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Modeling the Atmospheric Phase Effects of a Digital
Antenna Array Communications System

A. Tkacenko1

In an antenna array system such as that used in the Deep Space Network (DSN)
for satellite communication, it is often necessary to account for the effects due to the
atmosphere. Typically, the atmosphere induces amplitude and phase fluctuations
on the transmitted downlink signal that invalidate the assumed stationarity of the
signal model. The degree to which these perturbations affect the stationarity of
the model depends both on parameters of the atmosphere, including wind speed
and turbulence strength, and on parameters of the communication system, such
as the sampling rate used. In this article, we focus on modeling the atmospheric
phase fluctuations in a digital antenna array communications system. Based on a
continuous-time statistical model for the atmospheric phase effects, we show how to
obtain a related discrete-time model based on sampling the continuous-time process.
The effects of the nonstationarity of the resulting signal model are investigated
using the sample matrix inversion (SMI) algorithm for minimum mean-squared
error (MMSE) equalization of the received signal.

I. Introduction

In a typical antenna array-based digital communications system, such as that used in the Deep Space
Network (DSN), it is often necessary to account for effects due to the atmosphere. The atmosphere,
which comprises the medium between the transmit antenna (typically a satellite in orbit) and the receive
antennas (typically an array of terrestrial-based antennas), induces amplitude and phase fluctuations on
the transmitted downlink signal [1]. These fluctuations or perturbations are often time-varying in nature,
invalidating the stationarity of the signal model that is commonly assumed.

If these fluctuations vary slowly enough, then commonly used adaptive algorithms for combining the
received signals, such as the sample matrix inversion (SMI) or least mean-squares (LMS) algorithms [2],
can be used to track the variations. On the other hand, if the atmospheric effects vary too quickly, then it
is often difficult, if not impossible, to track the fluctuations and recover the transmitted signal. The degree
of nonstationarity due to the effects of the atmosphere largely depends on properties of the atmosphere
itself, including wind speed and turbulence strength, as well as properties of the digital communications
system employed, such as the sampling rate used at the receiver.
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In this article, we analyze the effects of atmospheric phase variations on a digital antenna array
communications signal. The continuous-time atmospheric phase processes are modeled by a wide sense
stationary (WSS) statistical characterization originally introduced by Treuhaft and Lanyi [3]. From this
continuous-time model, we derive a related discrete-time model for the atmospheric phase processes based
on a sampled version of the phase processes. The degree of nonstationarity imparted by the atmospheric
phase effects is analyzed experimentally through simulations using the SMI algorithm for combining of
the array outputs.

A. Outline

In Section II, we review the baseband model for the antenna array digital communications signal.
There, we show step by step the complete communication path link from the transmitter to the channel
to the receiver. In Section III, we review the continuous-time WSS model for the atmospheric phase
processes as derived by Treuhaft and Lanyi [3]. From this model, we show in Section IV how to obtain a
related discrete-time WSS characterization for the sampled continuous-time atmospheric phase processes.
In Section V, simulation results for acquisition in the presence of atmospheric phase effects are presented
using the SMI algorithm. There, the effects due to the nonstationarity imparted by the atmosphere are
shown. Finally, concluding remarks are made in Section VI.

B. Notations

All notations are as in [4] unless stated otherwise. In particular, continuous-time frequencies will be
denoted by uppercase letters (i.e., Ω for radian and F for normalized frequencies), whereas discrete-time
frequencies will be denoted by lowercase letters (i.e., ω and f). Furthermore, boldfaced lowercase letters
(such as v) will be used to denote vectors, while boldfaced uppercase letters (such as A) will be used to
denote matrices. One notable exception to the notation used in [4] is that continuous-time signal variables
will be enclosed by parentheses, whereas discrete-time signal variables will be enclosed by brackets. For
example, the notation x(t) refers to a continuous-time function of the variable t ∈ RR, whereas x[n] refers
to a discrete-time function of the variable n ∈ ZZ.

II. Antenna Array Digital Communications Baseband Signal Model

Prior to introducing a statistical description of the atmospheric phase processes, it is worthwhile to
review a fundamental model of the communications system used by the antenna array. In this section,
we present a baseband model for the digital communications system employed by the antenna array. We
will cover a simplified model, starting from the transmitter, progressing to the channel paths, and finally
ending at the receiver.

Although the goal between the transmitter and receiver is the transmission of a digital signal, the
medium separating the two is an analog one, which requires that the digital signal be converted to an
analog signal (such as a voltage waveform) prior to being sent through the medium. Furthermore, the
receiver must be able to recover the desired digital signal from the received analog signals. A pictorial
description of this scenario in the analog domain is shown in Fig. 1.

In this setting, we have 1 transmit antenna (for example, a satellite in orbit) trying to communicate
with N receive antennas (such as an array of terrestrial antennas). Such a system is known as a single
input–multiple output (SIMO) system [4]. Along each path from the transmitter to the receiver, the
transmitted signal incurs delays and distortions due to the position of the receive antennas as well as
effects from the atmosphere [1,5]. In addition, the transmitted signal could be corrupted by noise as well
as other interferers [5]. Prior to analyzing the effects of the analog channel, we will first review how to
generate the transmitted analog baseband signal s(t) from a set of input digital data.

2



A. Transmitted Signal Model

A baseband model for generating the transmitted analog signal s(t) from Fig. 1 is shown in Fig. 2. Here,
the discrete-time digital information source d[n] consists of complex data symbols dn. These symbols are
typically from a special data constellation such as an M -ary phase shift keying (M -PSK) or a quadrature
amplitude modulation (QAM) constellation [6].

The discrete-time signal d[n] is converted to an analog signal using a digital-to-analog (D/A) converter.
Here, the D/A converter generates an impulse train of Dirac delta functions [4] separated in time by an
amount Tb, which we call the baud interval or symbol interval [6]. An equivalent measure of this time is
the baud rate or symbol rate defined by Rb

�= 1/Tb. The impulse train d(t) is then filtered by a pulse-
shaping filter p(t) [6] and scaled by a positive gain factor of A to produce the output baseband transmitted
signal s(t).2

Although the pulse-shaping filter p(t) can be any arbitrary shape, to prevent intersymbol interference
(ISI) [6], the pulse typically is chosen to satisfy the Nyquist (Tb) criterion [4], given below as follows:
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Fig. 1.  Pictorial description of the analog link between the 
transmitter and receiver in an antenna array system.

s(t) = Ap (t)D/A(Tb)d [n] = dn dn p (t − nTb)
∞

n = −∞

d(t) = 
∞

n = −∞

Pulse Shaping 
Filter
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A

dn  (t − nTb)δ  

Fig. 2.  Baseband transmitter signal model.

2 In a realistic implementation of the transmitter system, the impulse train generator and pulse-shaping filter operations
are combined into one operation to generate the transmitted signal s(t) from the information source d[n]. We have opted
to keep these operations separate here in order to make the receiver system appear more mathematically complementary
to the transmitter system, as can be seen later on in Section II.C.
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1
Tb

∫ ∞

−∞
p(t)p∗ (t − nTb) dt = δn (1)

where δn is the Kronecker delta function [4] given by

δn =
{

1, n = 0
0, n �= 0, n ∈ ZZ

Examples of Nyquist (Tb) pulse shapes include time-limited pulses such as the non-return-to-zero (NRZ)
pulse [6],

pNRZ(t) =
{

1, 0 ≤ t < Tb

0, otherwise (2)

as well as band-limited pulses such as the sinc pulse [6],

psinc(t) = sinc
(

t

Tb

)

where sinc (x) �= [sin (πx) /πx]. Expressions for other common pulse shapes used, such as the Manchester,
raised cosine, and Gaussian minimum shift keying (GMSK)-type pulses, can be found in [5,6].

