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Reconfigurable Wideband Ground Receiver
Hardware Description and Laboratory
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Meera Srinivasan∗, and Andre Tkacenko∗

Recently, much effort has been placed toward the development of the Reconfigurable

Wideband Ground Receiver (RWGR): a variable-rate, reprogrammable software-defined

radio intended to supplement and augment the capabilities of the Block V Receiver. In

this report, we first give an overview of the hardware architecture of the RWGR, including

a detailed description of the filter-decimate front-end and subsequent high-rate receiver

system, which includes a 4 sample/symbol demodulator core. We then present a series of

laboratory hardware performance results, including bit error rate (BER) results at various

data rates. The RWGR is shown to yield performance close to theory in terms of BER

with losses typically less than 1 dB in bit signal-to-noise ratio (SNR).

I. Introduction

To address the future telemetry, navigation, and radio science needs of the Deep Space

Network (DSN), considerable effort at JPL has been directed toward the development of a

wideband ground receiver, intended to supplement and expand the capabilities of the

currently operational Block V Receiver (BVR). Among the challenges encountered in this

effort has been the need to process both high data rate telemetry (well in excess of

150 Mbps), as well as telemetry from very low-rate missions. Another key element of this

work has been the selection of a processing platform that is well-suited to firmware and

software reconfigurability. These objectives have led to the development of the

Reconfigurable Wideband Ground Receiver (RWGR): a variable data rate,
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reprogrammable software-defined radio. The RWGR is an intermediate frequency (IF)

sampling receiver that operates at a fixed input sampling rate of 1.28 GHz. It is designed

to accommodate a continuous range of data rates from 4 Bd (symbols/second or baud) to

320 MBd, and is capable of processing 500 MHz of bandwidth. In contrast, the BVR

operates at a sample rate of 160 MHz and can only accommodate a bandwidth of 72 MHz.

The actual hardware for the RWGR is directly based upon a processing platform from a

family of ground-based instruments fielded within the DSN for radio science and

navigation applications. These include variants of the Radio Science Receiver (RSR)1 and

Wideband VLBI Science Receiver (WVSR)2 [1]. It was envisioned that the process of

demonstration and infusion would be simplified through the selection of a common

hardware base for developing enhanced telemetry processing capabilities.

To facilitate the accommodation of such a wide range of data rates, the RWGR processes

wideband and narrowband waveforms differently. Higher rate wideband signals are

processed using field programmable gate array (FPGA)-based hardware, whereas lower

rate narrowband signals are processed in software using downconverted sampled data

obtained from the hardware. Specifically, the hardware receiver is used to accommodate

higher data rates in the range of 39.0625 kBd to 320 MBd (suppressed carrier), while the

software demodulator is used to process lower data rates in the range of 4 Bd to 1 MBd

(suppressed carrier, residual carrier, and subcarrier modulation types). In either case,

continuous data rate support is accomplished through two mechanisms: a coarse

decimation filtering stage to lower the bulk of the data rate followed by a fine interpolation

stage to further lower the data rate to the exact desired value.

In this report, we focus on the hardware aspects of the RWGR. First, we present an

overview of the hardware architecture, including a detailed implementation description of

the filter-decimate front-end and subsequent high-rate receiver system which includes a 4

sample/symbol demodulator core. Then, we present a series of laboratory performance

results for the hardware receiver. Hardware soft symbol output density plots are shown for

a variety of data constellations, including quadrature phase shift keying (QPSK) [2] and

16-ary quadrature amplitude modulation (QAM) (i.e., 16-QAM) [2]. In addition, bit error

rate (BER) results are provided for various data rates and modulation types, including

offset QPSK (OQPSK), and compared with ideal results from theory. As we show, the

RWGR yields performance close to theory in terms of uncoded BER with losses typically

less than 1 dB in bit signal-to-noise ratio (SNR).

A. Outline

A detailed overview of the hardware architecture implementation is provided in Section II.

