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Parameter Estimation Bounds and Preamble
Designs for SOQPSK Waveforms

Andre Tkacenko∗ and Baris I. Erkmen∗

In this paper, we derive joint parameter estimation bounds for the symbol timing offset,

carrier phase, and carrier frequency offset for any shaped offset quadrature phase shift

keying (SOQPSK) waveform. Specifically, we calculate the conditional Cramér-Rao bound

(CCRB) for a known given data sequence and compare this to the modified Cramér-Rao

bound (MCRB) for the case in which the data pattern is unknown and random. This

allows us to assess the performance of candidate preamble waveforms for parameter

acquisition. We show how to simplify the CCRB when the preamble waveform is periodic

and compare the CCRB performance of several candidate preambles to the MCRB. For

the Telemetry Group (TG) variant of SOQPSK (i.e., SOQPSK-TG), we specifically show

that certain candidate preambles can offer substantial improvements over the MCRB in

terms of symbol timing offset estimation with negligible adverse impact on the estimation

of the carrier phase and carrier frequency offset.

I. Introduction

In an effort to meet the emerging needs of the telemetry based requirements for

Department of Defense (DoD) test ranges, the Central Test and Evaluation Investment

Program (CTEIP) of the DoD launched the integrated Network Enhanced Telemetry

(iNET) program. To that end, the iNET Communication Link Standard Working Group

(CLSWG) has made recommendations for the physical layer waveform to be used,

including both single and multiple carrier signal formats [1]. For the single carrier physical

layer modulation format [1], the iNET CLSWG has adopted a shaped offset quadrature

phase shift keying (SOQPSK) constant envelope waveform [2]. Specifically, the iNET

CLSWG has chosen the telemetry group (TG) variant of SOQPSK (i.e., SOQPSK-TG)

[3, 4], on account of its spectral compactness. This property, coupled with the small
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amount of spectral regrowth due to nonlinear transmitter power amplification inherent of

constant envelope waveforms, makes SOQPSK-TG a well suited modulation format to

support a variety of test articles with a minimal amount of adjacent channel interference.

Furthermore, the iNET CLSWG has called for the use of a time division multiple access

(TDMA) based asynchronous burst mode frame structure for the single carrier waveform

[1]. At the beginning of each frame is a set of bits, called the preamble, allocated to aid in

demodulator acquisition. This acquisition is to account for carrier phase/frequency offsets

as well as symbol timing/clock offsets. Currently, the standard has proposed the use of a

128-bit preamble [1], but has not specified what this bit sequence should be.

In this paper, we focus on the joint estimation of the symbol timing offset, carrier phase,

and carrier frequency offset for SOQPSK. The estimation model considered for these

parameters is a discrete-time type obtained by sampling the underlying continuous-time

waveform. For this parameter vector, we first derive the conditional Fisher information

matrix (FIM) [5] used to calculate the conditional Cramér-Rao bound (CCRB) [5] for a

known data sequence. We then compute the average FIM used to obtain the modified

Cramér-Rao bound (MCRB) [6, 7] for the case of an unknown random data pattern.

Afterwards, we show how to simplify the conditional FIM for the case of a periodic

preamble waveform. With these simplifications in effect, we compare the parameter

estimation performances of several candidate periodic preambles (in terms of the CCRB)

to those dictated by the MCRB for SOQPSK-TG. Specifically, certain preambles are

shown to exhibit significant improvements over the MCRB in terms of symbol timing

offset estimation with only minor deleterious effects on the estimation of the carrier phase

and carrier frequency offset (less than 0.05 dB in bit signal-to-noise ratio (SNR)).

A. Outline

In Section II, we review the SOQPSK waveform signal model characteristics, including the

frequency pulse function used for SOQPSK-TG. There, we introduce dilated pulses used to

simplify subsequent mathematical analysis. In Section III, we review the parameter

estimation model for the symbol timing offset, carrier phase, and carrier frequency offset.

From the continuous-time waveform model stipulated in Section III.A, a discrete-time

signal model is derived in Section III.B based on sampling. In Section IV, we review

optimal lower bounds for estimating the parameters jointly. Specifically, in Section IV.A,

we recall the conditional FIM and show its relation to the CCRB, in Section IV.B, we

introduce the average FIM and the MCRB, and finally in Section IV.C, we review the

unconditional FIM and the true underlying Cramér-Rao bound (CRB) [5]. In Section V,

we derive the conditional FIM for a given data pattern. The average FIM, which is simply

the conditional FIM averaged over all possible data sequences, is calculated in Section VI.

In Section VII, we show how to simplify the conditional FIM for the case of a periodic

preamble waveform. There, we use the results obtained for the average FIM in Section VI

to aid in the choice of a suitable preamble sequence. In Section VIII, we show performance

bounds for several candidate preambles and compare these bounds with those obtained
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from the MCRB. There, we show that certain candidate preambles are able to achieve

better estimation performance with respect to symbol timing with negligible adverse

impact on carrier phase and carrier frequency offset estimation. Concluding remarks are

made in Section IX. Finally, in the Appendix, we reveal the relationship between the true

unconditional CRB and MCRB.

B. Notations

Standard signal processing notations as in [8] are used. In particular, parentheses and

square brackets are used for continuous-time and discrete-time function arguments,

respectively. As an example, x(t) would denote a continuous-time function for t ∈ R,

whereas y[n] would denote a discrete-time function for n ∈ Z. For notational convenience,

discrete-time function arguments will sometimes be written as a subscript, so that y[n]

may be alternately expressed as yn.

Vector/matrix notations used are as in [9]. Specifically, boldface lowercase letters (such as

v) will be used to denote vectors, whereas boldface uppercase letters (such as A) will be

used to denote matrices. In addition, the (k, `)-th element of a matrix A will be denoted

as [A]k,`. The transpose and conjugate transpose operators will be represented by the

superscripts T and †, respectively.

Statistical notations used are as in [5]. In particular, a hat will be used to denote an

estimate of a parameter. For example, if θ is a parameter to be estimated, then θ̂ would

denote an estimate of θ. Furthermore, the expectation operator with respect to a random

vector x will be denoted as Ex [·]. For example, if px(x) denotes the probability density

function (pdf) of x, then we have

Ex [f(x)] =

∫
R
px(x)f(x) dx

for some function f(x), where R denotes the support region of integration of the pdf px(x).

To make subsequent analysis less cumbersome, we will introduce dilated pulse shapes,

which are simply traditional pulse functions that have been dilated by the symbol interval

length and possibly scaled to remove any dependency on the symbol rate. All dilated pulse

shapes will be denoted by an overline. For example, if p(t) denotes the following

unit-energy non-return to zero (NRZ) pulse shape [10] for a symbol interval length of Tsym

p(t) ,


1√
Tsym

, −Tsym

2 ≤ t < Tsym

2

0 , otherwise

then a suitable dilated pulse shape would be p(x) ,
√
Tsymp(xTsym). In this case, we have

p(x) =

 1 , − 1
2 ≤ x <

1
2

0 , otherwise

which does not depend upon the symbol interval Tsym.
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II. SOQPSK Waveform Characteristics

The transmitted continuous-time complex baseband analog signal corresponding to an

SOQPSK waveform is of the following form [11]:

s(t) ,

√
Eb
Tb

exp

{
j2πh

∑
k∈Z

αkq(t− kTb)

}
(1)

Here, we have the following.

