation Error. To properly gauge the performance of the
estimation algorithms with respect to estimating the SNR, we seek a metric that penalizes the error
between the estimated and true SNRs based on the value of the true SNR. In particular, small differences
in SNR should be penalized more so if the true SNR is small than if it is large. For example, if the true
SNR is 1 and the SNR is estimated to be 0.7, then it is reasonable to penalize this error more so than if
the true SNR was 100 and the estimated SNR was 97.

One metric that penalizes the error in the SNR in such a way is the mean-squared error between the
estimated and true SNRs in decibels (dB). This measure is the mean-squared SNR decibel estimation
error and is given as follows:

ξR
�=

1
Nt

Nt−1∑
n=0

∣∣∣µ̂(n)

R̂
(dB) − R (dB)

∣∣∣2 =
1
Nt

Nt−1∑
n=0

∣∣∣∣∣∣10 log10

⎛⎝ µ̂
(n)

R̂

R

⎞⎠∣∣∣∣∣∣
2

(8)

From Eq. (8), it is clear that for low true SNR, a deviation from the true SNR is penalized more so than
for high true SNR. For the example from above, the mean-squared SNR decibel error for the case of a
true SNR of 1 and an estimated SNR of 0.7 is 2.399, whereas the error for the case of a true SNR of 100
and an estimated SNR of 97 is 0.017.

3. Mean-Squared Minimum Distance Symbol-Timing Estimation Error. In order to quantify
the performance of each of the algorithms with respect to symbol-timing error, it is tempting to consider
a simple mean-squared error measure between the true and estimated symbol-timing error, which is given
as

ξε =
1
Nt

Nt−1∑
n=0

∣∣∣ε − ε̂ (n)
∣∣∣2 (9)

The problem with using the metric given in Eq. (9) is that both symbol-timing errors are assumed to be
in the interval [0, 1). However, in reality, each symbol-timing error can be shifted by any integer amount
without loss of generality. For example, if the estimated jitter is ε̂ (n) = 0.75, this is also equivalent to
ε̂ (n) = · · · ,−1.25,−0.25, 0.75, 1.75, 2.75, · · ·. This shifting property can cause the metric given in Eq. (9)
to be overly pessimistic in certain cases.

To see this, consider the case where the true symbol-timing error is ε = 0.1 and the estimated value
is ε̂ (n) = 0.9. Using Eq. (9), we find that ξε = 0.64. However, this error is overly pessimistic, since there
is a shifted version of the estimated symbol-timing error (namely, ε̂ (n) = −0.1) that is closer to the true
value of ε = 0.1. This is illustrated in Fig. 6. Using this shifted value of ε̂ (n), we obtain ξε = 0.04, which
is a more appropriate value for the error between ε and ε̂ (n) in this case.
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Fig. 6.       E x a m p l e   o f   a   p e s s i m i s t i c   v a l u e   f o r   t h e   j i t t e r   e s t i m a t i o n   e r r o r    
  
  f r o m   Eq. ( 9 ) .  ξε

0.2

t

0.8

1(n) = 0.9ε = 0.1ε(n) = −0.1 0ε

Thus, a more appropriate measure of the jitter-estimation error is to find the minimum distance
between the true and estimated jitters as the jitters vary over all possible shifted values. Equivalently, we
can fix the true jitter to be in the interval [0, 1) and find the shifted version of the estimated jitter that
is closest to the true jitter. In other words, a more appropriate measure of the jitter-estimation error is
to replace each term of the summation in Eq. (9) with a term of the form

min
�∈ZZ

{∣∣∣ε − (
� + ε̂ (n)

)∣∣∣2} (10)

where we assume ε, ε̂ (n) ∈ [0, 1). Fortunately, under the assumption that ε, ε̂ (n) ∈ [0, 1), we need not
look over all values of � ∈ ZZ in Eq. (10). In particular, we need only look for the minimum value over
� = −1, 0, 1. To see this, note that we have

0 ≤ ε < 1, 0 ≤ ε̂ (n) < 1

from which we conclude

−1 < ε − ε̂ (n) < 1

By adding −� to all sides of the inequality, we have

−� − 1 < ε −
(
� + ε̂ (n)

)
< −� + 1

Now for |�| ≥ 2, it can be shown that

∣∣∣ε − (
� + ε̂ (n)

)∣∣∣2 > 1 >
∣∣∣ε − ε̂ (n)

∣∣∣2
and so the term corresponding to � = 0 always has a smaller magnitude than those corresponding to
|�| ≥ 2. Hence, the terms corresponding to |�| ≥ 2 can be ignored in the expression of Eq. (10), leaving
only � = −1, 0, 1.