Specifically, the filter-decimate front-end is detailed in Section II.A, including a discussion

1http://psdg.jpl.nasa.gov/wiki/Radio_Science_Receivers (internal JPL website)

2http://psdg.jpl.nasa.gov/wiki/WVSR_Phase_II (internal JPL website)
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on the open-loop predict-driven Doppler frequency compensation in Section II.A.1 and the

reprogrammable decimation filter coefficients in Section II.A.2. In Section II.B, we focus

on the subsequent high-rate receiver core, highlighting the fine interpolator system in

Section II.B.1 and various aspects of the 4 sample/symbol demodulator core in Section

II.B.2. Laboratory hardware results are presented in Section III. Noiseless soft decision

density plots are shown in Section III.A for a variety of modulation types. In addition,

several BER results are provided in Section III.B and compared with theory, including

high data rate results in Section III.B.1, variable data rate results in Section III.B.2, and

Gaussian minimum shift keying (GMSK) [3] demodulation results in Section III.B.3.

Finally concluding remarks are made in Section IV.

B. Notations

All notations used are as in [4] and [5]. In particular, parentheses and square brackets are

used to denote continuous-time (analog) and discrete-time (digital) function arguments,

respectively. For example, x(t) would denote a continuous-time analog signal for t ∈ R,

whereas y[n] would denote a discrete-time digital signal for n ∈ Z. In addition to this,

analog frequencies and digital normalized frequencies will be respectively denoted by F

and f . Hence, X(j2πF ) would denote the continuous-time Fourier transform of x(t) where

F is in units of Hz, while Y
(
ej2πf

)
would denote the discrete-time Fourier transform of

y[n] where f is normalized to the sampling frequency Fs (i.e., f = F
Fs

).

II. Detailed Description of Hardware Architecture

A block diagram of the overall RWGR hardware system is shown in Figure 1. The

underlying analog telemetry signal received is first downconverted from radio frequency

(RF) to intermediate frequency (IF) [2]. Afterward, the resulting analog IF signal is then

sampled by an 8-bit analog-to-digital converter (ADC) operating at a fixed sample rate of

Fs = 1.28 GHz. The stream of 8-bit ADC IF samples is then sent to an input FPGA

which then sends the data to either the filter-decimate FPGA or the high-rate receiver

core FPGA, depending upon the data rate of the telemetry waveform. Specifically,

samples corresponding to lower data rate signals (39.0625 kBd to 40 MBd) are sent to the

filter-decimate FPGA for coarse downsampling prior to demodulation, whereas higher data

rate signals (40 MBd to 320 MBd) are sent directly to the high-rate receiver core for finer

downsampling followed by demodulation. The reason for this is that the filter-decimate

FPGA performs a minimum decimation by a factor of 8 : 1. As such, higher data rate

waveforms which require a decimation factor of D : 1 for 1 ≤ D < 8 must bypass the

filter-decimate FPGA altogether and be sent directly to the high-rate receiver core FPGA.

Interface to the software demodulator is provided through the receiver core FPGA.

Specifically, the hardware system will simply perform a combination of coarse/fine

decimation of a lower rate telemetry signal prior to passing the resulting downsampled

data stream to the software demodulator for further processing.

3



Baseband

Mixer

NTP

Time-Code

Generator

Capture

RAM

Capture

RAM

Filter

 2k

RocketIO

Filter-Decimate FPGA

ADC IF samples

@ 1.28 GHz

4 sample/symbol Demodulator Core

Filter

 2

Filter

 4

Filter

RocketIO

Baseband

Mixer

Capture

RAM

Test

ROM

Capture

RAM

 2
Fine

Interpolator

Capture

RAM

Integrate

& Dump

x 2m

to Software Demodulator

to Frame Synchronizer & FEC Decoder

Receiver Core FPGA

Input

FPGA

Figure 1. Overall RWGR hardware system block diagram.

A. Filter-Decimate Front-End

A block diagram of the RWGR filter-decimate FPGA which highlights implementation

details is shown in Figure 2. As can be seen, the filter-decimate system first demultiplexes

the data into 8 parallel streams operating at a clock rate of 160 MHz (i.e., (1.28 GHz)/8).

Since the outputs of the filter-decimate system can only be processed and transferred at a

maximum rate corresponding to this clock rate, the result is a minimum decimation of the

input data by a factor of 8 : 1. Data at the output here is transferred to the high-rate

receiver core FPGA via a RocketIO interface.