Eb = energy per bit

Tb = bit duration

h = modulation index (h = 1/2 for SOQPSK-TG)

{αk} = ternary symbol stream (αk ∈ {−1, 0, 1})

q(t) = phase pulse of SOQPSK =

∫ t

−∞
f(τ) dτ

f(t) = frequency pulse of SOQPSK

In order for the demodulated constellation corresponding to Equation (1) to conform to a

conventional offset quadrature phase shift keying (OQPSK) constellation, as desired here,

the mapping between the in-phase and quadrature bits to the ternary symbol stream {αk}
must be carried out properly. For SOQPSK, this is done as follows. Let {bI,k} and {bQ,k}
denote, respectively, the in-phase and quadrature bit streams, where we have

bI,k, bQ,k ∈ {0, 1} for all k. These streams are then interleaved into a serial bit stream {bk}
via the following mapping:

bk =

 bI, k2
, k even

bQ, k−1
2
, k odd

(2)

Then, the serial bit stream {bk} is mapped to the ternary symbol stream {αk} as follows

[2, 3]:

αk = (−1)k+1 (2bk−1 − 1) (bk − bk−2) (3)

The phase and frequency pulses q(t) and f(t) are implicitly parameterized by the bit

interval Tb [2, 3]. In order to simplify further analysis here, we define the following dilated

pulse shapes q(x) and f(x) as given below

q(x) , q(xTb) , f(x) , Tbf (xTb) (4)

It can be shown that the dilated pulses defined in Equation (4) do not depend upon the

value of Tb chosen here. With the definitions given in Equation (4), the complex baseband

signal s(t) from Equation (1) becomes the following:

s(t) =

√
Eb
Tb

exp

{
j2πh

∑
k∈Z

αkq

(
t

Tb
− k
)}

(5)

where we have

q(x) =

∫ x

−∞
f(λ) dλ (6)
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Figure 1. Plot of the dilated frequency pulse f(x) corresponding to SOQPSK-TG.

For SOQPSK-TG, the frequency pulse is a product of a raised cosine frequency-domain

window and time-domain window [2] and is given by

f(x) , A
cos
(
πβ1β2x

2

)
1− 4

(
β1β2x

2

)2 sinc

(
β2x

2

)
w(x) (7)

where A is chosen to make
∫∞
−∞ f(x) dx = 1/2 and w(x) is given by the following

expression:

w(x) =


1 ,

∣∣x
2

∣∣ < γ1

1
2

[
1 + cos

(
π
γ2

(
x
2 − γ1

))]
, γ1 ≤

∣∣x
2

∣∣ < γ1 + γ2

0 ,
∣∣x
2

∣∣ ≥ γ1 + γ2

Here, β1, β2 are parameters for the frequency-domain window which control the bandwidth

and roll-off, whereas γ1, γ2 are parameters for the time-domain window which control the

duration and roll-off. For SOQPSK-TG specifically, we have β1 = 7/10, β2 = 5/4,

γ1 = 3/2, and γ2 = 1/2 [3, 4]. In this case, f(x) is only nonzero over the region

−4 < x < 4. A plot of f(x) for SOQPSK-TG is shown in Figure 1.

For simplicity of subsequent mathematical analysis, we will define the dilated normalized

frequency trajectory function p(x) as follows:

p(x) ,
∑
k∈Z

αkf(x− k) (8)

From Equations (6) and (8), it can be seen that we have

p(x) =
∑
k∈Z

αk
d

dx
{q(x− k)} =

d

dx

{∑
k∈Z

αkq(x− k)

}
(9)

This property will prove useful when deriving optimal bounds for joint parameter

estimation for SOQPSK.
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III. Parameter Estimation Model

Here, we will consider the problem of jointly estimating three unknown deterministic

parameters of an SOQPSK transmitted waveform corrupted by an additive noise: namely

the symbol timing offset, carrier phase, and carrier frequency offset. Starting from a

continuous-time complex baseband model, we will derive a corresponding discrete-time

model based on sampling the underlying waveform. Then, with this discrete-time model,

we will be able to statistically characterize the received set of samples and subsequently

derive optimal lower bounds for the joint estimation of the three unknown parameters.

A. Continuous-Time Waveform Model

We will assume that the received complex baseband signal consists of the original

transmitted signal from Equation (5) with an unknown deterministic symbol timing offset,

carrier phase, and carrier frequency offset, corrupted by a circular complex additive white

Gaussian noise (AWGN) process [10]. Prior to sampling the baseband signal at the

analog-to-digital converter (ADC), it is filtered by an anti-aliasing filter to limit the

bandwidth of the incoming signal to half the sampling rate. Here, we will assume that the

anti-aliasing filter has no effect on the transmitted SOQPSK signal and only filters the

AWGN process, which is approximately true assuming the sampling rate is sufficiently

larger than the SOQPSK symbol rate [9]. With this assumption, the continuous-time

complex baseband signal seen at the input to the ADC is given by the following expression:

y(t) = e
j2π

((
ν
Tb

)
t+φ

)
s(t− εTb) + η(t) (10)

Here, we have the following.

y(t) = received baseband signal at the ADC input

η(t) = bandlimited Gaussian noise process

ε = normalized symbol timing offset

φ = normalized carrier phase

ν = normalized carrier frequency offset

The noise process η(t) is a continuous-time zero-mean circular complex bandlimited

Gaussian process [10] with power spectral density (psd) [9] Sηη(j2πF ) given by

Sηη(j2πF ) =

 N0 , − 1
2Ts
≤ F < 1

2Ts

0 , otherwise
(11)

where N0 is the original AWGN spectral density and Ts is the ADC sampling interval.

Here, we are interested in the joint estimation of the three unknown deterministic

parameters ε, φ, and ν. In other words, we are interested in estimating the 3× 1 vector θ
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defined below as follows:

θ ,


ε

φ

ν

 =


θ0

θ1

θ2

 (12)

We will consider estimating θ from a sampled version of the continuous-time waveform

y(t) from Equation (10) described below.

B. Discrete-Time Signal Model

A discrete-time model is obtained by uniformly sampling the analog ADC input signal

from Equation (10) at the sampling rate 1/Ts and collecting N observations. This leads to

the model

ym = sm + wm , m = 0, 1, . . . , N − 1 (13)

where, we have ym , y(mTs), sm , e
j2π

((
ν
Tb

)
(mTs)+φ

)
s(mTs − εTb), and wm , η(mTs).

Here, wm is a discrete-time zero-mean circular complex AWGN process [10] with variance

σ2 = N0

Ts
.

Prior to proceeding with any subsequent developments, we will introduce three

dimensionless quantities which will aid in the analysis. First, to help remove any explicit

dependencies upon either the bit interval Tb or the sampling interval Ts, we will define the

following quantity K:

K ,
Tb
Ts

(14)

Note that K as given in Equation (14) corresponds to the number of samples per bit.

With K defined as in Equation (14), the signal sample sm from above simplifies to the

following expression:

sm = ej2π(( νK )m+φ)s
((m

K
− ε
)
Tb

)
(15)

Second, we will define the number of bits observed to be L. In other words, we define L as

follows:

L ,
N

K
(16)

Here, L as defined in Equation (16) is the total number of samples observed N divided by

the number of samples per bit K and is thus the number of bits observed with the

discrete-time model from Equation (13). We will assume here throughout that L ∈ N+ so

that we always observe an integer number of bits.

Finally, let us consider the bit SNR [10], which we will denote here by ρ. Clearly, we have

ρ , Eb
N0

, which can be simplified as shown below:

ρ =
Eb
N0

=
Eb
σ2Ts

=
EbK

σ2Tb
=

(
Eb
Tb

)
K

σ2
(17)

In Equation (17), we used the definition of K given in Equation (14), along with the fact

that the noise spectral density N0 satisfies the relation N0 = σ2Ts.
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IV. Optimal Lower Bounds for Joint Parameter Estimation

To derive bounds for estimating the parameter vector θ from the discrete-time signal

model from Equation (13), we must first characterize the statistical properties of the

model. Then, estimation performance can be delineated in terms of Cramér-Rao type

bounds [5].

To that end, define the N × 1 vectors y ,
[
y0 y1 · · · yN−1

]T
and

s(α;θ) ,
[
s0 s1 · · · sN−1

]T
, where α denotes the vector of ternary symbol stream

values {αk}, which may be either random or known. Here, the notation s(α;θ) is used to

emphasize the fact that the vector is a function of the ternary symbol stream α and is

parameterized by the unknown but deterministic vector θ from Equation (12).