B. Continuous-Time Channel Path Model

Once the discrete-time information source d[n] has been converted to a continuous-time signal s(t), it
is broadcast over the transmitter to the receiver antennas as shown in Fig. 1. Although there are many
ways in which to model the effects of the channel, the most common way to do so is to model the channel
as a linear time-varying distortion with additive noise [5]. This is shown in Fig. 3 for the kth channel
path for 0 ≤ k ≤ N − 1.

Here uk(t), the output of the linear time-varying system, is given by

uk(t) =
∫ ∞

−∞
hk(τ, t)s (t − τ) dτ (3)

where hk(τ, t) is the impulse response of the linear time-varying system [5] [i.e., hk(t − τ, t) is the out-
put of the system in response to the input δ(t−τ)]. For a terrestrial wireless setting, the impulse response

s (t) hk( ,t)

Linear Time-
Varying System

uk(t)
rk(t)τ

k(t)η

Fig. 3.  Baseband analog channel model of the kth transmission path from Fig 1.
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hk (τ, t) typically consists of several multipath components along with a possible specular or line-of-sight
(LOS) component [5]. In contrast to this, for an antenna array system such as that used in the DSN,
the presence of multipath components will appear as very weak and the only dominant part will be the
specular component [1]. For an array of this type, the impulse response hk (τ, t) is given by

hk(τ, t) = αk(t)δ
(
τ − τk(t)

)
(4)

where αk(t) is a complex time-varying scale factor and τk(t) is a time-varying delay parameter.

For the DSN application under consider, the scale αk(t) accounts for both the receiver array geometry
as well as atmospheric effects. Here, we model this scale factor as follows [1]:

αk(t) = ρk;ge
j(φk;g+θk;a(t)) (5)

where ρk;g and φk;g are, respectively, the gain and phase incurred as a result of the receiver array geometry
(both of which are assumed to be constant with time), and θk;a(t) denotes the phase perturbation caused
by the atmosphere (which does vary with time).

The delay parameter τk(t) typically is modeled as follows for an array system such as that used by the
DSN:

τk(t) = τk;g (6)

where τk;g is a constant delay incurred as a result of the receiver array geometry. For example, for a
uniform linear array, the delay is given by [1]

τk;g = τ0 +
kd

c
sinψ , 0 ≤ k ≤ N − 1

where τ0 is a constant delay offset, d is the spacing between the array elements, c is the speed of the
transmitted waveform in the atmospheric medium (most often the speed of light), and ψ is the azimuthal
angle of the transmit antenna with respect to the receive antennas [1].

The additive noise component ηk(t) is modeled as a circular complex additive white Gaussian noise
(AWGN) process with mean 0 and power spectral density (psd) N0 [5]. This is equivalent to saying that
the real and imaginary parts of ηk(t) are uncorrelated real Gaussian processes with mean 0 and psd N0/2.
Mathematically, this implies that we have the following:

E
[
ηk(t)

]
= 0 (7)

E
[
ηk(t)ηk(t − τ)

]
= 0 (8)

E
[
ηk(t)η∗

k(t − τ)
]

= N0δ(τ) (9)

Furthermore, the real and imaginary parts of the processes ηk(t) and η�(t) are assumed to be uncorrelated
for all k �= �. This implies the following:
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E
[
ηk (t0) η� (t1)

]
= E

[
ηk (t0) η∗

� (t1)
]

= 0 ,∀ t0, t1, k �= � (10)

C. Received Signal Model

Upon obtaining the analog outputs of the array channel at the receiver antennas, these continuous-
time signals must be converted back to a discrete-time format. This typically is done using the system
shown in Fig. 4. Note that this system is symmetric or complementary with respect to the transmitter
system of Fig. 2. First, the received analog signal is filtered by the matched filter [6] for the original pulse
shape p(t), which is simply p∗ (−t).3 The impetus for using the matched filter comes from maximum
likelihood (ML) estimation theory [6] for estimation of the information source d[n] in the presence of
AWGN. (It should be noted that oftentimes in an antenna-array-type environment, prior to the matched
filtering operation, the incoming analog signal rk(t) is delay compensated [1] to account for the delays
incurred by the channel. This compensation incorporates knowledge from predicts to estimate the path
delays τk(t) from Eq. (6). Equivalently, this can be achieved mathematically by setting the path delays
to zero (i.e., τk(t) = 0 for all k and t).)

Matched Filter Sampling Device

xk(t)
rk(t)

Fig. 4.  Baseband receiver signal model.

A/D (Ts)p* (−t) xk[n] = xk(nTs)

After matched filtering, the resulting signal xk(t) is converted to a digital signal through an analog-
to-digital (A/D) converter [4] that simply samples xk(t) at t = nTs. Here, Ts is known as the sampling
interval [4]. Equivalently, this interval can be described by the sampling frequency or sampling rate defined
to be Fs

�= 1/Ts. In order to recover the original information source d[n], the sampling rate Fs must
be at least equal to the baud rate Rb (i.e., we need Fs ≥ Rb) [5,6]. By oversampling the output (i.e.,
when we have Fs > Rb), we receive additional information about the underlying transmitted signal that
can be used to achieve a form of temporal diversity [5]. This is in addition to the inherent spatial receive
diversity [5] that we have due to the fact that we are using multiple receive antennas.

Assuming that the delays from the channel have been compensated and that the sampling rate Fs

equals the baud rate Rb, then from Eqs. (5), (4), and (3), and Figs. 4, 3, and 2, we have the following:

xk[n] = xk (nTs) =
∫ ∞

−∞
rk(τ)p∗ (τ − nTs) dτ

=
∫ ∞

−∞
uk(τ)p∗ (τ − nTs) dτ +

∫ ∞

−∞
ηk(τ)p∗ (τ − nTs) dτ︸ ︷︷ ︸

vk[n]

(11)

=
∫ ∞

−∞
αk(τ)s

(
τ − τk(τ)

)
p∗ (τ − nTs) dτ + vk[n]

= ρk;ge
jφk;g

∫ ∞

−∞
ejθk;a(τ)s(τ)p∗ (τ − nTs) dτ + vk[n] (12)

3 In many digital communications textbooks, the pulse shape p(t) is time-limited to some interval t ∈ [0, T ), and the
corresponding matched filter is implemented as p∗ (T − t) in order to make it causal [4]. We omit this delay here as it
simplifies the underlying mathematics.
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Here, Eq. (12) follows from the fact that we have assumed that the delays from the channel have been
compensated.