The filter-decimate system contains two distinctive features which separate it from
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conventional coarse decimation filter systems: an open-loop predict-driven numerically

controlled oscillator (NCO) for Doppler compensation and reprogrammable decimation

filters. These are described below as follows.

1. Open-Loop Predict-Driven Doppler Compensation

From Figure 2, it can be seen that the filter-decimate FPGA accepts Doppler frequency

predict files. These files consist of the predicted values of the Doppler frequency at 1

pulse-per-second (pps) epochs corresponding to Coordinate Universal Time (UTC) time

tags. Along with a given frequency predict file, a 1 pps epoch UTC time tag input to the

filter-decimate FPGA is used to generate open-loop predicts of the Doppler frequency at a

1 Hz update rate. The UTC 1 pps time tag is also converted to a Network Time Protocol

(NTP) time-code which can then be sent out along with the decimated data for internal

precision time tagging.

Here, the open-loop NCO (baseband mixer) from Figure 2 consists of a 40-bit phase

accumulator which allows for phase continuous tuning. This corresponds to a frequency

resolution of (1.28 GHz)/240 = 1.16 mHz < 5 mHz. Thus, the filter-decimate system

provides open-loop predict-driven Doppler frequency compensation at a resolution finer

than 5 mHz at an update rate of 1 Hz.

2. Reprogrammable Decimation Filters

As can be seen from Figure 2, the filter-decimate FPGA performs power-of-two decimation

from 8 : 1 to 1,024 : 1 (i.e., 2` : 1 for 3 ≤ ` ≤ 10). Specifically, a coarse decimation factor of

2k is input to the system as well as the coefficients of the corresponding decimation filter

Hk(z). The coefficients of the decimation filter Hk(z) are fully reprogrammable and are

easily modifiable to accommodate a variety of applications. By default, Hk(z) is given in

terms of a nominal decimation filter Hk(z), whose magnitude response is shown in Figure

3. Here, the nominal decimation filter Hk(z) is a linear phase finite impulse response

(FIR) filter [4] designed using the following criteria.

• The number of coefficients used was 2k+3.

• The peak-to-peak passband ripple [4] (i.e., 20 log10

(
1+δP
1−δP

)
) was chosen to be 0.1 dB.

• The stopband attenuation [4] (i.e., −20 log10 δS) was chosen to be 50 dB.

• The −6 dB cut-off frequency [4] fc was chosen to be at the decimated Nyquist

frequency [5] of 1
2k+1 .

By default, the k-th decimation filter Hk(z) is given in terms of the nominal filter Hk(z)

as follows:

Hk(z) = G0Hk(z) ∀ 3 ≤ k ≤ 10 (1)
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Figure 3. Magnitude response of the 2k : 1 nominal decimation filter Hk(z) of the filter-decimate system

(3 ≤ k ≤ 10).

Here, G0 is a gain factor common to all decimation factors. The relation given in Equation

(1) is appropriate for situations in which the input signal power level is constant as a

function of the data rate. This, however, is not a realistic assumption in practice.

Typically, the input signal power will be proportional to the data rate. In order to ensure

that the signal level at the output of the decimation filter system is the same for all data

rates, an additional gain factor of 2
k
2 must be applied to the nominal filter Hk(z) to

obtain the proper decimation filter Hk(z). In other words, in practice, the k-th decimation

filter Hk(z) should be set in terms of the nominal filter Hk(z) as follows:

Hk(z) = 2
k−3
2 G1Hk(z) ∀ 3 ≤ k ≤ 10 (2)

Here, G1 is the gain factor for the first decimation filter H3(z) corresponding to a

decimation of 8 : 1.

Another way to show why Equation (2) represents an appropriate scaling rule in practice

is to consider the underlying physical layer of the telemetry waveform. In practice, the

ambient white noise power spectral density (psd) [2] level N0 will be constant for all

possible data rates. To ensure an acceptable bit SNR Eb/N0 for all data rates, where Eb

denotes the signal energy per bit [2], it follows that Eb must be held constant as well.

However, Eb is given by Eb = Ps

Rb
, where Ps denotes the signal power and Rb denotes the

bit rate. For weaker telemetry signals, Ps will be lower and so the only way for Eb to

remain constant is for Rb to decrease proportionally to Ps. This is typically what is done

in practice. In other words, for weaker telemetry signals, the data rate is lowered in order

to yield an acceptable energy per bit level Eb.