Let p(y|α;θ) denote the pdf of the random vector y given α and parameterized by θ. As

wm from Equation (13) is a zero-mean circular complex AWGN process with variance σ2,

it follows that, given α, y is a circular complex Gaussian random vector [5] with mean

s(α;θ) and covariance matrix σ2IN . Hence, p(y|α;θ) is given by the following expression

[5]:

p(y|α;θ) =
1

πNσ2N
exp

{
−||y − s(α;θ)||2

σ2

}
(18)

A. Conditional FIM and the Conditional CRB

Given the ternary symbol stream α, the mean squared error performance of any unbiased

estimator of θ can be lower bounded by the conditional CRB, which is solely a function of

the pdf p(y|α;θ) [5]. Specifically, let θ̂(y|α) denote any unbiased estimator [5] of θ for a

given α, meaning that Ey|α

[
θ̂(y|α)

]
= θ. Also, let e(y|α;θ) denote the error between

the true parameter and its estimate defined to be

e(y|α;θ) , θ − θ̂(y|α)

Note that we have Ey|α [e(y|α;θ)] = 0 as θ̂(y|α) is an unbiased estimate of θ here.

Finally, let Cee(θ|α) denote the covariance matrix of the error e(y|α;θ), defined as

follows:

Cee(θ|α) , Ey|α
[
e(y|α;θ)e†(y|α;θ)

]
Then, for any unbiased estimator θ̂(y|α) of θ, we have [5]

Cee(θ|α) ≥ CCRB (θ|α) = F−1(θ|α) (19)

where CCRB (θ|α) and F(θ|α) denote, respectively, the conditional Cramér-Rao bound

(CCRB) and conditional Fisher information matrix (FIM) of θ given α [5]. It should be

noted and emphasized that the inequality in Equation (19) is a matrix inequality [12]

which implicitly takes into account the effect that the parameters have on each other in

terms of estimation performance. Here, the matrix inequality notation A ≥ B is
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equivalent to saying that (A−B) is positive semidefinite [12]. The (k, `)-th element of the

conditional FIM F(θ|α) is given by [5]

[F(θ|α)]k,` = −Ey|α

[
∂2

∂θk∂θ`
ln p(y|α;θ)

]
, 0 ≤ k, ` ≤ 2 (20)

From Equations (20) and (19), it can be seen that the conditional FIM F(θ|α) and CCRB

matrix CCRB (θ|α) are solely functions of the pdf p(y|α;θ). This establishes a lower

bound on the mean squared error for parameter estimation based solely on the statistical

properties of the received signal observation vector y, given a ternary symbol stream α.

B. Average FIM and the Modified CRB

For cases in which the ternary symbol stream α is not known and random, a figure of

merit that is often used to assess the performance of an estimator for θ is to average the

FIM values from Equation (20) over each and every possible random realization of α. The

inverse of this averaged FIM then yields what is known as the modified Cramér-Rao bound

(MCRB) matrix [6, 7]. Specifically, the MCRB matrix is defined as

MCRB (θ) , G−1(θ) (21)

where G(θ) is the average Fisher information matrix whose (k, `)-th element is given by

the following expression:

[G(θ)]k,` = −Ey,α

[
∂2

∂θk∂θ`
ln p(y|α;θ)

]
, 0 ≤ k, ` ≤ 2 (22)

Comparing Equations (22) and (20), it can be easily seen that we have

G(θ) = Eα [F(θ|α)] (23)

and so the average FIM G(θ) is simply the conditional FIM F(θ|α) averaged over the set

of all possible random ternary symbol streams {α}.

Though the MCRB is not per se a bound on the performance of an estimator for θ, it is a

useful figure of merit by which to assess the performance of a specific symbol stream α. In

the case in which the parameter vector θ is a scalar, the MCRB can be a beneficial tool to

evaluate the effect of a specific value of α on estimation performance. On account of the

averaging used to calculate the MCRB, in this scalar case, some choices of α must yield

better performance than the MCRB, whereas others must yield inferior performance.

While this intuition does not hold as such for the general vector case, the MCRB can

nonetheless be used as a metric by which to compare the performance of CCRBs for

various values of α.

C. Unconditional FIM and the CRB

When the ternary symbol stream α is not known and random, the mean squared error

performance of any unbiased estimator of θ is lower bounded by the unconditional CRB,
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which is only a function of the pdf of the received observation vector y parameterized by

θ, which we denote here by p(y;θ) [5]. Analogous to the results from Section IV.A, let

θ̂(y) denote any unbiased estimator of θ and define the error between the true parameter

and its estimate to be e(y;θ) , θ − θ̂(y). If Cee(θ) denotes the covariance matrix of the

error given by

Cee(θ) , Ey

[
e(y;θ)e†(y;θ)

]
then we have

Cee(θ) ≥ CRB (θ) = H−1(θ) (24)

where CRB (θ) and H(θ) denote, respectively, the true unconditional CRB and

unconditional FIM of θ [5]. As with Equation (19), the inequality in Equation (24) is a

matrix inequality [12]. The (k, `)-th element of the unconditional FIM H(θ) is given by [5]

[H(θ)]k,` = −Ey

[
∂2

∂θk∂θ`
ln p(y;θ)

]
, 0 ≤ k, ` ≤ 2 (25)

From Equations (25) and (24), it can be seen that the unconditional FIM H(θ) and CRB

matrix CRB (θ) are solely functions of the pdf p(y;θ). This establishes a lower bound on

the mean squared error for parameter estimation based solely on the statistical properties

of the received signal observation vector y.

In practice, it is often difficult or intractable to calculate the unconditional CRB. The

reason for this is that it involves the unconditional pdf p(y;θ), which is often more

cumbersome to work with than the conditional pdf p(y|α;θ). To see why this is the case,

note that the unconditional pdf is given in terms of the conditional one via the following

relationship [5]:

p(y;θ) =

∫
Rα

p(y|α;θ) p(α) dα = Eα [ p(y|α;θ)] (26)

Here, p(α) denotes the pdf of the ternary symbol stream α and Rα denotes the region of

support of this pdf [5]. Specifically for the SOQPSK signal model of Equation (13)

considered here, calculating p(y;θ) from Equation (26) is intractable since the integration

will degenerate into a sum of numerous terms over all possible ternary symbol stream

values α over the observation time set {t : t = mTs − εTb, 0 ≤ m ≤ N − 1}.

One interesting property relating the unconditional CRB and the MCRB is that we have

[6, 7]

MCRB (θ) ≤ CRB (θ) (27)

where the inequality in Equation (27) is a matrix inequality [12]. This property is proven

in the Appendix.

V. Derivation of the Conditional FIM

From Equation (20), it can be seen that the conditional FIM is Hermitian [12], and so the

only terms that must be calculated here are the six terms [F(θ|α)]0,0, [F(θ|α)]0,1,

[F(θ|α)]0,2, [F(θ|α)]1,1, [F(θ|α)]1,2, and [F(θ|α)]2,2. Prior to focusing on simplifying each
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of these terms individually, it is insightful to simplify the general expression of [F(θ|α)]k,`
for the specific pdf p(y|α;θ) given in Equation (18). Starting with Equation (18), note

that we have the following:

ln p(y|α;θ) = −N ln
(
πσ2

)
− ||y − s(α;θ)||2

σ2

= −N ln
(
πσ2

)
− ||y||

2

σ2
− ||s(α;θ)||2

σ2
+

y†s(α;θ)

σ2
+

s†(α;θ)y

σ2

= −N ln
(
πσ2

)
− ||y||

2

σ2
−
N
(
Eb
Tb

)
σ2

+
y†s(α;θ)

σ2
+

s†(α;θ)y

σ2
(28)

Here, Equation (28) follows from exploiting the constant envelope property of s(t) from

Equation (5) in Equation (15). Partially differentiating both sides of Equation (28) with

respect to θ` followed by θk yields the following:

∂2

∂θk∂θ`
ln p(y|α;θ) =

1

σ2

[
y†
(

∂2

∂θk∂θ`
s(α;θ)

)
+

(
∂2

∂θk∂θ`
s(α;θ)

)†
y

]
(29)

Now, as the expected value of the vector y is the signal component s(α;θ) (i.e., we have

Ey|α [y] = s(α;θ)), it follows that the (k, `)-th element of the conditional FIM F(θ|α)

from Equation (20) simplifies to the following:

[F(θ|α)]k,` = − 1

σ2

[
s†(α;θ)

(
∂2

∂θk∂θ`
s(α;θ)

)
+

(
∂2

∂θk∂θ`
s(α;θ)

)†
s(α;θ)

]

= − 2

σ2
Re

{
s†(α;θ)

(
∂2

∂θk∂θ`
s(α;θ)

)}
= − 2

σ2

N−1∑
m=0

Re

{
[s(α;θ)]

∗
m ·

∂2

∂θk∂θ`
[s(α;θ)]m

}

= − 2

σ2

N−1∑
m=0

Re

{
s∗m ·

∂2sm
∂θk∂θ`

}
= − 2

σ2

KL−1∑
m=0

Re

{
s∗m ·

∂2sm
∂θk∂θ`

}
(30)

Here, the last equality in Equation (30) follows from Equation (16). Finally, prior to

simplifying specific terms of the conditional FIM, it is useful to compute the first order

partial derivatives of sm from Equation (15). Using Equation (12), we have the following

after some algebraic manipulation:

∂sm
∂θ0

=
∂sm
∂ε

= −j2πh p
(m
K
− ε
)
sm (31)

∂sm
∂θ1

=
∂sm
∂φ

= j2πsm (32)

∂sm
∂θ2

=
∂sm
∂ν

= j2π
(m
K

)
sm (33)

A. Symbol Timing Offset/Symbol Timing Offset Cross Term

From Equation (30), the symbol timing offset/symbol timing offset cross term [F(θ|α)]0,0
is given by the following:

[F(θ|α)]0,0 = − 2

σ2

KL−1∑
m=0

Re

{
s∗m ·

∂2sm
∂θ20

}
(34)

11



Now, using Equation (31), we have the following set of expressions:

∂2sm
∂θ20

= −(2πh)2 p2
(m
K
− ε
)
sm + j2πh p′

(m
K
− ε
)
sm

s∗m ·
∂2sm
∂θ20

= −(2πh)2
(
Eb
Tb

)
p2
(m
K
− ε
)

+ j2πh

(
Eb
Tb

)
p′
(m
K
− ε
)

(35)

Re

{
s∗m ·

∂2sm
∂θ20

}
= −(2πh)2

(
Eb
Tb

)
p2
(m
K
− ε
)

(36)

Here, Equation (35) follows from the constant envelope property |sm|2 = Eb
Tb

, which in turn

follows from Equations (15) and (5). Substituting Equation (36) into Equation (34) yields

[F(θ|α)]0,0 =
2(2πh)2

(
Eb
Tb

)
σ2

KL−1∑
m=0

p2
(m
K
− ε
)

(37)

Using Equation (17) in Equation (37) leads to the following simplified expression for the

symbol timing offset/symbol timing offset cross term:

[F(θ|α)]0,0 =
2(2πh)2ρ

K

KL−1∑
m=0

p2
(m
K
− ε
)

(38)

As will be shown in Section VII, the dependency of [F(θ|α)]0,0 in Equation (38) upon ε

approximately goes away for a periodic waveform p(x).

B. Symbol Timing Offset/Carrier Phase Cross Term

From Equation (30), the symbol timing offset/carrier phase cross term [F(θ|α)]0,1 is given

by the following:

[F(θ|α)]0,1 = − 2

σ2

KL−1∑
m=0

Re

{
s∗m ·

∂2sm
∂θ0∂θ1

}
(39)

Now, using Equations (32) and (31), we have the following set of expressions:

∂2sm
∂θ0∂θ1

= (2π)2h p
(m
K
− ε
)
sm

s∗m ·
∂2sm
∂θ0∂θ1

= (2π)2h

(
Eb
Tb

)
p
(m
K
− ε
)

Re

{
s∗m ·

∂2sm
∂θ0∂θ1

}
= (2π)2h

(
Eb
Tb

)
p
(m
K
− ε
)

(40)

Substituting Equation (40) into Equation (39) and using Equation (17) leads to the

following simplified expression for the symbol timing offset/carrier phase cross term:

[F(θ|α)]0,1 = −2(2π)2hρ

K

KL−1∑
m=0

p
(m
K
− ε
)

(41)

As with the symbol timing offset/symbol timing offset cross term, we will show in Section

VII that the dependency of [F(θ|α)]0,1 in Equation (41) upon ε approximately goes away

for a periodic preamble waveform p(x).

12



C. Symbol Timing Offset/Carrier Frequency Offset Cross Term

From Equation (30), the symbol timing offset/carrier frequency offset cross term

[F(θ|α)]0,2 is given by the following:

[F(θ|α)]0,2 = − 2

σ2

KL−1∑
m=0

Re

{
s∗m ·

∂2sm
∂θ0∂θ2

}
(42)

Now, using Equations (33) and (31), we have the following set of expressions:

∂2sm
∂θ0∂θ2

= (2π)2h
(m
K

)
p
(m
K
− ε
)
sm

s∗m ·
∂2sm
∂θ0∂θ2

= (2π)2h

(
Eb
Tb

)(m
K

)
p
(m
K
− ε
)

Re

{
s∗m ·

∂2sm
∂θ0∂θ2

}
= (2π)2h

(
Eb
Tb

)(m
K

)
p
(m
K
− ε
)

(43)

Substituting Equation (43) into Equation (42) and using Equation (17) leads to the

following simplification for the symbol timing offset/carrier frequency offset cross term:

[F(θ|α)]0,2 = −2(2π)2hρ

K2

KL−1∑
m=0

mp
(m
K
− ε
)

(44)

Unlike the symbol timing offset/symbol timing offset and symbol timing offset/carrier

phase cross terms, it is difficult to show that the dependency of [F(θ|α)]0,2 in Equation

(44) upon ε approximately goes away for a periodic preamble p(x). However, in Section

VIII, we show that this indeed is approximately true for a worst case value of ε. This then

suggests that estimation of the symbol timing offset is approximately decoupled from that

of the carrier frequency offset.

D. Carrier Phase/Carrier Phase Cross Term

From Equation (30), the carrier phase/carrier phase cross term [F(θ|α)]1,1 is given by

[F(θ|α)]1,1 = − 2

σ2

KL−1∑
m=0

Re

{
s∗m ·

∂2sm
∂θ21

}
(45)

Now, using Equation (32), we have the following set of expressions:

∂2sm
∂θ21

= −(2π)2sm

s∗m ·
∂2sm
∂θ21

= −(2π)2
(
Eb
Tb

)
Re

{
s∗m ·

∂2sm
∂θ21

}
= −(2π)2

(
Eb
Tb

)
KL−1∑
m=0

Re

{
s∗m ·

∂2sm
∂θ21

}
= −(2π)2

(
Eb
Tb

)KL−1∑
m=0

1 = −(2π)2
(
Eb
Tb

)
KL (46)

13



For the last equality of Equation (46), we used the fact that [13]

N−1∑
m=0

1 = N

for any N ∈ N+. Substituting Equation (46) into Equation (45) and using Equation (17)

leads to the following simplified expression for the carrier phase/carrier phase cross term:

[F(θ|α)]1,1 = 2(2π)2Lρ (47)

As can be seen from Equation (47), the carrier phase/carrier phase cross term is

independent of the preamble waveform p(x) and thus the ternary symbol stream α.