Thus, to ascertain the performance of the algorithms with respect to symbol-timing error, we opted
to use the following mean-squared minimum distance symbol-timing estimation error:

ξε
�=

1
Nt

Nt−1∑
n=0

min
�=−1,0,1

{∣∣∣ε − (
� + ε̂ (n)

)∣∣∣2} (11)
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The minimization in each term of Eq. (11) ensures that we choose the closest (left-, neutral-, or right-
shifted) estimated jitter to the true one.

We now proceed to present simulation results for the SSME-based data-rate estimation algorithms of
Sections IV.B and IV.C.

B. Behavior of the SSME-Based Data-Rate Estimation Algorithms as a Function of SNR

For all of the simulations considered here, from Eq. (1), the data constellation dk used was quadrature
phase-shift keying (QPSK) [1], and the residual frequency offset ωr was set to zero. To test the data-rate
estimation algorithms of Sections IV.B and IV.C, we opted to choose the following input parameters:

• B = 2

• �max = 3

• N
ε̂,b

= 2

• No = 64

• Nb = 16

It should be noted that the choice of No and Nb here implies that we have an observation time epoch
equal to NoNb = 1, 024 lowest rate symbols. This time epoch was fixed here for all possible data rates in
order to reflect the fact that we are assumed to have no a priori knowledge of the data rate. As such, this
intuitively implies that on average the SSME will be able to estimate the SNR more accurately for higher
data rates. The reason for this is that, for a fixed time epoch, the SSME will have more observations the
higher the data rate becomes. This will result not only in an increase in the accuracy of the SNR estimate
for higher data rates but also often in a better probability of misclassification and jitter-estimation error,
as will soon be shown.

For a preliminary set of simulations, suppose that the symbol-timing error is zero (i.e., ε = 0) and the
true SNR R is varied from −10 dB to −3 dB.2 In Fig. 7, we have plotted the probability of misclassification,
Pm from Eq. (7), as a function of SNR using (1) the algorithm of Section IV.B and (2) the algorithm
of Section IV.C. As can be seen, the algorithm of Section IV.B outperforms that of Section IV.C for
the higher data rates, but fails to do so for the lower ones. The reason for this is that the algorithm
of Section IV.B often will prematurely terminate, which is beneficial for higher true data rates and
detrimental for lower true ones.

One unusual phenomenon that can be observed from Fig. 7 is that the curves cross for different values
of the true data rate. This appears counterintuitive, since we should expect the higher data rates to be
classified correctly more often than the lower data rates (as there are a larger number of observations in
these cases). However, when the true SNR is low, the factor corresponding to the number of observations
in the expression for the mean of the SSME SNR estimate becomes nonnegligible (see Eq. (3) for more
details). This most likely is the reason that the curves cross at lower true SNR. At higher true SNR, the
mean of the SNR estimate becomes less sensitive to the number of observations and so we expect the
higher rates to be classified correctly more often than the lower rates. This is indeed the case here as can
be seen in Fig. 7 when the true SNR is near −3 dB.

2 The reason for varying the true SNR over such low values is to reflect the fact that, in the DSN, the SNR typically is
rather small.
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In order to accurately compare the two algorithms, one figure of merit that can be used is the average
probability of misclassification, which we denote here by Pm. If p� denotes the probability that the true
data rate is R = B�Rb and Pm|� denotes the probability of misclassification given that the true data rate
is B�Rb, then by the theorem of total probability [6], we have

Pm =
�max∑
�=0

p�Pm|� (12)

Assuming that the true data rates are equiprobable (i.e., p� = 1/(�max + 1) for all �), Eq. (12) becomes

Pm =
1

�max + 1

�max∑
�=0

Pm|�

A plot of Pm as a function of the true SNR R is shown in Fig. 8 for equiprobable data rates. From this,
it can be seen that, for lower SNR, the algorithm of Section IV.B yields a better average probability of
misclassification, whereas for higher SNR (above about −7.3 dB), the algorithm of Section IV.C performs
better. Since the desired SNR for a DSN-type application is −6 dB or greater (in order to achieve good
performance from the turbo codes expected to be used), this implies that the GLRT-type algorithm of
Section IV.C is best suited here.

To further compare the two algorithms, in Fig. 9 we have plotted the observed mean-squared SNR
decibel estimation error, ξR from Eq. (8), for the algorithms of (1) Section IV.B and (2) Section IV.C.
As can be seen, the estimation error always decreased monotonically with SNR for each data rate.
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Furthermore, it can be seen that the error decreased almost geometrically as the data rate increased.
These two phenomena are consistent with the fact that the SSME yields a better estimate of the SNR as
both the true SNR and number of observations increase.