Assuming the data rate as been appropriately configured at the transmitter to ensure an

acceptable constant value of Eb, it follows that the input signal power is given by

Ps = KRb, where K is some constant value. In other words, the input signal power to the

filter-decimate system will be proportionally lower for lower data rates. By using the

decimation filter scaling rule given in Equation (2), we ensure that the energy of Hk(z) is

the same for all admissible values of k. This will result in amplifying the input signal

power in such a way that the output signal power is constant for all power-of-two data rate

6



decimation factors while preserving the ambient noise psd level at N0. In essence, the

scaling rule given in Equation (2) ensures that the signal level at the output of the

filter-decimate system is (to within a factor of 2 to account for fine decimation factors) the

same for all coarse power-of-two decimation factors, which is important for proper

processing of the telemetry signal subsequently in the demodulator.

B. High-Rate Receiver Core

From Figure 1, it can be seen that the high-rate receiver core FPGA can accept input

samples from either the input FPGA, which correspond to the 8-bit ADC digital IF signal

sampled at 1.28 GHz, or the filter-decimate FPGA. The front-end of the receiver core

includes coarse decimation by 2 : 1 and 4 : 1 followed by a fine interpolator which can

accommodate a continuous range of decimation factors from 1 : 1 to 2 : 1. These

operations can be applied to either set of input signals (i.e., the input FPGA or the

filter-decimate FPGA). When applied to the input FPGA data samples, this front-end

allows the accommodation of a continuum of decimation factors in the range from 8 : 1 to

1 : 1 (which corresponds to data rates from 40 MBd to 320 MBd). It should be noted that

the baseband mixer used in the receiver core front-end is open-loop but not predict-driven,

and so carrier frequency tracking for these higher data rates must be done entirely

closed-loop in the demodulator.

After the fine interpolation stage in Figure 1, the resultant signal is scaled and can then be

further downsampled via the integrate & dump system [2] and sent to the software

demodulator, or input to the 4 sample/symbol hardware demodulator core. We now

proceed to highlight two noteworthy aspects of the high-rate receiver core, namely, the fine

interpolator system and the 4 sample/symbol demodulator core.

1. Fine Interpolator System

Suppose the overall decimation factor desired is D. Here, we decompose D into the

product of coarse and fine decimation factors as follows:

D = DCDF , where DC = 2blog2Dc and DF = 2(log2D) mod 1 (3)

In Equation (3), DC denotes the coarse decimation factor which is an integer

power-of-two, whereas DF denotes the fine decimation factor which satisfies 1 ≤ DF < 2.

For the RWGR hardware system, coarse decimation by a factor of DC is achieved through

a combination of the filter-decimate system and/or the 2 : 1 and 4 : 1 decimation rates

present in the front-end of the receiver core FPGA.

Fine decimation by a factor of DF , on the other hand, is achieved through the use of a fine

interpolator system [6] contained in the receiver core. For the RWGR, a linear fine

interpolator was used as shown in Figure 4. Here, fine decimation is carried out efficiently

using a Farrow structure [6] for the interpolator.

The system shown in Figure 4 operates as follows. For every desired output sample y[n],

7



qq

rr

x[m]x[m]

y[n] = x[q] + r (x[q + 1]  x[q])

= (1  r) x[q] + rx[q + 1]

y[n] = x[q] + r (x[q + 1]  x[q])

= (1  r) x[q] + rx[q + 1]

Þne decimation factor - DFÞne decimation faf ctor - DF

Compute fractional
weight parameter
r = (DFn) mod 1

Compute frff actional
weight parameter
r = (DFn) mod 1

Compute bu er
o set parameter
q = bDFnc

Compute bu e  r
o set parameter
q = bDFnc

x[q + 1]x[q + 1]

x[q]x[q]

x[q + 1] x[q]x[q + 1] x[q] x[q]x[q]

Bu erBu er

Figure 4. Receiver core fine interpolator system block diagram.