E. Carrier Phase/Carrier Frequency Offset Cross Term

From Equation (30), the carrier phase/carrier frequency offset cross term [F(θ|α)]1,2 is

given by the following:

[F(θ|α)]1,2 = − 2

σ2

KL−1∑
m=0

Re

{
s∗m ·

∂2sm
∂θ1∂θ2

}
(48)

Now, using Equations (33) and (32), we have the following set of expressions:

∂2sm
∂θ1∂θ2

= −(2π)2
(m
K

)
sm

s∗m ·
∂2sm
∂θ1∂θ2

= −(2π)2
(m
K

)(Eb
Tb

)
Re

{
s∗m ·

∂2sm
∂θ1∂θ2

}
= −(2π)2

(m
K

)(Eb
Tb

)
KL−1∑
m=0

Re

{
s∗m ·

∂2sm
∂θ1∂θ2

}
= −(2π)2

(
1

K

)(
Eb
Tb

)KL−1∑
m=0

m

= −(2π)2
(
Eb
Tb

)
· (KL− 1)L

2
(49)

In Equation (49), we used the fact that [13]

N−1∑
m=0

m =
(N − 1)N

2

for any N ∈ N+. Substituting Equation (49) into Equation (48) and using Equation (17)

leads to the following simplified expression for the carrier phase/carrier frequency offset

cross term:

[F(θ|α)]1,2 =
(2π)2(KL− 1)Lρ

K
(50)

As with the carrier phase/carrier phase cross term, from Equation (50), it can be seen that

the carrier phase/carrier frequency offset cross term is independent of the preamble

waveform p(x) and hence the ternary symbol stream α.
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F. Carrier Frequency Offset/Carrier Frequency Offset Cross Term

From Equation (30), the carrier frequency offset/carrier frequency offset cross term

[F(θ|α)]2,2 is given by the following:

[F(θ|α)]2,2 = − 2

σ2

KL−1∑
m=0

Re

{
s∗m ·

∂2sm
∂θ22

}
(51)

Now, using Equation (33), we have the following set of expressions:

∂2sm
∂θ22

= −(2π)2
(m
K

)2
sm

s∗m ·
∂2sm
∂θ22

= −(2π)2
(m
K

)2(Eb
Tb

)
Re

{
s∗m ·

∂2sm
∂θ22

}
= −(2π)2

(m
K

)2(Eb
Tb

)
KL−1∑
m=0

Re

{
s∗m ·

∂2sm
∂θ22

}
= −(2π)2

(
1

K2

)(
Eb
Tb

)KL−1∑
m=0

m2

= −(2π)2
(
Eb
Tb

)
· (KL− 1)(2KL− 1)L

6K
(52)

In Equation (52), we used the fact that [13]

N−1∑
m=0

m2 =
(N − 1)N(2N − 1)

6
(53)

for any N ∈ N+. Substituting Equation (52) into Equation (51) and using Equation (17)

leads to the following simplified expression for the carrier frequency offset/carrier

frequency offset cross term:

[F(θ|α)]2,2 =
(2π)2(KL− 1)(2KL− 1)Lρ

3K2
(54)

As with the carrier phase/carrier phase and carrier phase/carrier frequency offset cross

terms, from Equation (54), it can be seen that the carrier frequency offset/carrier

frequency offset cross term is independent of the preamble waveform p(x) and thus the

ternary symbol stream α.

G. Summary of Results for the Conditional FIM for SOQPSK

Combining all of the results of the previous subsections, it follows that the conditional

FIM F(θ|α) for the SOQPSK signal model of Equation (13) is of the following form:

F(θ|α) =

 F (ε|α) fT (ε|α)

f(ε|α) A

 (55)

Here, we have

F (ε|α) ,
2(2πh)2ρ

K

KL−1∑
m=0

p2
(m
K
− ε
)

(56)
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f(ε|α) ,


−2(2π)2hρ

K

KL−1∑
m=0

p
(m
K
− ε
)

−2(2π)2hρ

K2

KL−1∑
m=0

mp
(m
K
− ε
)
 (57)

A ,


2(2π)2Lρ

(2π)2(KL− 1)Lρ

K

(2π)2(KL− 1)Lρ

K

(2π)2(KL− 1)(2KL− 1)Lρ

3K2

 (58)

From Equations (55) and (58), it can be seen that the lower 2× 2 submatrix of F(θ|α)

does not depend upon either the parameter vector θ or the ternary symbol stream α. This

will simplify the subsequent derivation of the average FIM in the next section.

VI. Derivation of the Average FIM

Recall from Equation (23) that the average FIM G(θ) is simply the average of the

conditional FIM F(θ|α) over all possible ternary symbol stream values α. From Equation

(55), it follows that calculating the average FIM only involves averaging the quantities

F (ε|α) and f(ε|α) from Equations (56) and (57), respectively, over all possible ternary

symbol streams.

A. Symbol Timing Offset/Symbol Timing Offset Cross Term

Consider first the scalar quantity F (ε|α) from Equation (56). Using Equation (8) in

Equation (56) leads to the following expression:

Eα [F (ε|α)] =
2(2πh)2ρ

K

KL−1∑
m=0

∑
k0∈Z

∑
k1∈Z

Eα [αk0αk1 ] f
(m
K
− ε− k0

)
f
(m
K
− ε− k1

)
(59)

For the ternary symbol stream mapping of Equation (3), assuming the serial bit stream is

an independent, identically distributed (i.i.d.) sequence [10], we have [4]

Eα [αk0αk1 ] = Rαα[k0 − k1] (60)

where Rαα[`] is the autocorrelation function of the ternary symbol stream which satisfies

the following relationship [14]:

Rαα[`] =


1
2 , ` = 0

1
4 , ` = ±1

0 , otherwise

(61)

Using Equations (61) and (60) in Equation (59) yields the following:

Eα [F (ε|α)] =
2(2πh)2ρ

K

KL−1∑
m=0

v
(m
K
− ε
)

(62)
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Figure 2. MCRB dilated pulse function plots: (a) exact pulse waveform v(x) overlaid with its approximation

V and (b) the difference waveform d(x) , v(x)− V .

Here, v(x) is the following dilated pulse function:

v(x) ,
∑
k∈Z

[
1

4
f(x− k)f(x− (k − 1)) +

1

2
f
2
(x− k) +

1

4
f(x− k)f(x− (k + 1))

]
(63)

Expressing Equation (63) as three separate summations and then using dummy index

variable manipulations, we can simplify the expression for v(x) as follows:

v(x) =
1

2

∑
k∈Z

f(x− k)
[
f(x− k) + f(x− (k + 1))

]
(64)

From Equations (63) or (64), it can be seen that v(x) is periodic with period 1. For

SOQPSK-TG, it turns out that v(x) is approximately constant. Specifically, we have

v(x) ≈ V , where V ≈ 0.09881 (65)

A plot of v(x) overlaid with that of V from Equation (65) over the range − 1
2 ≤ x <

1
2 is

shown in Figure 2(a). From this, it can be seen that the constant approximation from

Equation (65) is a good fit to the exact dilated pulse from Equation (63) or Equation (64).

In Figure 2(b), we have plotted the difference signal d(x) , v(x)− V , from which it can be

seen that the difference is small and less than 3.5× 10−6.

Substituting the constant approximation of Equation (65) into Equation (62) yields the

following simplified expression for Eα [F (ε|α)]:

Eα [F (ε|α)] ≈ 2(2πh)2V Lρ (66)

As can be seen from Equation (66), the average FIM symbol timing offset/symbol timing

offset cross term approximately does not depend upon any specific value of the parameter

vector θ.
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B. Symbol Timing Offset/Carrier Phase and Carrier Frequency Offset Cross Terms

Consider now the vector quantity f(ε|α) from Equation (57). Using Equation (8) in

Equation (57) leads to the following expression:

Eα [f(ε|α)] =


−2(2π)2hρ

K

KL−1∑
m=0

∑
k∈Z

Eα [αk] f
(m
K
− ε− k

)
−2(2π)2hρ

K2

KL−1∑
m=0

m
∑
k∈Z

Eα [αk] f
(m
K
− ε− k

)
 (67)

From the ternary symbol stream mapping given in Equation (3), for an i.i.d. serial bit

stream {bk}, we have Eα [αk] = 0 for all k and so Equation (67) simplifies to the following:

Eα [f(ε|α)] =

 0

0

 = 0 (68)

As the symbol timing offset/carrier phase and carrier frequency offset cross terms are zero

from Equation (68), this implies that in terms of the MCRB, the symbol timing offset is

completely decoupled from the carrier phase and carrier frequency offset. In other words,

estimating the symbol timing offset has no effect on estimating either the carrier phase or

carrier frequency offset and vice versa.