Before proceeding further with the analysis of xk[n], let us first consider the filtered discrete-time noise
process vk[n] defined in Eq. (11). Note that we have the following:

E
[
vk[n]

]
=

∫ ∞

−∞
E

[
ηk(n)

]
p∗(τ − nTs) dτ = 0 (13)

E
[
vk[n]vk[n − m]

]
=

∫ ∞

−∞

∫ ∞

−∞
E

[
ηk(τ0)ηk(τ1)

]
p∗(τ0 − nTs)p∗

(
τ1 − (n − m)Ts

)
dτ0 dτ1

= 0 (14)

E
[
vk[n]v∗k[n − m]

]
=

∫ ∞

−∞

∫ ∞

−∞
E

[
ηk(τ0)η∗

k(τ1)
]
p∗(τ0 − nTs)p

(
τ1 − (n − m)Ts

)
dτ0 dτ1

=
∫ ∞

−∞

∫ ∞

−∞
N0δ (τ0 − τ1) p∗(τ0 − nTb)p

(
τ1 − (n − m)Tb

)
dτ0 dτ1 (15)

= N0

∫ ∞

−∞
p∗(τ − nTb)p

(
τ − (n − m)Tb

)
dτ

= N0

∫ ∞

−∞
p(λ)p∗(λ − mTb) dλ

= N0Tbδm (16)

Here, Eq. (13) follows from Eq. (7); Eq. (14) follows from Eq. (8); and Eq. (15) follows from Eq. (9) and
the fact that Ts = Tb here. For Eq. (16), we used the fact that the pulse shape was assumed to satisfy
the Nyquist (Tb) criterion of Eq. (1). Given that the continuous-time process ηk(t) is Gaussian, it follows
that the discrete-time process vk[n] is also Gaussian. From Eqs. (13), (14), and (16), we conclude that
vk[n] is a discrete-time AWGN process. As ηk(t) and η�(t) satisfy Eq. (10), it can be shown that we have

E
[
vk [n0] v� [n1]

]
= E

[
vk [n0] v∗� [n1]

]
= 0 , ∀ n0, n1, k �= � (17)

and hence the discrete-time processes vk[n] and v�[n] are uncorrelated.

To proceed with the analysis of xk[n], from here on in, we will assume that the pulse shape used is
the NRZ pulse of Eq. (2). In this case, we have, from Eq. (12),

xk[n] = ρk;ge
jφk;g

∫ (n+1)Ts

nTs

ejθk;a(τ)s(τ) dτ + vk[n] (18)

At this point, we will assume that the sampling rate Fs is much larger than the rate of change of the
atmospheric phase process. In other words, we will assume that Ts is small enough that the function
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θk;a(t) is approximately constant over the interval t ∈
[
nTs, (n + 1)Ts

)
. Here, we will assume that we

have

θk;a(t) ≈ θk;a(nTs) , ∀ t ∈
[
nTs, (n + 1)Ts

)
(19)

In Section III, we will justify this approximation. Using Eq. (19) in Eq. (18), we get the following:

xk[n] = ρk;ge
jφk;gejθk;a(nTs)

∫ (n+1)Ts

nTs

s(τ) dτ + vk[n]

= ρk;ge
jφk;gejθk;a(nTs)A

∞∑
m=−∞

dm

∫ (n+1)Ts

nTs

pNRZ (τ − mTs) dτ + vk[n]

= Aρk;ge
jφk;gejθk;a(nTs)

∞∑
m=−∞

dmTbδm−n + vk[n]

= ATbρk;ge
jφk;gejθk;a(nTs)dn + vk[n] (20)

Defining the discrete-time process βk[n] as follows,

βk[n] �= θk;a(nTs) (21)

and using the fact that the information source d[n] is given by d[n] = dn, from Eq. (20), we have

xk[n] = ejβk[n]ATbρk;ge
jφk;gd[n] + vk[n] (22)

1. Vector/Matrix Representation of the Received Array Signals. Let us define the following
vectors and matrices:4

x[n] �=

⎡⎢⎢⎣
x0[n]
x1[n]

...
xN−1[n]

⎤⎥⎥⎦ , B[n] �= diag
(
ejβ0[n], ejβ1[n], · · · , ejβN−1[n]

)
(23)

a �=

⎡⎢⎢⎣
ATbρ0;ge

jφ0;g

ATbρ1;ge
jφ1;g

...
ATbρN−1;ge

jφN−1;g

⎤⎥⎥⎦ , v[n] �=

⎡⎢⎢⎣
v0[n]
v1[n]

...
vN−1[n]

⎤⎥⎥⎦ (24)

Here x[n], a, and v[n] are all N×1 column vectors whereas B[n] is an N×N matrix. From the definitions
given in Eqs. (23) and (24), it can be seen that from Eq. (22) we have the following vector/matrix equation:

4 Here, the notation diag (x0, x1, · · · , xN−1) denotes an N × N diagonal matrix whose kth diagonal element is equal to xk.
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x[n] = B[n]ad[n] + v[n] (25)

From Eq. (25), it can be seen that x[n] consists of a linear time-varying scaled version of the desired
scalar information source d[n] along with an additive vector noise process v[n]. Combining Eq. (24) with
Eqs. (13), (14), (16), and (17), it follows that v[n] is a discrete-time complex circular AWGN vector
process [5] with mean 0 and covariance σ2I, where we have defined σ2 as σ2 �= N0Tb. We will express
this using the notation from [5] as

v[n] ∼ CN
(
0, σ2I

)
Note that x[n] from Eq. (25) consists of a signal component B[n]ad[n] as well as a noise component v[n].

One valid measure of the signal strength to the noise strength is the signal-to-noise ratio (SNR) [5,6],
which is defined as follows:

SNRx[n]
�=

energy of signal component of x[n]
energy of noise component of x[n]

=
Tr

{
E

[(
B[n]ad[n]

)(
B[n]ad[n]

)†]}
Tr

{
E

[
v[n]v†[n]

]} (26)

where Tr {·} denotes the trace operator [4] (i.e., the sum of the diagonal elements of the input matrix) and
† denotes the transpose conjugate operator [4]. Assuming that d[n] comes from a unit energy constellation
(so that E

[
|d[n]|2

]
= 1), then from Eq. (26), we have

SNRx[n] =
a†a
Nσ2

=
(

A2Tb

N0

)
· 1
N

N−1∑
n=0

ρ2
k;g (27)

The SNR as well as the combining loss (which will be defined later in Section V) will be used to measure
the tracking performance of the SMI algorithm in the presence of atmospheric phase effects.

III. Statistical Model for the Continuous-Time Atmospheric Phase Processes

In the previous section, a detailed analysis of the complete communication link between the transmitter
and receiver was given. During the course of this analysis, a set of time-varying atmospheric phase
processes {θk;a(t)} was introduced. In this section, we review a statistical model for this set of processes
as based on the Treuhaft and Lanyi model given in [3].

Define the following N × 1 vector of atmospheric phase processes:

θθθ(t) �=

⎡⎢⎢⎣
θ0;a(t)
θ1;a(t)

...
θN−1;a(t)

⎤⎥⎥⎦ (28)

Here, we model the vector process θθθ(t) as a wide sense stationary (WSS) random process [4]. This means

that the mean E[θθθ(t)] and autocorrelation E
[
θθθ(t)θθθ†(t− τ)

]
are independent of t. As such, we can define

the mean and autocorrelation as follows:
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µµµθθθ
�= E

[
θθθ(t)

]
Rθθθθθθ(τ) �= E

[
θθθ(t)θθθ†(t − τ)

]
Note that even if the vector process θθθ(t) is WSS, the received signal vector x[n] from Eq. (25) is not
because it contains exponentiated versions of the components of θθθ(t).