the output time index n is first mapped to a quotient q and a remainder r. Specifically, q

and r represent, respectively, the quotient and remainder of the decimated input time

index DFn when divided by unity. In other words, q and r are the integer and fractional

parts of the number DFn, respectively. From Figure 4, it is clear that we have the

following:

DFn = q + r , where q = bDFnc and r = (DFn) mod 1 (4)

Here, q from Equation (4) is used to select data from the input stream x[m]. Specifically, q

is used as a buffer offset parameter or pointer to input data samples of x[m] that are close

to the desired decimated input time index DFn. Meanwhile, r is used as a weighting

parameter to fine tune the data samples of x[m] near DFn to the exact desired value. For

a linear interpolation of the samples, the output sample y[n] is calculated as follows as

shown in Figure 4:

y[n] = x[q] + r (x[q + 1]− x[q]) = (1− r)x[q] + rx[q + 1] (5)

Intuitively, y[n] from Equation (5) is generated by constructing a linear fit between the

closest samples of x[m] to the left and right of m = DFn, namely x[q] and x[q + 1],

respectively.

As the system of Figure 4 essentially decimates its input by a factor of DF , the input data

stream x[m] should have been processed by an anti-aliasing filter to prevent aliasing at the

output data stream y[n] [5]. Since the fine decimation factor DF satisfies 1 ≤ DF < 2, it is

sufficient to use a quarter-band filter [5] (i.e., a low-pass filter with a cut-off frequency

equal to a quarter of the input Nyquist rate [4]). Use of such a filter will essentially overly

bandlimit the input data stream x[m] (especially for fine decimation factors close to 1),

however, this will not be a problem here as this will amount to removing only out-of-band

noise. In other words, since the telemetry signal of interest will always be oversampled by

at least a factor of 4, the quarter band filter will not remove any of the desired signal

spectral content.

For the RWGR, from Figure 1, it is seen that one of the possible inputs to the fine

interpolator is the output of a filter. In accordance with the above analysis, this was
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designed here to be a quarter-band anti-aliasing filter.

2. 4 sample/symbol Demodulator Core

An in-depth implementation block diagram of the 4 sample/symbol demodulator core is

shown in Figure 5. Complex baseband samples from the receiver core front-end serve as

the primary input of the demodulator. This input signal is then mixed by a complex

input/complex output closed-loop NCO to remove residual Doppler frequency and carrier

phase offset effects. Afterward, the resulting in-phase (I) and quadrature (Q) complex

baseband arms [2] are each processed by a 17-tap reprogrammable linear phase [4] FIR

matched filter [2].

The complex baseband output of the matched filter, which is operating at a clock rate of

4Rd, where Rd denotes the data symbol rate, is sent to a closed-loop signal resampler to

select the proper half symbols (operating at a clock rate of 2Rd) to use for the subsequent

carrier phase/symbol timing tracking loops. These half symbols are placed in a first in,

first out (FIFO) buffer [7] and, prior to sending them to the tracking loops, the I & Q half

symbols are either sent directly or staggered depending on whether QPSK or OQPSK is

the selected constellation type, respectively. The appropriate half symbols are then each

sent to the carrier phase/symbol tracking loops. In addition, the half symbols are

decimated by 2 (yielding samples at the data rate Rd) to provide 16-bit soft symbols at

the output. These soft symbols can either be stored in a random access memory (RAM)

buffer [7] or output to a test port for further processing by a frame synchronizer and

forward error correction (FEC) [2] decoder.

From among the various features of the 4 sample/symbol demodulator core, we will

elaborate here on the signal resampler and the digitally implemented carrier phase/symbol

timing tracking loops.

Signal Resampler A block diagram of the signal resampler used in the RWGR 4

sample/symbol demodulator core is shown in Figure 6. Here, the I & Q outputs of the
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matched filter (which are clocked at a rate of 4Rd) are upsampled [5] by a factor of 4 to

provide a timing resolution of 1/16-th of a symbol. To suppress the presence of images

inherent to the upsampling process [5], the resultant signal is applied to an anti-imaging

filter hLI[n]. As can be seen from the impulse response of hLI[n] shown in Figure 6, the

combined effect of the upsampler followed by the filter is a linear interpolation of the input

data [5]. In other words, a linear fit is used to describe data points that lie in between

consecutive matched filter output samples.