Analogous to the average probability of misclassification Pm given in Eq. (12), we can quantitatively
compare both algorithms in terms of the average mean-squared SNR decibel estimation error ξR given
by

ξR =
�max∑
�=0

p�ξR|� (13)

where ξR|� is the SNR decibel error given that the true data rate is R = B�Rb. Assuming equiprobable
data rates in Eq. (13), a plot of ξR as a function of the true SNR R is shown in Fig. 10 for both algorithms.
As can be seen, the GLRT-type algorithm of Section IV.C always outperformed that of Section IV.B,
although for larger SNR (near −3 dB) the two performed nearly identically. This is consistent with the
intuition that the two algorithms should be performing increasingly similarly as the true SNR increases
since the SNR estimates are more accurate in this case.

As a final measure of comparison between the two algorithms, the observed mean-squared minimum
distance symbol-timing estimation error, ξε from Eq. (11), is shown in Fig. 11. From this, it can be seen
that the algorithm of Section IV.B yielded a good estimate for the higher data rates but suffered for
the lower ones. This perhaps is due to the inherent premature halting possibility of the algorithm, as
discussed earlier. For the algorithm of Section IV.C, it can be seen that, at low SNR, the error is large
for all rates and that, with the exception of the lowest data rate, for a fixed SNR the error decreased as
the rate increased.

As before, to quantitatively compare both algorithms, we can do so by computing the average mean-
squared minimum distance symbol-timing estimation error, ξε, given by
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ξε =
�max∑
�=0

p�ξε|� (14)

where ξε|� denotes the symbol-timing estimation error given that the true data rate is R = B�Rb.
Assuming equiprobable data rates in Eq. (14), a plot of ξε as a function of the SNR R is shown in
Fig. 12. From this, it can be seen that, for low SNR, the algorithm of Section IV.B notably outperformed
the algorithm of Section IV.C. Above about −7.1 dB, however, the opposite scenario took place. Since
the desired mode of operation for the autonomous radio is above −6 dB, this implies that once again
the GLRT-type algorithm of Section IV.C is best suited here. It should be noted, however, that these
algorithms can be used only to obtain a coarse estimate of the symbol-timing error and that, once the
data rate has been successfully classified, a finer estimate of the jitter can be obtained through the use
of a DTTL [5].

C. Behavior of the SSME-Based Data-Rate Estimation Algorithms as a Function
of Symbol-Timing Error

In the previous section, we considered the performance of the data-rate estimation algorithms of
Sections IV.B and IV.C for a varying SNR and a fixed symbol-timing error. Here, we investigate the
performance of the algorithms as a function of the jitter for fixed SNR. Since the target SNR for the
autonomous radio for the DSN is above −6 dB (in order to achieve good performance from the turbo
codes to be used for error correction), the SNR here was fixed at −6 dB.

To illustrate the effects of quantizing and coarsely estimating the symbol-timing error on estimating the
data rate, suppose that the true data rate is R = 2Rb. Plots of the observed probability of misclassification
are shown in Fig. 13 for (1) the algorithm of Section IV.B and (2) the algorithm of Section IV.C. As can
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be seen, for both methods the probability appears to oscillate back and forth as the jitter varies. It can
be seen that both plots appear to have eight equispaced local maxima. The reason for this is due to the
quantization of the symbol-timing error. Recall that, from Section V.B, the basic number of quantization
levels was N

ε̂,b
= 2. This implies that at the true data rate R = 2Rb = 21Rb the symbol-timing error is

quantized to N
ε̂,s

= 2�max−1N
ε̂,b

= 22N
ε̂,b

= 8 steps by using Eq. (5). These steps are equispaced about
the interval [0, 1) and are of the form n/8 for 0 ≤ n ≤ 7. Every time each of the data-rate estimation
algorithms is run, each method chooses the quantized value of the jitter that is the “best fit” in some sense
to the true jitter. As the true jitter itself is varied, it is evident that there will be ambiguous values of
the symbol-timing error that occur directly in between the quantized values. This is illustrated in Fig. 14
for the case of 8 quantization steps here. From Fig. 13, it is clear that the probability of misclassification
becomes locally maximal almost precisely at these ambiguous jitter-value locations.

To further observe the effects of varying the symbol-timing error, a plot of the observed mean-squared
SNR decibel error is shown in Fig. 15 for both algorithms. Note that, unlike the probability of misclassi-
fication, for both methods the error in estimating the SNR remains approximately constant as the jitter
is varied. The reason for this robustness most likely comes from the fact that, with a sufficient number of
quantization steps, the “best fit” jitter value to the true one chosen for the SSME will incur only a small
degradation in the mean of the SNR estimate. See [3] for more details as to the quantitative amount of
this degradation.