Since the atmospheric phase processes are considered to be perturbations of the received signal phases,
it is generally accepted that the atmospheric phases are zero mean, and so µµµθθθ = 0. As far as the
second-order statistics, Rθθθθθθ(τ), are concerned, in much of the literature, spatial correlations are modeled
independently from temporal ones [1,3]. Due to the fact that we must jointly account for both phenomena
here, this presents us with the dilemma of how to carry out this joint modeling.

Before proceeding with this joint model to obtain Rθθθθθθ(τ), we review the spatial and temporal phase
correlation models given in [1,3]. In particular, we will focus on the models given by Treuhaft and
Lanyi [3].

A. Review of Spatial and Temporal Models of the Atmospheric Phase Processes

1. Spatial Correlation Model. The phase perturbations caused by the atmosphere are typically
due in large part to water vapor fluctuations in the troposphere [1,3]. In these cases, the spatial refrac-
tivity structure function [1], which we define below, can be approximated using Kolmogorov turbulence
theory [1]. A better approximation for the spatial structure function is the one proposed by Treuhaft and
Lanyi [3], which we describe below.

The spatial refractivity structure function Dχ(r) measures the difference of the refractive index of two
points that are a distance of r from each other. It is defined as follows [1]:

Dχ(r) �= E
[
|χ (r0 − r) − χ (r0)|2

]
(29)

where χ(r) denotes the deviation of the refractive index from unity (i.e., χ(r) = η(r)−1, where η(r) is the
index of refraction [3]). From Eq. (29), we have implicitly assumed that the structure function depends
only on the distance between the two locations (r0 + r) and r0, and not on the actual reference point r0.
This stationarity assumption holds approximately for large patches of turbulence [1].

In classical Kolmogorov turbulence theory, Dχ(r) is approximated as [1]

Dχ(r) = C2r2/3

where C is a parameter known as the turbulence strength [1] and is nominally 2.4×10−7 m−1/3. Although
the Kolmogorov model is appropriate for small distances, it diverges as r → ∞. Physically, this does not
make sense as the correlation between locations infinitely far away should go to zero.

A more appropriate model for Dχ(r) is the one used by Treuhaft and Lanyi [3]:

Dχ(r) =
C2r2/3

1 +
( r

L

)2/3
(30)
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where L is a parameter known as the outer scale of the turbulence [1]. Treuhaft and Lanyi chose a fairly
large value for the outer scale (3,000 km) to be consistent with Kolmogorov’s model over a large range of
baseline distances. More recent studies, however, conducted at the Very Large Array (VLA) in Socorro,
New Mexico, by Carilli and Holdaway [7] indicate that a more practical value for the outer scale is 6 km.

It can be shown that the spatial phase structure function Dθ;s(r) [1], defined by

Dθ;s(r)
�= E

[
|θs (r0 + r) − θs (r0)|2

]
(31)

which measures the deviation of the phase of the atmosphere at two points separated by a distance r, can
be given in terms of an averaged version of the refractivity structure function of Eq. (30). In particular,
it can be shown that we have [3]

Dθ;s(r) =
(

2π

λ

)2

C2h8/3Ds

( r

h

)
(32)

Here, λ denotes the wavelength of the carrier of the transmitted signal, h denotes the height of the
turbulence (nominally 2 km), and Ds(α) is a spatial structure function given by

Ds(α) =
1

cos2 ξ

∫ 1

0

∫ 1

0

⎧⎨⎩D̂χ

⎡⎣√
α2 + 2(x − y)α tan ξ +

(
x − y

cos ξ

)2
⎤⎦ − D̂χ

(∣∣∣∣x − y

cos ξ

∣∣∣∣)
⎫⎬⎭ dx dy (33)

where D̂χ(β) is the normalized refractivity structure function [3] given in terms of the refractivity structure
function of Eq. (30) as

D̂χ(β) �=
β2/3

1 +
(

βh

L

)2/3
=

1
C2h2/3

Dχ(βh) (34)

It should be noted here that ξ is the zenith angle of the ray connecting the turbulence patch to the receive
antennas as shown in Fig. 5.

From Eq. (31), the spatial autocorrelation of the atmospheric phase Rθ;s(r) is given by

Rθ;s(r) =
1
2
[
Dθ;s(∞) − Dθ;s(r)

]
Using Eq. (33), Rθ;s can be approximated as follows:

Rθ;s(r) ≈
1
2

[(
2πChL1/3

λ cos ξ

)2

− Dθ;s(r)

]
(35)

Hence, using Eqs. (35), (32), (33), and (34), we can calculate the spatial correlations of the atmospheric
phase processes for a fixed time.
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A plot of Rθ;s(r) is shown in Fig. 6 for the following input parameters:

C = 2.4 × 10−7 m−1/3 (turbulence strength)

h = 2 km (height of turbulence)

L = 6 km (outer scale)

Fc = 25 GHz (carrier frequency at Ka-band)

λ =
c

Fc
= 0.012 m (wavelength)

ξ = 0 (angle between turbulence patch and receive antennas measured from zenith)

As can be seen, the phase is fairly correlated over large ranges of r. This is an expected and desired
phenomenon, as it means that the phase perturbations seen by the receive antennas will not appear to
be completely random.

Receive Antennas

Turbulence
Patch

Velocity, Vw

Zenith

ξ

Fig. 5.  Illustration of the position of the turbulence 
patch in relation to the receive antennas.
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4

5

6

7
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r, km

R
  ;

s(r
)

θ

Fig. 6. Spatial autocorrelation of the atmospheric 
phase R  ;s(r) as a function of distance r.θ
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2. Temporal Correlation Model. In order to derive a temporal characterization of the atmospheric
phase processes, typically a frozen-screen assumption [1,3] is made. According to this hypothesis, the
spatial structure of the turbulence is assumed to be frozen in time. This assumption is approximately
true for most turbulence patches (such as clouds) and is valid over relatively long periods of time [1].

Assuming in addition that the turbulence patch is moving at a velocity Vw (known as the wind speed)
with respect to the receive antennas as in Fig. 5, it can be shown that we have [1,3]

Dθ;t(τ) = Dθ;s(Vwτ) (36)

where Dθ;s(r) is the spatial phase structure function of Eq. (31) and Dθ;t(τ) is the temporal structure
function defined by

Dθ;t(τ) �= E
[
|θt(τ0 + τ) − θt(τ0)|2

]
(37)

From Eqs. (37), (36), and (31), it can be shown that we have

Rθ;t(τ) = Rθ;s(Vwτ) (38)

where Rθ;t(τ) is the temporal autocorrelation of the atmospheric phase. Hence, the temporal autocorre-
lation is simply a linearly stretched version of the spatial autocorrelation.

Using Eq. (35), Rθ;t(τ) can be approximated as

Rθ;t(τ) ≈ 1
2

[(
2πChL1/3

λ cos ξ

)2

− Dθ;s(Vwτ)

]
(39)

where Dθ;s(r) is given by Eqs. (32) through (34).

A plot of Rθ;t(τ) using the same input parameters as those used in Section III.A.1 is shown in Fig. 7
for various values of the wind speed Vw. As expected, as Vw increases, Rθ;t(τ) becomes more compressed
since the phase will appear more uncorrelated over time. In this case, this will make tracking more
difficult since the received digital signal x[n] from Eq. (25) will change more rapidly. This difficulty in
tracking will become more evident in Section V.