C. Summary of Results for the Average FIM for SOQPSK

Substituting Equations (66) and (68) in Equations (23) and (55) leads to the following

approximation for the average FIM G(θ):

G(θ) ≈

 2(2πh)2V Lρ 0

0 A

 (69)

Here, A is the matrix given in Equation (58). Upon further inspection of Equations (69)

and (58), it follows that G(θ) can be further simplified to the following approximation:

G(θ) ≈


2h2V 0 0

0 2 KL−1
K

0 KL−1
K

(KL−1)(2KL−1)
3K2

 (2π)2Lρ (70)

From Equation (70), it can be seen that the average FIM is a linear function of the bit

SNR ρ. As such, from Equation (21), it follows that the MCRB is linearly inversely

proportional to the bit SNR.

VII. Simplification of the Conditional FIM for Periodic Preamble Waveforms

Prior to incorporating a periodic constraint on the preamble waveform p(x) to simplify the

conditional FIM terms F (ε|α) and f(ε|α) from Equations (56) and (57), respectively, it is
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Figure 3. Plot of the magnitude response of F (j2πF ) on a dB scale.

worthwhile investigating other inherent properties of p(x) for SOQPSK-TG specifically. To

that end, recall that p(x) is given by Equation (8), where f(x) is the dilated frequency

pulse function, which for SOQPSK-TG is as plotted in Figure 1. Taking the Fourier

transform [8, 9] of both sides of Equation (8) yields the following:

P (j2πF ) = F (j2πF )A(ej2πF ) (71)

Here, P (j2πF ) and F (j2πF ) denote, respectively, the continuous-time Fourier transforms

[8, 9] of p(x) and f(x), and A(ej2πf ) denotes the discrete-time Fourier transform [8, 9] of

the ternary symbol sequence {αk} given by

A(ej2πf ) =
∑
k∈Z

αke
−j2πfk

From Equation (71), it is clear that P (j2πF ) is the product of a periodic function

A(ej2πF ) (with period 1) and an aperiodic function F (j2πF ). For SOQPSK-TG, we will

argue that P (j2πF ) is approximately bandlimited to the region F ∈ [−1/2, 1/2). To show

this, we have plotted the magnitude of F (j2πF ) on a dB scale in Figure 3.

As can be seen from Figure 3, the majority of the energy of F (j2πF ) is concentrated in

the region F ∈ [−1/2, 1/2). Multiplying F (j2πF ) by the periodic function A(ej2πF ) will

not widen this energy distribution and thus P (j2πF ) is approximately bandlimited to

F ∈ [−1/2, 1/2).

Let us now incorporate a periodic constraint on p(x). From Equation (8), it can be seen

that p(x) can be periodic if and only if the ternary symbol sequence {αk} is periodic.

Furthermore, if {αk} is periodic with period P (where we must have P ∈ N+), then p(x) is

also periodic with period P . With the bandlimited approximation in effect, it follows that
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p(x) has the following Fourier series expansion [8, 9]:

p(x) =
∑
k∈Z

cke
j 2πkx

P , where ck is only nonzero for −
⌊
P
2

⌋
≤ k ≤

⌈
P
2

⌉
− 1 (72)

Here, {ck} denotes the set of Fourier series coefficients of p(x) [8, 9]. Throughout the rest

of this section, we will assume that p(x) is periodic with period P ∈ N+ with the

expansion given in Equation (72).

Finally, prior to proceeding further with the simplification of the conditional FIM terms

dependent upon p(x), we will assume that the number of bits observed L from Equation

(16) is an integer multiple of the period P . In other words, we will assume that we have

L = PM , for some M ∈ N+ (73)

With these assumptions in place, we are now ready to simplify the preamble dependent

conditional FIM terms.

A. Symbol Timing Offset/Symbol Timing Offset Cross Term

Consider the conditional FIM term F (ε|α) from Equation (56). Let S0 denote the

preamble dependent summation from Equation (56). In other words, define S0 as follows:

S0 ,
KL−1∑
m=0

p2
(m
K
− ε
)

=

KPM−1∑
m=0

∣∣∣p(m
K
− ε
)∣∣∣2 (74)

Here, the second equality from Equation (74) follows from Equation (73) and the fact that

p(x) is a real function. Substituting Equation (72) into Equation (74) yields the following

expression after some algebraic manipulation:

S0 =
∑
k0∈Z

∑
k1∈Z

ck0c
∗
k1e
−j 2π(k0−k1)ε

P

(
PKM−1∑
m=0

ej
2π(k0−k1)m

PK

)
︸ ︷︷ ︸

Sg [k0−k1]

(75)

In Equation (75), Sg[k] denotes a finite geometric series which can be simplified as follows.

By the division theorem [9], the dummy variable m in Equation (75) can be decomposed

into a quotient and remainder form as shown below:

m = (PK)q + r , 0 ≤ q ≤M − 1 , 0 ≤ r ≤ PK − 1 (76)

Here, q ,
⌊
m
PK

⌋
is the quotient and r , m mod (PK) is the remainder when m is divided

by PK. Incorporating Equation (76) into the expression for Sg[k] leads to the following

chain of equalities:

Sg[k] =

M−1∑
q=0

PK−1∑
r=0

ej
2πk((PK)q+r)

PK =

M−1∑
q=0

PK−1∑
r=0

ej2πkqej
2πkr
PK

=

M−1∑
q=0

PK−1∑
r=0

ej
2πkr
PK = M

PK−1∑
r=0

(
e
j2πk
PK

)r
(77)
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The first equality of Equation (77) follows from the fact that ej2πn = 1 for any n ∈ Z.

Note that the summation appearing at the end of Equation (77) is simply a finite

geometric series over various roots of unity [9] for which we have [13]

PK−1∑
r=0

(
e
j2πk
PK

)r
=

 PK , k ≡ 0 mod (PK)

0 , k 6≡ 0 mod (PK)
(78)

Substituting Equation (78) into Equation (77) yields the following:

Sg[k] =

 MPK , k ≡ 0 mod (PK)

0 , k 6≡ 0 mod (PK)
=

 KL , k ≡ 0 mod (PK)

0 , k 6≡ 0 mod (PK)
(79)

Upon substituting Equation (79) into Equation (75), it follows that for fixed k0, by

summing over k1, only the terms for which k1 = k0 − PK` for any ` ∈ Z are nonzero.

Hence, Equation (75) simplifies as follows:

S0 = KL
∑
k0∈Z

∑
`∈Z

ck0c
∗
k0−PK`e

−j2π(Kε)` = KL
∑
`∈Z

{∑
k0∈Z

ck0c
∗
k0−PK`

}
e−j2π(Kε)` (80)

Note that the term in braces in Equation (80) is simply a value of the deterministic

autocorrelation of the Fourier series coefficients {ck} [8]. In other words, if Rcc[`] denotes

the deterministic autocorrelation of the Fourier series coefficients defined as [8]

Rcc[`] ,
∞∑

k=−∞

ckc
∗
k−` (81)

then the expression in Equation (80) simplifies to the following:

S0 = KL
∑
`∈Z

Rcc[(PK)`]e−j2π(Kε)` (82)

From Equation (72), as ck is only nonzero for −
⌊
P
2

⌋
≤ k ≤

⌈
P
2

⌉
− 1, it follows from

Equation (81) that Rcc[`] is only nonzero for −(P − 1) ≤ ` ≤ (P − 1). As such, only the

` = 0 term from Equation (82) survives and S0 then simplifies to the following expression:

S0 = KLRcc[0] (83)

By Parseval’s theorem [8], it can be shown that

Rcc[0] =
∑
k∈Z
|ck|2 =

1

P

∫ x0+P

x0

|p(x)|2 dx = Ep(α) (84)

for any x0 ∈ R, where Ep(α) denotes the energy of the periodic preamble waveform p(x).