As a final measure of the effects of varying symbol-timing error on the data-rate estimation algorithms
of Sections IV.B and IV.C, a plot of the observed mean-squared minimum distance jitter-estimation
error for each algorithm is shown in Fig. 16. Like the probability of misclassification plots of Fig. 13,
it can be seen that the error for both algorithms oscillates back and forth as the jitter varies. Also as
before, each plot appears to have eight equispaced local maxima that occur approximately at the locations
corresponding to the ambiguous values of the symbol-timing error. This observation is consistent with the
intuition that the estimation process should suffer the most degradation at the ambiguous jitter values.
One new phenomenon that can be observed from the plots of Fig. 16 is that, for both algorithms, the
error appears symmetric about ε = 1/2 and seems to generally increase as ε → 1/2 from either direction.
The reason for this phenomenon is not clear at this point and requires further investigation.

At this point, a few comments are in order. Had the above simulations been run for another true
data rate, say at R = 4Rb, then there would have been 4 ambiguous jitter values instead of 8, since
N

ε̂,s
= 23−2N

ε̂,b
= 4 in this case. The same observations regarding the performance metrics would still

hold true, with the exception that the degradation in performance due to fewer jitter quantization steps
would be more pronounced. In general, with a true data rate of R = B�Rb, the number of symbol-timing
error quantization steps at the true data rate is N

ε̂,s
= B�max−�N

ε̂,b
, from Eq. (5). This suggests that an
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using the algorithms of (a) Section IV.B and (b) Section IV.C. (The true data rate is 

R = 2Rb.)
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Fig. 16.  Mean-squared minimum-distance symbol-timing estimation error as a 

function of the jitter using the algorithms of (a) Section IV.B and (b) Section IV.C. 

(The true data rate is R = 2Rb.)
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implicit trade-off in performance exists between the data rate and the granularity of the symbol-timing
error. For a fixed observation time epoch of the received signal, the higher the data rate, the more
observations we have to help improve the estimate of the mean of the SNR of the SSME. However, at the
same time, we also have an increased sensitivity to the symbol-timing error in this case. Conversely, the
lower the data rate, the fewer samples there are to estimate the mean of the SNR. However, at the same
time, we also have more robustness with respect to the symbol-timing error.

The effect of increasing the basic number of symbol-timing error quantization steps N
ε̂,b

is to increase
the number of ambiguous jitter values but at the same time to decrease the degradation at these values.
Thus, the estimation becomes more robust in this case. However, this comes at the price of increased
computational complexity, as well as an increase in the oversampling rate of the received signal. For
the Electra radio [2], the sampling rate is 4 times the highest data rate, and so the maximum value of
N

ε̂,b
that can be used for this system is N

ε̂,b
= 4. Although this value may appear to be small, for most

applications this should be sufficient for estimating the data rate and SNR reasonably well. As mentioned
above, once the data rate has been classified correctly, the symbol-timing error can be finely estimated
through the use of a DTTL [5].

VI. Concluding Remarks

The joint data rate/SNR/symbol-timing error estimation algorithms presented here were shown to be
robust to the effects of jitter and performed well even in the low-SNR region typically seen in the DSN.
Furthermore, due to the special structure of the SSME, little to no a priori knowledge is required for
the algorithms to operate properly. For example, as the SSME computes an estimate of the SNR based
on accumulated magnitude-squared quantities, the algorithms are applicable to any constant modulus
constellation, including M -PSK for any M . This applicability is especially important in an autonomous
receiver setting.

In addition to estimating the data rate, SNR, and jitter, the algorithms presented here also can be
generalized to estimate the pulse shape. Though only rectangular NRZ pulses were considered here,
the algorithms can easily be generalized to estimate any piecewise constant pulse shape such as the
Manchester pulse. This is accomplished by first replacing the half-symbol integrators in Fig. 5 with
digital half-symbol matched filters, where the matched filters correspond to the possible pulse type being
used. The SSME-derived algorithms then are run as before for each type of pulse shape. Similar to the
way in which the symbol-timing error was estimated, the pulse shape yielding the largest SNR is classified
as the true pulse shape. This results in a GLRT-type estimate of the pulse shape.

Note that the approach taken here for estimating the data rate autonomously consisted of simultane-
ously estimating the SNR and symbol-timing error along with the data rate. By constructing an SSME
for each possible pulse shape, we can extend this simultaneous estimation to include classification of the
pulse shape, as discussed above. The impetus for this simultaneous estimation of multiple parameters is
that, in an autonomous setting, it is difficult, if not impossible, to estimate any one parameter indepen-
dently without knowledge of any of the others. As a result, the algorithms proposed here are intended
to serve as a coarse estimate of the desired parameters. Once these coarse estimates have been made,
finer estimates of several of these parameters can then be obtained using more specialized techniques that
require more side information. For example, from the coarse estimates of the data rate, SNR, jitter, and
pulse shape, we can obtain a finer estimate of the symbol-timing error using a DTTL [5] and a more
confident estimate of the pulse shape using the statistically optimal ML criterion [7].
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