B. Obtaining a Jointly Spatio-Temporal Characterization of the Atmospheric Phase Processes

As stated before, although much of the literature on atmospheric phase modeling includes spatial and
temporal statistical characterizations, there appears to be little to no work on joint characterizations.
From this, we can infer that we can treat both effects in a separable way. In other words, we can treat
spatial and temporal effects independently. This assumption clearly will not apply for heterogeneous
turbulence patches, but for homogeneous ones in which the frozen-screen assumption holds, this model is
physically plausible [1].

Mathematically, we model the autocorrelation function Rθθθθθθ(τ) separably as follows:

Rθθθθθθ(τ) = R̂θ;t(τ)Rθ;s (40)

13
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phase R  ;t(  ) as a function of time   .τ τθ

where R̂θ;t(τ) is a normalized version of the temporal autocorrelation function Rθ;t(τ) from Eq. (39) and
is given by

R̂θ;t(τ) =
Rθ;t(τ)
Rθ;t(0)

(41)

Here, Rθ;s is a constant matrix that depends only on the spatial autocorrelation function Rθ;s(r) from
Eq. (35). In particular, we have

Rθ;s =

⎡⎢⎢⎣
Rθ;s(r0,0) Rθ;s(r0,1) · · · Rθ;s(r0,N−1)
Rθ;s(r1,0) Rθ;s(r1,1) · · · Rθ;s(r1,N−1)

...
...

. . .
...

Rθ;s(rN−1,0) Rθ;s(rN−1,1) · · · Rθ;s(rN−1,N−1)

⎤⎥⎥⎦ (42)

where rk,� represents the distance between the kth and �th receive antennas. As we have rk,� = r�,k for
all k, � and rk,k = 0 for all k, we can simplify Eq. (42) as follows:

Rθ;s =

⎡⎢⎢⎣
Rθ;s(0) Rθ;s(r0,1) · · · Rθ;s(r0,N−1)

Rθ;s(r0,1) Rθ;s(0) · · · Rθ;s(r1,N−1)
...

...
. . .

...
Rθ;s(r0,N−1) Rθ;s(r1,N−1) · · · Rθ;s(0)

⎤⎥⎥⎦

Thus, Rθ;s is a Hermitian matrix [4], as expected. For the special case in which we have a uniform linear
array, Rθ;s is also Toeplitz [4].

As can be seen from Eq. (40), Rθθθθθθ(τ) represents a model in which the spatial and temporal effects have
been decoupled. The reason for normalizing the temporal autocorrelation as in Eq. (41) is to maintain
consistency with the spatial autocorrelation model. Alternatively, we could have normalized the spatial
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correlation matrix Rθ;s by Rθ;s(0) to maintain consistency with the temporal autocorrelation model. As
Rθ;s(0) = Rθ;t(0) from Eq. (38), both approaches yield the same expression for Rθθθθθθ(τ), as expected.

We now proceed to derive a discrete-time statistical model for the atmospheric phase processes based
on uniform sampling of the continuous-time vector process θθθ(t). There, we justify the approximation of
the phase over a baud or symbol interval given in Eq. (19).

IV. Discrete-Time Statistical Model for the Sampled Atmospheric Phase Processes

A. Justifying the Sampled Phase Approximation

Prior to introducing a discrete-time statistical description of the atmospheric phase processes based
on sampling, we must first justify the approximation from Eq. (19) that the atmospheric phases can be
assumed to be constant over a baud interval. In order to measure the variation of θk;a(t) over time, we
can use the following quantity:

Pk(τ0, τ, ε)
�= Pr

{
|θk;a(τ0 + τ) − θk;a(τ0)| ≥ ε

}
(43)

Here ε is a threshold value satisfying ε > 0. Note that the quantity Pk(τ0, τ, ε) is simply the probability
that the magnitude of the difference of phases θk;a(τ0 + τ) and θk;a(τ0) exceeds the threshold ε.

Although it is difficult to calculate Pk(τ0, τ, ε) from Eq. (43) in closed form, it is fairly easy to compute
an upper bound for it using Chebyshev’s inequality [8]. Using Chebyshev’s inequality on Eq. (43), we
have

Pk(τ0, τ, ε) ≤
E

[
|θk;a(τ0 + τ) − θk;a(τ0)|2

]
ε2

=
Dθ;t(τ)

ε2
=

Dθ;s(Vwτ)
ε2

(44)

where we have used Eqs. (37) and (36) in Eq. (44).

Concerning Eq. (19), we are interested in studying the behavior of Pk(τ0, τ, ε) for τ0 = nTs and
τ ∈ [0, Ts). From Fig. 6, it can be seen that Rθ;s(r) is monotonically decreasing for r ≥ 0. As we
have Dθ;s(r) = 2

[
Rθ;s(0) − Rθ;s(r)

]
here by expanding Eq. (31), it follows that Dθ;s(r) is monotonically

increasing for r ≥ 0. From Eq. (44), this implies that we have

Pk(nTs, τ, ε) ≤
Dθ;s(Vwτ)

ε2
<

Dθ;s(VwTs)
ε2

, ∀ τ ∈ [0, Ts) (45)

For a large wind speed of Vw = 50 m/s and a moderate sampling rate of Fs = 1 MHz (sampling
interval of Ts = 1 µs), the probability that the phase changes by more than 1 degree (i.e., ε = π/180) is
upper bounded by 2.7535× 10−4 using Eq. (45). Indeed this value is minute, and so we can say that with
high probability the atmospheric phase is approximately constant over a sampling interval as in Eq. (19).

B. Statistical Properties of the Sampled Phase Processes

Recall that the discrete-time sampled phase processes βk[n] are defined as in Eq. (21). In this section,
we characterize a statistical model for the discrete-time vector process βββ[n] defined below:
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βββ[n] �=

⎡⎢⎢⎣
β0[n]
β1[n]

...
βN−1[n]

⎤⎥⎥⎦

Note that, from Eqs. (21) and (28), we have

βββ[n] = θθθ(nTs)

Since θθθ(t) is a continuous-time WSS process, it can easily be shown [4] that βββ[n] is a discrete-time WSS
process with

µµµβββ
�= E

[
βββ[n]

]
= µµµθθθ

Rββββββ [k] �= E
[
βββ[n]βββ†[n − k]

]
= Rθθθθθθ(kTs) (46)

As θθθ(t) is assumed to be zero mean with autocorrelation as given in Eq. (40), we have

µµµβββ = 0 , Rββββββ [k] = R̂θ;t(kTs)Rθ;s (47)

1. Generating Instances of the Discrete-Time Atmospheric Phase Processes. To properly
simulate the effects of the atmospheric phase perturbations on an adaptive array algorithm as is desired
here, we need a way to generate instances of the atmospheric phase processes. The method used to
generate these instances is similar to the one considered in [9]. In order to accomplish this, we need to
characterize the power spectral density (psd) of βββ[n]. This quantity is simply the discrete-time Fourier
transform of Rββββββ [k] and is defined below [4]:

Sββββββ(ejω) �=
∞∑

k=−∞
Rββββββ [k]e−jωk

If Ŝθ;t(jΩ) denotes the continuous-time Fourier transform of R̂θ;t(τ), defined by

Ŝθ;t(jΩ) �=
∫ ∞

−∞
R̂θ;t(τ)e−jΩτ dτ

then from Eq. (47), it can be shown [4] that Sββββββ(ejω) is given by

Sββββββ(ejω) =

[
1
Ts

∞∑
�=−∞

Ŝθ;t

(
j

(
ω − 2π�

Ts

))]
︸ ︷︷ ︸

P (ejω)

Rθ;s (48)

where P (ejω) is the aliased spectrum of R̂θ;t(τ) obtained due to uniform sampling at τ = kTs.
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Since Ŝθ;t(jΩ) is the continuous-time Fourier transform of a valid autocorrelation function R̂θ;t(τ), it
follows that Ŝθ;t(jΩ) is a valid continuous-time psd, meaning Ŝθ;t(jΩ) ≥ 0 for all Ω. From Eq. (48), we
clearly have P (ejω) ≥ 0 for all ω, and so P (ejω) is a valid discrete-time psd, as expected. Hence, it can
be factored as

P (ejω) =
∣∣Q(ejω)

∣∣2 (49)

where Q(ejω) is some spectral factor [4] of P (ejω).