After the input matched filter samples have been linearly interpolated by a factor of 4, the

estimate k of the symbol timing offset from the Gardner loop [8] (along with an optional

offset value of k0) is used to effectively select the appropriate matched filter output

samples. Once proper advance/delay timing has been established, the output is decimated

by a factor of 8 to provide a stream of half symbol data (operating at a clock rate of 2Rd).

Carrier Phase/Symbol Timing Tracking Loops The carrier phase and symbol

timing tracking loops are implemented entirely digitally in the 4 sample/symbol

demodulator core as shown in Figure 5. For each case, the loop is implemented as follows.

An error metric intended to measure the deviation of the tracking loop estimate from its

desired value is first calculated. This error is then filtered by a loop filter to help mitigate

against the effects of additive noise present in the system. The output of this loop filter

serves as the estimate of the quantity to be tracked and is used to drive the complex NCO

and symbol resampler for the carrier phase and symbol timing loops, respectively.

For each loop, the error metric used is derived via a computational simplification of the

maximum likelihood (ML) estimate [2] of the quantity to be estimated. Specifically, for the

carrier phase offset, the error metric used is the polarity-type Costas error function [8],

which is derived from a high SNR approximation of the ML estimate of the carrier phase.

Similarly, for the symbol timing offset, the error metric used is the Gardner error function

[8], which is derived from the ML estimate of the symbol timing.

Explicit expressions for the Costas and Gardner error functions used in the 4

sample/symbol demodulator core are given as follows. Let I[n] and Q[n] denote the I & Q

data sequences at the output of the signal resampler from Figure 5 and 6. Note that both

I[n] and Q[n] are half symbol streams (operating at a clock rate of 2Rd). If εC[n] and
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εG[n] denote the Costas and Gardner error sequences used here, respectively, then we have

the following [8]:

εC[n] =


Q[n+ 1] sgn(I[n+ 1])− I[n+ 1] sgn(Q[n+ 1])

+Q[n+ 3] sgn(I[n+ 3])− I[n+ 3] sgn(Q[n+ 3])
, for QPSK

Q[n] sgn(I[n])− I[n+ 1] sgn(Q[n+ 1])

+Q[n+ 2] sgn(I[n+ 2])− I[n+ 3] sgn(Q[n+ 3])
, for OQPSK

(6)

εG[n] =



(I[n+ 1]− I[n− 1]) I[n]

+ (Q[n+ 1]−Q[n− 1])Q[n]

+ (I[n+ 3]− I[n+ 1]) I[n+ 2]

+ (Q[n+ 3]−Q[n+ 1])Q[n+ 2]

, for QPSK

(I[n]− I[n− 2]) I[n− 1]

+ (Q[n+ 1]−Q[n− 1])Q[n]

+ (I[n+ 2]− I[n]) I[n+ 1]

+ (Q[n+ 3]−Q[n+ 1])Q[n+ 2]

, for OQPSK

(7)

Here, the function sgn(x) used in Equation (6) denotes the signum function, which is

defined as follows:

sgn(x) ,

 −1 , x < 0

1 , x ≥ 0

From Equation (6) and Equation (7), it is clear that the Costas and Gardner error metrics

change depending on whether QPSK or OQPSK is used. This is done here to account for

the fact that the I & Q arms in OQPSK are staggered by one half of a symbol [2]. One

effect of this is better performance for carrier phase tracking for OQPSK compared to

QPSK [2], since phase shifts due to changing data patterns are limited to 90◦ for OQPSK

but are 180◦ for QPSK [2].

Assuming acquisition has been properly established for each loop, which will be the case

here for both Costas and Gardner derived tracking loops [8], then the error metric in each

case will be relatively small compared to its transient levels during acquisition. In this

case, the overall tracking loop can be approximately represented by a linearized model.

This is shown in Figure 7 for a general tracking loop.

Here, x[n] denotes the quantity to be estimated and tracked (i.e., either the carrier phase

offset or symbol timing offset), whereas x̂[n] denotes the loop estimate of x[n]. The

quantity ε[n] , x[n]− x̂[n] denotes the error metric, which would be εC[n] from Equation

(6) for the Costas loop and εG[n] from Equation (7) for the Gardner loop.