Combining Equations (84), (83), and (56), it follows that the conditional FIM term F (ε|α)

simplifies to the following expression for a periodic preamble:

F (ε|α) = 2(2πh)2Ep(α)Lρ (85)

Note the similarities between Equation (85) and Equation (66) which was derived for the

average FIM symbol timing offset/symbol timing offset cross term.
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B. Symbol Timing Offset/Carrier Phase Cross Term

Consider the symbol timing offset/carrier phase conditional FIM cross term [f(ε|α)]0 from

Equation (57). Let S1 denote the preamble dependent summation from the first

component of Equation (57). In other words, define S1 as follows:

S1 ,
KL−1∑
m=0

p
(m
K
− ε
)

=

KPM−1∑
m=0

p
(m
K
− ε
)

(86)

Here, the second equality from Equation (86) results from Equation (73). Substituting

Equation (72) into Equation (86) yields the following after some algebraic manipulation:

S1 =
∑
k∈Z

cke
−j 2πkε

P

(
PKM−1∑
m=0

ej
2πkm
PK

)
︸ ︷︷ ︸

Sg [k]

(87)

Substituting the expression for Sg[k] from Equation (79), we obtain the following

simplified expression for S1:

S1 = KL
∑
`∈Z

c(PK)`e
−j2π(Kε)` (88)

As ck is only nonzero for −
⌊
P
2

⌋
≤ k ≤

⌈
P
2

⌉
− 1 from Equation (72), it follows that only

the term ` = 0 from Equation (88) survives and so we have the following:

S1 = KLc0 (89)

Now note that we have [8]

c0 =
1

P

∫ x0+P

x0

p(x) dx = µp(α) (90)

for any x0 ∈ R, where µp(α) denotes the mean of the periodic preamble waveform p(x).

Combining Equations (90), (89), and (57), it follows that the conditional FIM term

[f(ε|α)]0 simplifies to the following expression for a periodic preamble:

[f(ε|α)]0 = −2(2π)2hµp(α)Lρ (91)

Note that from Equation (91), the symbol timing offset/carrier phase conditional FIM

cross term is approximately independent of the parameter ε for a periodic preamble

waveform p(x).

C. Symbol Timing Offset/Carrier Frequency Offset Cross Term

Consider the symbol timing offset/carrier frequency offset conditional FIM cross term

[f(ε|α)]1 from Equation (57). Let S2 denote the preamble dependent summation from the

first component of Equation (57). In other words, define S2 as follows:

S2 ,
KL−1∑
m=0

mp
(m
K
− ε
)

(92)
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Unfortunately, it does not appear possible to simplify S2 in such a way as to eliminate the

dependency upon ε. However, it is still possible to bound the magnitude of S2. In order to

do this, recall the Cauchy-Schwarz inequality [13], which states that for any two complex

sequences {xi} and {yi} defined over some index set I, we have the following:∣∣∣∣∣∑
i∈I

xiy
∗
i

∣∣∣∣∣
2

≤

(∑
i∈I
|xi|2

)(∑
i∈I
|yi|2

)
(93)

Equality holds in Equation (93) if and only if yi = Cxi for all i ∈ I, where C ∈ C is some

complex scalar quantity.

Applying Equation (93) to Equation (92) yields the following:

|S2| ≤

√√√√(KL−1∑
m=0

m2

)(
KL−1∑
m=0

p2
(m
K
− ε
))

=

√(
(KL− 1)(KL)(2KL− 1)

6

)
(S0) (94)

=

√
(KL− 1)(KL)(2KL− 1)

6
·KLEp(α) (95)

= KL

√
(KL− 1)(2KL− 1)

6
Ep(α) (96)

Here, Equation (94) follows from Equation (53) and the definition of S0 given in Equation

(74), whereas Equation (95) follows from Equations (83) and (84). It should be noted that

while Equation (96) represents a bound on the magnitude of S2 that is independent of ε, it

will tend to yield an overly pessimistic bound in practice since the condition for equality,

namely p
(
m
K − ε

)
= Cm for all 0 ≤ m ≤ KL− 1, will be far from holding for actual

candidate periodic preamble waveforms.

D. Summary of Results for the Conditional FIM for Periodic Preamble Waveforms

Combining the results of this section, we can express the conditional FIM for periodic

preamble waveforms in the spirit of Equation (70) as follows:

F(θ|α) ≈


2h2Ep(α) −2hµp(α) T (ε|α)

−2hµp(α) 2 KL−1
K

T (ε|α) KL−1
K

(KL−1)(2KL−1)
3K2

 (2π)2Lρ (97)

Here, T (ε|α) is defined as follows:

T (ε|α) , −2h

K

[
1

KL

KL−1∑
m=0

mp
(m
K
− ε
)]

(98)

Note that T (ε|α) as defined in Equation (98) is independent of the bit SNR ρ. As such,

from Equation (97), it can be seen that the conditional FIM is a linear function of the bit

SNR and thus the CCRB is linearly inversely proportional to the bit SNR.
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VIII. Performance Bounds for Candidate Periodic Preambles for SOQPSK-TG

Intuitively, for a fixed bit SNR, we wish to select preamble waveforms that will yield the

lowest possible mean squared error (MSE) for the parameters to be estimated. One way to

attempt to do this is by decoupling the parameters as best as possible in this setting [15].

In other words, we want to minimize the effect that estimating a given parameter has on

estimating any of the other parameters, as any error made in estimating a given parameter

will tend to have a deleterious effect on estimating the other parameters. This can be

accomplished here by making the FIM as diagonally dominant as possible.

From the expression for the conditional FIM given in Equation (97) for periodic preamble

waveforms, it can be seen that the FIM can be made diagonally dominant by maximizing

the energy Ep(α) and minimizing the magnitude of the mean |µp(α)|. As such, we will

focus on zero-mean preambles with maximal energy.

The choice of the ternary symbol sequence {αk} used to generate a given preamble is

constrained by the relation given in Equation (3). This relation leads to a four-state

time-varying trellis [10] used to generate the sequence {αk} which imposes constraints on

the allowable transitions of the ternary data [11]. For example, a value of αk = 1 cannot

be followed by αk+1 = −1 and vice versa [11].

To maximize the energy of a periodic preamble waveform for a given period length P , we

wish to maximize the number of consecutive +1s or −1s. The reason for this is to minimize

the destructive interference caused by the sidelobes (see Figure 1) of shifted copies of the

dilated frequency pulse f(x) from Equation (8). To make the preamble zero-mean, we need

the number of +1s to equal the number of −1s. Due to the above mentioned constraint on

the ternary data, a string of +1s cannot be immediately followed by a string of −1s. In

this case, in order to maximize the energy while making the preamble zero-mean, a string

of +1s (or −1s) will be separated by a string of −1s (or +1s) by a single 0.

For example, suppose the period P is 4, 8, and 16. Using the preamble construction

approach advocated above, this leads to the following ternary symbol stream values for

each period length:

P = 4 =⇒ {αk} = {. . . , 1, 0,−1, 0, . . .} (99)

P = 8 =⇒ {αk} = {. . . , 1, 1, 1︸ ︷︷ ︸
3 +1s

, 0,−1,−1,−1︸ ︷︷ ︸
3 −1s

, 0, . . .} (100)

P = 16 =⇒ {αk} = {. . . , 1, 1, 1, 1, 1, 1, 1︸ ︷︷ ︸
7 +1s

, 0,−1,−1,−1,−1,−1,−1,−1︸ ︷︷ ︸
7 −1s

, 0, . . .} (101)

For the periodic preambles described by Equations (99), (100), and (101), we calculated

the CCRB as a function of the bit SNR ρ for SOQPSK-TG. To conform to the iNET

128-bit preamble length, we opted to consider L = 128. Here, an oversampling factor of

K = 4 was selected. In addition to the CCRB, the MCRB was also computed. Plots of the

resulting MSEs for each parameter are shown in Figure 4 for (a) the normalized symbol

timing offset, (b) the normalized carrier phase, and (c) the normalized carrier frequency
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Figure 4. MSE plots as a function of bit SNR: (a) normalized symbol timing offset, (b) normalized carrier

phase, and (c) normalized carrier frequency offset.

offset. It should be noted here that for each candidate preamble, T (ε|α) from Equation

(98) was calculated for all possible ε and the value selected for the plots here was the one

which yielded the largest magnitude for T (ε|α) as this can be shown to yield the largest

degradation in terms of overall MSE [15].