Analogously, it can be shown that the Hermitian matrix Rθ;s from Eq. (42) is positive semidefinite [4],
meaning that v†Rθ;sv ≥ 0 for all vectors v �= 0. Hence, it can be factored as follows [4]:

Rθ;s = TT† (50)

Here T is some matrix spectral factor of Rθ;s.

Combining Eqs. (49) and (50) with Eq. (48), it follows that the psd Sββββββ(ejω) can be expressed as
follows:

Sββββββ(ejω) =
∣∣Q(ejω)

∣∣2 TT† = Q(ejω)TT†Q∗(ejω) =
(
TQ(ejω)

) (
TQ(ejω)

)†
(51)

Note that Eq. (51) is a spectral factor decomposition of the psd Sββββββ(ejω).

In order to generate instances of the colored process βββ[n], we can process an uncorrelated white WSS
process ψψψ[n] (with µµµψψψ = 0 and Sψψψψψψ(z) = I) through a spectral factor of Sββββββ(ejω) as given in Eq. (51).
If we have

ψψψ[n] �=

⎡⎢⎢⎣
ψ0[n]
ψ1[n]

...
ψN−1[n]

⎤⎥⎥⎦

then βββ[n] can be generated as shown in Fig. 8.

A few comments are in order here. First, as the phase perturbations are attributed to cumulative
effects from the atmosphere, we model the distribution of the phases {βk[n]} to be Gaussian [1]. This
means that the white process ψψψ[n] leading to βββ[n] as in Fig. 8 should also be Gaussian.

In addition to modeling the distribution of the phases, we must also consider the implementation
of the temporal coloring filter Q(z). Here, we model Q(z) as a stable Mth-order autoregressive (AR)
approximation [8] to a spectral factor of P (ejω) as in Eq. (49). This means that Q(z) is implemented as

Q(z) =
1

A(z)
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Fig. 8.  System used to generate instances of the colored process    [n] 
from the uncorrelated white process    [n].

Q (z)0[n]ψ

Q (z)

T

1[n]ψ

Q (z)N−1[n]ψ

0[n]β

1[n]β

N−1[n]β

β
ψ

where A(z) is an Mth-order polynomial in z−1. For the sake of stability, the zeros of A(z) are constrained
to the region {z : |z| < 1} (i.e., inside the unit circle) [4]. The coefficients of A(z) can be found efficiently
using the Levinson–Durbin recursion algorithm [8].5

Sample realizations of the discrete-time atmospheric phase processes seen for a three-element uniform
linear array are shown in Fig. 9 for a spacing of d = 50 m between the array elements. The atmospheric
input parameters used were the same as those in Section III.A.1 with a wind speed of Vw = 10 m/s. Also,
the order of the AR model used was M = 30. As can be seen, the phases appear to be strongly spatially
and temporally correlated.

The reason for such a strong temporal correlation is the high sampling rate (equivalently small sampling
interval) used. Here, we used Fs = 1 MHz, corresponding to a sampling interval of Ts = 1 µs, even though
from Fig. 7 it can be seen that the phases typically are significantly correlated over several minutes.

A plot of the time dependence of a sample realization of one of the phases considered above is shown
in Fig. 10. As can be seen, the phase changes appreciably only after a long enough time (on the order of
several seconds). This suggests that the nonstationarity caused by the atmospheric phase perturbations
is small and should be able to be tracked sufficiently well. In the next section, this will be shown to be
the case with respect to the SMI algorithm.

V. Acquisition Simulation Results Using the SMI Algorithm

Given the signals appearing at the receive antennas [equivalently the vector signal x[n] from Eq. (25)],
we would like to obtain the desired scalar data sequence d[n]. In order to help accomplish this, the
signals are typically combined using a linear time-varying multiple input–single output (MISO) system as
shown in Fig. 11. Here w†[m, n] is the time-varying impulse response of the system6 (i.e., w†[n − m, n]
is the response to the input δn−m) and is 1 × N . The impetus for combining the signals in this way is
to attempt to coherently add up the diversified versions of the desired signal d[n] as seen by the various
receive antennas.

5 In [9], Q(z) was modeled as a moving average (MA) approximation to a spectral factor of P (ejω), meaning that Q(z)
was itself implemented as a polynomial in z−1. This model, however, is unable to capture the non-negligible long-term
temporal correlations that an AR model can, unless the length of the MA filter is made long enough. Making the length
of the MA model long enough, however, is not feasible for large array simulations due to memory and computation time
limitations.

6 The MISO impulse response is defined using the dagger † transpose conjugate notation to make the output y[n] resemble
the inner product of the N × 1 system w[m, n] and the shifted input x[n − m]. This is nothing more than a notational
convention typically used in antenna array processing.
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For most narrowband applications, w†[m, n] is chosen to be a memoryless system [4] in which we have

w†[m, n] =
{

w†[n] , m = 0
0 , m �= 0

= w†[n]δm

In this case, we have

y[n] = w†[n]x[n] (52)

and the resulting system is memoryless in that the output is only a linear combination of the elements of
the current input x[n] and not of past or future samples.

A. Minimum Mean-Squared Error Combiner (Wiener Filter)

For the purpose of acquisition, a known reference signal dr[n] often is transmitted so that the receiver
can “phase up” to this reference. In other words, the signal combiner w[n] is chosen to make the output
y[n] = w†[n]x[n] as close to the desired reference signal dr[n] as possible. For example, the Wiener filter
wo[n] [2] minimizes the mean-squared error between the output y[n] and reference dr[n] given by

ξ[n] �= E
[
|y[n] − dr[n]|2

]
(53)

It can easily be shown [2] that the Wiener filter wo[n] can be expressed in closed form in terms of a
matrix inverse as follows:

wo[n] = R−1
xx [n]Rxdr

[n] (54)

where we have7

Rxx[n] �= E
[
x[n]x†[n]

]
(55)

Rxdr [n] �= E
[
x[n]d∗r [n]

]
(56)

We should note that we assumed a priori that Rxx[n] is invertible in arriving at Eq. (54), which in practice
typically will be the case. If it is not, however, then the matrix inverse in Eq. (54) should be replaced
with a pseudoinverse.

The corresponding optimal mean-squared error ξo[n] is given below as follows [2]:

ξo[n] = σ2
dr

[n] −R†
xdr

[n]R−1
xx [n]Rxdr [n] (57)

where σ2
dr

[n] is given by σ2
dr

[n] = E
[
|dr[n]|2

]
. At this point, a few comments are in order.