From Figure 7, it can be seen that the error metric ε[n] gets scaled by the loop gain A,
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Figure 7. Linearized tracking loop model.

filtered by the loop filter F (z), and is subjected to a loop delay of L samples to produce

the loop estimate x̂[n]. An open-loop description of the model from Figure 7 can be

expressed as follows [4]:

x̂[n] = {Aε[n− L]} ∗ f [n] (8)

Here, ∗ denotes the convolution operator and f [n] denotes the impulse response of F (z)

[4]. From Equation (8), it is clear that while in tracking mode, the loop estimate x̂[n] is

obtained by filtering a scaled, delayed version of the loop error ε[n] by the loop filter F (z).

By exploiting the relation ε[n] = x[n]− x̂[n], we can obtain a closed-loop description of the

model from Figure 7. To that end, let X(z) and X̂(z) denote the z-transforms [4] of x[n]

and x̂[n], respectively, and let H(z) , X̂(z)
X(z) denote the loop transfer function [8]. Then,

from Equation (8), we have the following:

H(z) =
Az−LF (z)

1 +Az−LF (z)
(9)

The loop transfer function H(z) from Equation (9) is typically low-pass [8] and dictates

the amount of input noise which can be suppressed and the level of dynamics that can be

tracked by the loop. As may be expected, there is a trade-off between these two goals. If

H(z) is narrowband, the input noise is suppressed at the expense of the tracking ability of

the loop. Similarly, if H(z) is wideband, then the loop can track a desired parameter with

a higher degree of varying dynamics at the expense of increased noise power within the

loop. In essence, the loop transfer function H(z) should be narrowband for noisy, low

dynamic environments and should be wideband for low noise, high dynamic enviroments

[8].

Quantitatively, the noise suppression/tracking abilities of the loop can be measured by

computing the normalized loop bandwidth B`Tu, where B` denotes the underlying analog

loop bandwidth and Tu denotes the update time of the loop [8] (which will always be given

by Tu = 2
Rd

here). The normalized loop bandwidth product B`Tu is given in terms of the

loop transfer function H(z) as shown below [8]:

B`Tu =
1

2

∫ 1
2

− 1
2

∣∣H (ej2πf)∣∣2 df (10)

For a given loop and given set of input operating conditions, the loop gain A and loop
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delay L are fixed, and so the only degree of freedom available for changing H(z) (and

hence B`Tu from Equation (10)) is to alter the loop filter F (z) from Equation (9). From

Figure 7, it can be seen that the loop filter F (z) here is a second-order filter with the

following transfer function:

F (z) =
α

1− z−1
+

β

(1− z−1)
2 =

α
(
1− z−1

)
+ β

(1− z−1)
2 (11)

From Equation (9) and Equation (11), it can be seen that the linearized loop

characteristics here are solely a function of the quantities A, L, α, and β. These quantities

are different for the Costas and Gardner loops. As such, let AC, LC, αC, and βC denote

the quantities characterizing the Costas loop and AG, LG, αG, and βG denote those

characterizing the Gardner loop. Similarly, let (B`Tu)C and (B`Tu)G denote the

normalized loop bandwidths of the Costas and Gardner loops, respectively.

For the tracking loops present in the RWGR 4 sample/symbol demodulator core, the loop

gains AC and AG will depend upon the input signal level and must be assessed on a case

by case basis. However, from the implementation of the demodulator core, it is known

that we have LC = 5 for the Costas loop and LG = 7 for the Gardner loop. By default, we

also have αC = −1× 104 and βC = 0 for the Costas loop and αG = −1× 104 and βG = 0

for the Gardner loop. From these values, the Costas and Gardner loop transfer functions

need to be evaluated using Equation (9) to obtain the normalized loop bandwidths

(B`Tu)C and (B`Tu)G, respectively, using Equation (10).

In general, for each tracking loop, increases in either α or β or both will result in an

increased normalized loop bandwidth B`Tu. This is in line with intuition, as larger values

of α and β will imply a larger dynamic range at the output of the loop filter F (z).

Approximate expressions relating α and β to B`Tu are provided in [8, 9].

We now proceed to present hardware performance results for the RWGR for a variety of

input test scenarios.