As can be seen from Figure 4, the candidate preambles affect the normalized symbol

timing offset MSE performance but appear to not have any effect on the performance of

the normalized carrier phase and carrier frequency offset MSEs. This suggests that for the

candidate preambles considered, estimation of the symbol timing is approximately

decoupled from the estimation of the carrier phase and carrier frequency offset, as desired.

A closer inspection of the carrier phase and carrier frequency offset MSEs reveals that

there is some minute coupling effect still in place, however. In Figure 5, we have showed

zoomed in plots of the MSE for (a) the normalized carrier phase and (b) the normalized

carrier frequency offset. As can be seen, the better a preamble performs in terms of

symbol timing MSE, the worse it performs in terms of carrier phase and carrier frequency

offset MSE. Despite this phenomenon, it can be seen that the penalty is small and less

than 0.05 dB bit SNR for both cases.

Returning our attention to Figure 4(a), it can be seen that the candidate preambles yield

increasingly improved performance as the period increases. This is due to the fact that as

the period increases, the energy of the preamble increases relative to the energy lost due to

the transition from the string of +1s to the string of −1s. Note that the period-4 preamble

from Equation (99) yielded worse performance than the MCRB, while all other candidate

preambles considered yielded superior performance. Since the MCRB approximately

represents a warped average of the performance of all possible preambles, this means that

the period-4 preamble is performing worse than average, while all other candidate

preambles are performing better than average.

As a result of this, the period-4 preamble is not a suitable one to use in practice for

symbol timing acquisition. This observation is particularly interesting as the period-4
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Figure 5. Zoomed in MSE plots as a function of bit SNR: (a) normalized carrier phase and (b) normalized

carrier frequency offset.

preamble of Equation (99) is the one used for MIL-STD-188-181A SOQPSK for acquisition

[16]. While this preamble is well suited for MIL-STD-188-181A SOQPSK, which uses a

rectangular shaped full response frequency pulse, it is not well suited for SOQPSK-TG,

which uses the partial response frequency pulse shown in Figure 1. The reason for this is

that the partial response sidelobes of the SOQPSK-TG frequency pulse cause destructive

interference in the preamble, while the MIL-STD-188-181A SOQPSK full response

frequency pulse incurs no such interference for its preamble waveform.

IX. Concluding Remarks

In this paper, we derived performance bounds for the joint estimation of the symbol

timing, carrier phase, and carrier frequency offset of a sampled SOQPSK waveform

corrupted by noise. Here, in addition to calculating the preamble dependent conditional

FIM (used to compute the CCRB), we also calculated the preamble independent average

FIM (used to calculate the MCRB). Furthermore, we showed how to simplify the

conditional FIM for periodic preamble waveforms. For SOQPSK-TG, MSE simulation

results for a set of candidate periodic preambles were provided showing the benefits and

risks associated with each preamble with respect to the MCRB. It was shown that

significant improvement in symbol timing estimation performance could be obtained with

negligible degradation with respect to carrier phase and carrier frequency offset estimation.

The analysis provided herein could be used to stipulate a preamble sequence to use for the

iNET burst preamble [1]. However, the final selection of a preamble should not only be

based upon its parameter estimation MSE performance, but upon other factors as well.

Specifically, spectral mask conformance and computational complexity for acquisition

should also be taken into account when selecting a preamble sequence.
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Appendix: Relationship Between the Unconditional and Modified CRBs

In this section, we prove the matrix inequality from Equation (27). To prove this relation,

it suffices to prove the following statement:

G(θ) ≥ H(θ) (A-1)

Here, G(θ) and H(θ) are the average and unconditional FIMs given by Equations (22) and

(25), respectively. The reason that Equation (27) follows from Equation (A-1) is due to

the fact that if A and B are positive definite with A ≥ B, then we have B−1 ≥ A−1 [12]:

To prove Equation (A-1), it is convenient to define the conditional and unconditional

scores [5]. These vectors are respectively defined as follows:

s(y|α;θ) , ∇θ ln p(y|α;θ) (A-2)

s(y;θ) , ∇θ ln p(y;θ) (A-3)

The conditional and unconditional FIMs G(θ) and H(θ) can be expressed in terms of the

scores as follows [5]:

G(θ) = Ey,α

[
s(y|α;θ)sT (y|α;θ)

]
= Ey,α

[
s(y|α;θ)s†(y|α;θ)

]
(A-4)

H(θ) = Ey

[
s(y;θ)sT (y;θ)

]
= Ey

[
s(y;θ)s†(y;θ)

]
(A-5)

Let us now define K(θ) to be the following autocorrelation matrix:

K(θ) , Ey,α

[
(s(y|α;θ)− s(y;θ)) (s(y|α;θ)− s(y;θ))

†
]

(A-6)

From this, it is clear that K(θ) ≥ 0 with equality if and only if s(y|α;θ) = s(y;θ) [12].

Expanding Equation (A-6) and using Equations (A-5) and (A-4), we have

K(θ) = G(θ)− Ey,α

[
s(y|α;θ)s†(y;θ)

]
− Ey,α

[
s(y;θ)s†(y|α;θ)

]
+ H(θ) (A-7)

To simplify the cross terms in Equation (A-7), consider the first one. Note that we have

the following here:

Ey,α

[
s(y|α;θ)s†(y;θ)

]
= Ey

{
Eα|y

[
s(y|α;θ)s†(y;θ)

]}
(A-8)

= Ey

{(
Eα|y [s(y|α;θ)]

)
s†(y;θ)

}
(A-9)

Here, Equation (A-8) follows from the properties of expectation [5] and Equation (A-9)

from the fact that s(y;θ) does not depend upon α. To simplify Eα|y [s(y|α;θ)] from

Equation (A-9), we will exploit properties of the conditional and unconditional scores given

by Equations (A-2) and (A-3), respectively. Recall from Bayes’ theorem [5] that we have

p(y|α;θ) =
p(α|y;θ)p(y;θ)

p(α)
(A-10)

In Equation (A-10), we implicitly assume that α does not depend upon the parameter

vector θ. Using Equation (A-10) in Equation (A-2) leads to the following:

s(y|α;θ) = ∇θ [ln p(α|y;θ) + ln p(y;θ)− ln p(α)]

= s(y;θ) +∇θ ln p(α|y;θ) (A-11)
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To arrive at Equation (A-11), we used the definition given in Equation (A-3) in addition

to the assumption that α does not depend on θ. Taking the expectation of both sides of

Equation (A-11) with respect to α|y leads to the following chain of equalities:

Eα|y [s(y|α;θ)] = Eα|y [s(y;θ)] + Eα|y [∇θ ln p(α|y;θ)]

= s(y;θ) +

∫
Rα|y

[∇θ ln p(α|y;θ)] p(α|y;θ) dα (A-12)

= s(y;θ) +

∫
Rα|y

∇θ p(α|y;θ) dα (A-13)

= s(y;θ) +∇θ

[∫
Rα|y

p(α|y;θ) dα

]
(A-14)

= s(y;θ) +∇θ [1] = s(y;θ) (A-15)

Here, Equation (A-12) follows from the fact that s(y;θ) does not depend upon α and the

definition of expectation, while Equation (A-13) follows from differentiating the logarithm.

Equation (A-14) follows from interchanging the orders of integration and differentiation

(which is allowable here as α and θ are independent of each other [5]), whereas Equation

(A-15) follows from the fact that any pdf integrates to unity over its region of support [5].

Substituting Equation (A-15) into Equation (A-9) leads to the following simplified

expression for the quantity Ey,α

[
s(y|α;θ)s†(y;θ)

]
:

Ey,α

[
s(y|α;θ)s†(y;θ)

]
= H(θ) (A-16)

Similarly, we can show that Ey,α

[
s(y;θ)s†(y|α;θ)

]
= H(θ) as well. Using Equation

(A-16) and this last result in Equation (A-7) leads to the following simplified expression

for the autocorrelation matrix K(θ):

K(θ) = G(θ)−H(θ) (A-17)

As K(θ) ≥ 0, from Equation (A-17), it is clear that Equation (A-1) follows. This

completes the proof.
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