7 We use a calligraphic font for correlation matrices/vectors here to distinguish the time dependence of these possibly
nonstationary quantities from the lag dependence of WSS correlations such as the one in Eq. (46).
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First, note that the behavior of ξo[n] as a function of n can be used to gauge the joint stationarity
of x[n] and dr[n]. The reason for this is that if x[n] and dr[n] are jointly WSS, then ξo[n] is a constant.
Heuristically, it can be argued that the more ξo[n] varies with n, the less jointly stationary x[n] and dr[n]
appear to be. We will investigate this stationarity more in detail via simulations later on in this section.

Secondly, it should be noted that in the case in which the received signal x[n] consists of a linearly
scaled version of dr[n] corrupted by an uncorrelated additive white noise, the Wiener filter wo[n] is optimal
not only for minimizing the mean-squared error but also for maximizing the output SNR [2]. Although
this will only be approximately true in the case in which the atmospheric phase effects are included, we
will nonetheless still assume this to be the case when we consider the combining loss of the SMI algorithm,
which is defined later on in this section.

B. The Sample Matrix Inversion (SMI) Algorithm

Although the Wiener filter is optimal for minimizing the mean-squared error of the output signal, it
requires knowledge of the second-order statistics of the received signal x[n] (as well as the joint statistics
of x[n] and dr[n]). As this typically will not be known in practice, we instead estimate these statistics
based on actual observed data. This estimation leads to the sample matrix inversion (SMI) algorithm
that we will use here to phase up to the reference signal.

Suppose that we have a block of K consecutive samples of x[n] from x[n − K] to x[n − 1] that were
obtained independently of each other. To estimate the quantities Rxx[n] and Rxdr [n] from Eqs. (55)
and (56), respectively, we use the sample mean of each of these quantities given below:

R̂xx;K [n] �=
1
K

K∑
k=1

x[n − k]x†[n − k] (58)

R̂xdr;K [n] �=
1
K

K∑
k=1

x[n − k]d∗r [n − k] (59)

If x[n − K] , · · · ,x[n − 1] and dr[n − K] , · · · , dr[n − 1] are jointly Gaussian, then the sample mean quan-
tities of Eqs. (58) and (59) can be shown to be ML estimates of Eqs. (55) and (56), respectively [8].

With the sample estimates of Rxx[n] and Rxdr
[n] given in Eqs. (58) and (59), we can estimate the

Wiener filter of Eq. (54) as follows:

ŵ[n] = R̂−1
xx;(n−n0)+K0

[n]R̂xdr;(n−n0)+K0 [n] , n ≥ n0 (60)

Here, n0 represents a starting time to initiate the signal combining and K0 represents the block length
to be used initially at n = n0.

A few comments are in order at this point. First note that, as time increases, the block length
K = (n − n0) + K0 of samples used to form the correlation estimates increases as well. Intuitively, we
might expect that, as we collect more samples, the combining vector ŵ[n] will approach the optimal
Wiener filter wo[n]. Although this indeed is true when x[n] and dr[n] are jointly WSS [2] (in which case
wo[n] is actually a constant vector), this may not be the case when they are not. For example, if x[n]
fluctuates rapidly in time, it may be more advantageous to fix the block size at a small value in order to
better capture the localized variations of the signal statistics.
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In addition to this issue, we must also exercise caution in the choice of the initial block size K0. As
R̂xx;K [n] from Eq. (58) is a sum of K dyadic terms (i.e., terms of the form vv† for some vector v), we
must have K ≥ N in order for R̂xx;K [n] to be invertible [4]. Alternatively, we can replace the matrix
inverse in Eq. (60) with a pseudoinverse; however, as shown in the next section, the tracking performance
is poor for such small values of block lengths.

The method used to obtain the combining weight of Eq. (60) is formally the SMI algorithm. Although
this method is computationally complex in that it requires the computation of a matrix inverse, this is
mitigated by the fact that we can use the matrix inversion lemma [4] to obtain the new inverse given
the previously computed one. We can also slightly reduce the complexity by removing the scaling factor
of 1/K present in Eqs. (58) and (59), as they cancel each other out in Eq. (60).

C. Performance Metrics for Acquisition Evaluation

In order to properly evaluate the acquisitioning ability of the SMI algorithm, we need a way to measure
the performance of the SMI algorithm with respect to the mean-squared error optimal Wiener solution.
Here, we will consider two such metrics, namely the misalignment and the combining loss, which we
review below.

1. Misalignment. As the Wiener filter wo[n] is optimal in the mean-squared sense, clearly any other
combining weight vector w[n] will necessarily yield at least as large a mean-squared error as wo[n]. One
way to measure the performance of some combining weight with respect to the Wiener solution is to
compute the excess mean-squared error, which is the difference between the mean-squared error of the
combining weight under consideration and that of the Wiener filter. A normalized variant of this, known
as the misalignment, is defined below [2]:

µ[n] �=
ξ[n] − ξo[n]

ξo[n]
=

ξ[n]
ξo[n]

− 1 (61)

where ξ[n] is the mean-squared error of Eq. (53) corresponding to some combining weight vector w[n]
and ξo[n] is the mean-squared error of the Wiener filter wo[n] as given in Eq. (57).

As ξ[n] ≥ ξo[n], clearly µ[n] ≥ 0 with equality if w[n] is the Wiener filter wo[n]. Note that because of
this property µ[n] is a measure of how well an adaptive algorithm can track the Wiener solution. If µ[n] is
large, then the algorithm is performing poorly compared to the Wiener solution, whereas if µ[n] is small
(i.e., close to 0), then the algorithm is performing well. For the case in which the input x[n] and reference
signal dr[n] are jointly WSS (in which case wo[n] becomes a constant vector), the SMI and least mean
squares (LMS) algorithms can be shown to yield µ[n] → 0 as n → 0 [2,10]. Furthermore, in this case, the
misalignment of the SMI algorithm converges monotonically to 0 [10].

2. Combining Loss. As stated above, in the case in which x[n] consists of a linearly scaled version
of the reference signal dr[n] along with an additive white noise component, the Wiener solution is optimal
not only for minimizing the mean-squared error but also for maximizing the output SNR [2]. Though this
will only approximately be true when we include the effects due to the atmospheric phases, nevertheless it
is worthwhile to compare the output SNR of some combining weight vector w[n] with that of the Wiener
filter wo[n].

Prior to introducing such a measure, we must first properly define what is meant by output SNR in
this setting. Consider the received signal x[n] from Eq. (25) when the reference signal dr[n] is transmitted
(i.e., d[n] = dr[n]). This can be expressed as

x[n] = s[n] + v[n]
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where s[n] = B[n]adr[n] is the signal component of x[n] and v[n] is the noise component. Upon combining
the receive antenna inputs using the weight vector w[n] as in Eq. (52), we obtain the output y[n], which
can be decomposed as

y[n] = ys;w[n] + yv;w[n]

where ys;w[n] = w†[n]s[n] is the output signal component of y[n] and yv;w[n] = w†[n]v[n] is the output
noise component. Formally, in the spirit of Eq. (26), we define the output SNR as follows:

SNRy;w[n] �=
E

[
|ys;w[n]|2

]
E

[
|yv;w[n]|2

]

With this definition of output SNR, the combining loss is simply a measure of the output SNR of some
combining weight w[n] compared with that of the Wiener solution wo[n]. In particular, the combining
loss L[n] is simply a measure of the difference between these two output SNRs in decibels (dB), as given
below:

L[n] �= 10 log10

(
SNRy;w[n]
SNRy;wo [n]

)
= 10 log10

(
SNRy;w[n]

)
− 10 log10

(
SNRy;wo

[n]
)

= SNRy;w[n] (dB) − SNRy;wo
[n] (dB) (62)

For the case in which x[n] and dr[n] are jointly WSS and v[n] is an AWGN process, the SMI algorithm
can be shown to have a combining loss that monotonically converges to 0 as n → ∞ [10].

D. Simulation Results in the Presence of Atmospheric Phase Effects

At this point, it is worthwhile to analyze the effects due to the atmospheric phase perturbations on
the stationarity of the received signal x[n] as well as the combining performance achievable using the SMI
algorithm for acquisition. To gauge the stationarity of x[n], we will consider the Wiener mean-squared
error ξo[n] from Eq. (57), whereas to measure the combining performance of the SMI algorithm, we will
consider both the misalignment µ[n] from Eq. (61) as well as the combining loss L[n] from Eq. (62).

For the atmospheric phases, suppose that we use the same parameters as those in Section III.A.1.
Furthermore, suppose that the wind speed Vw is set at a typical value of 10 m/s and that a 30th-order
(i.e., M = 30) AR model was used to simulate the temporal correlation of the atmospheric phases.

For the purpose of simulation, we opted to vary the sampling rate (equivalently the baud rate in
this case as well) over the two values Fs = 0.1 kHz and 1.0 kHz, corresponding to sampling intervals of
Ts = 10 ms and Ts = 1 ms, respectively. The reason for this choice of low sampling rates is that the
effects due to the resulting nonstationarity of the received signal caused by the atmospheric phase effects
become more pronounced at lower rates.

In all of the simulations considered here, we opted to use a pure tone reference coming to the antenna
array at zenith. Here, the gain factors of both the reference and geometric array vector were set to unity
for simplicity. In other words, we chose
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dr[n] = 1 ∀ n

a = [ 1 1 · · · 1 ]T

Here, the array used was a uniform linear array with an inter-element spacing of d = 50 m. The number
of receive antennas was chosen to be a moderate value of N = 50 here to help motivate the use of
ultra-large arrays (ULAs) for interferometry in the DSN. Also, the gain factor A and noise variance σ2

were chosen such that the input SNR of Eq. (26) was set to −5 dB. The reason for this choice of input
SNR is motivated by the requirements of turbo/low-density parity-check (LDPC) codes expected to be
implemented in the DSN array system.

For the SMI algorithm, the starting time and initial block length were chosen to be n0 = 0 and K0 = 0,
respectively. In the special case for which the block size was zero, the correlation matrices required for
the SMI algorithm were initialized to zero. Finally, the number of ensemble realizations of x[n] for each n
in all of the simulations was set at 8,192.

In Fig. 12, we have plotted the observed mean-squared error ξo[n] for the Wiener filter as given in
Eq. (57) for the values of Fs as mentioned above. Furthermore, we have included the results obtained
for the stationary case of no atmospheric phase effects. As can be seen, the error varied the most for the
smallest sampling rate (largest sampling interval) and varied less for the largest sampling rate (smallest
sampling interval). This is consistent with our intuition that the received signal x[n] should be less
stationary the more the atmospheric phases change. The longer the sampling interval, the longer the
atmospheric phases have to change by a significant amount from sample to sample.

In Fig. 13, we have plotted the observed misalignment µ[n] from Eq. (61) for each of the sampling
rates Fs from above. As before, we have included the misalignment for the stationary case of no atmo-
spheric phase effects. From the plot, it can be seen that the misalignment in all cases reached a maximum
value at n = 50, which corresponds to the case at which the block length K used in the SMI algorithm
equals the number of antennas N . This is the value of the block length at which the matrix R̂xx;K [n]
from Eq. (58) becomes invertible. At block lengths smaller than N , R̂xx;K [n] is necessarily singular [4],
whereas for block lengths greater than or equal to N , R̂xx;K [n] is most likely invertible due to the ran-
domness of the input x[n]. The degradation seen when K = N is consistent with the theoretical results
obtained by Reed et al. [10] for the case of no atmospheric phase perturbations.

From Fig. 13, it also can be seen that, for n > N , the misalignment steadily decreased in all cases and
came close to zero in all cases as well, suggesting that the SMI algorithm yielded a performance close to
the Wiener solution. However, it can be seen that the misalignment for Fs = 0.1 kHz was on average
greater than that for Fs = 1.0 kHz, suggesting that the increased nonstationarity due to the atmospheric
phase effects made tracking the optimal Wiener solution somewhat more difficult.

Finally, in Fig. 14, we have plotted the observed combining loss L[n] from Eq. (62). As with the
misalignment, it can be seen that the most noticeable degradation occurred for n = N , as expected from
the theoretical analysis of [10]. For n > N , it can be seen that the performance steadily improved and the
loss approached zero as n increased for both sampling rates considered as well as for the stationary input
case. This suggests that the SMI algorithm is performing like the Wiener filter in terms of output SNR
as the block length continues to increase. As with the misalignment, the combining loss for Fs = 0.1 kHz
was on average slightly worse than for Fs = 1.0 kHz, suggesting that the nonstationarity imparted by the
atmospheric phases became more pronounced for Fs = 0.1 kHz than for Fs = 1.0 kHz.
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Fig. 12.  Observed mean-squared error         for the Wiener 
filter for various sampling rates. (Results for a WSS input 
corresponding to no atmospheric phase effects included 
for comparison.)

0 1000 2000 3000 4000 5000 6000 7000 8000

n

Fs = 0.1 kHz

Fs = 1.0 kHz

STATIONARY INPUT

[n
]

µ

Fig. 13.  Observed misalignment         for various sampling 
rates. (Results for a WSS input corresponding to no 
atmospheric phase effects included for comparison.)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

 [n]µ

VI. Concluding Remarks

In this article, we proposed a joint spatial/temporal statistical model for the atmospheric phase per-
turbation processes seen at the receiver end of an antenna array system such as that used in the DSN.
Based on this continuous-time model, we formulated a corresponding discrete-time model based on uni-
form sampling of the continuous-time process. The impetus for considering such a description arises in a
digital communications setting in which sampling is ubiquitously employed.
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With this discrete-time characterization in place, we analyzed the effects of the atmospheric phase
perturbations on the acquisition performance of the SMI algorithm for combining the array outputs.
Through simulations, it was shown that the nonstationarity imparted by the atmospheric phases was
relatively mild for the sampling rates considered. This implies that the SMI algorithm is adequate for
use to phase up the array outputs to a desired reference signal in these cases.

Although the effects due to the atmosphere were shown to be minor for the moderate number of receive
antennas used in the simulations here, it is not clear at this time how much the atmosphere will affect
the acquisition performance when we consider a large number of antennas, such as those expected to be
used in ultra-large arrays (ULAs). In such systems, the perturbations in phase due to the atmosphere are
expected to be more pronounced because phases at antennas farther away from each other will be more
weakly correlated, both in space and in time. These effects are the subject of ongoing research.
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