III. Hardware Performance Results

To test the RWGR hardware receiver, an arbitrary waveform generator (AWG) was used

to convert digital baseband telemetry to an analog IF format to be received by the RWGR.

Additive white Gaussian noise (AWGN) was added to this analog IF waveform and the

resultant noisy IF signal was sent to the ADC at the front-end of the RWGR for sampling.

A. Noiseless Soft Decision Outputs

To qualitatively gauge the ability of the RWGR to properly demodulate telemetry and

track both carrier phase and symbol timing offsets, we opted to show constellation density

plots of noiseless soft decision outputs. These are two-dimensional logarithmic histogram

plots of the output I & Q soft symbols. In addition to considering QPSK and OQPSK, for

13



which the RWGR was primarily configured, we also opted to consider bandwidth efficient

modulation types such as GMSK and 16-QAM. For all of the results presented here, a

data symbol rate of 160 MBd was used.

In Figure 8, we have plotted the noiseless output constellation density plots for a variety of

pulse shaped waveforms. Specifically, square-root raised cosine (SRRC) [2] pulse shapes

with different roll-off factors ρ were considered in addition to rectangular shaped

non-return to zero (NRZ) pulses. In Figure 8(a) and (b), SRRC pulse shapes with roll-off

factors of 0.35 and 0.5 were considered, respectively, whereas in Figure 8(c), an NRZ pulse

shape was used.

As can be seen, there is more dispersion for the 0.35 roll-off SRRC constellation than for

the 0.5 roll-off case. The reason for this is that the underlying impulse response of the 0.35

roll-off SRRC pulse decays more slowly than that corresponding to the 0.5 roll-off case [2].

As such, there is more residual intersymbol interference (ISI) [2] for ρ = 0.35 than for

ρ = 0.5 on account of the fact that the matched filters used in the RWGR are FIR [4].

Specifically, the 17-tap FIR matched filter used in the 4 sample/symbol demodulator core

spans four symbol intervals of the underlying impulse response of the pulse shaping filter.

To see this, note that if p(t) denotes the transmit pulse shaping filter, then the 17-tap FIR

matched filter is given by pMF[n] = p∗
(
−nTd

4

)
for −8 ≤ n ≤ 8, where Td denotes the data

symbol interval. The FIR matched filter thus spans a time interval of −2Td ≤ t ≤ 2Td,

which corresponds to four symbol intervals (two to the left of the center and two to the

right).

From Figure 8(c), it can be seen that the NRZ pulse shape yielded the most dispersion of

the output constellations considered. The reason for this is that even though the original

transmit pulse shape pNRZ(t) used for NRZ is rectangular and finite in duration, the

effective transmit pulse shape seen by the receiver is approximately

qNRZ(t) = pNRZ(t) ∗ sinc
(

4t
Td

)
on account of the anti-aliasing analog low-pass filtering used

prior to sampling the analog IF waveform [4]. Here, sinc(x) is the normalized sinc function

defined as sinc(x) , sin(πx)
πx . Due to the anti-aliasing filter, the effective transmit pulse

shape qNRZ(t) seen is infinite in length and decays very slowly on account of the Gibbs

phenomenon [4]. As a result, the residual ISI present for NRZ will be greater than for

either SRRC case considered here. This residual ISI manifests itself as increased dispersion

of the output constellation, as seen in Figure 8.

In Figure 9, we plotted the noiseless output constellation density plots for GMSK for two

different normalized bandwidths [3] (BT = 0.25 for Figure 9(a) and BT = 0.5 for Figure

9(b)). Here, the receiver matched filter used consisted of samples of the first amplitude

modulated pulse (AMP) component [10] of the constant envelope GMSK waveform and

the RWGR was configured for OQPSK. As can be seen, there was noticeable dispersion for

both cases. The reason for this is that GMSK is a constant envelope waveform with

inherent memory effects [3]. As a result, symbol-by-symbol detection is not optimal [3], as

evidenced by the visible dispersion for both cases.
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Figure 8. Noiseless constellation density plots for QPSK using a variety of pulse shaping filters: (a) SRRC,

ρ = 0.35, (b) SRRC, ρ = 0.5, (c) NRZ.
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Figure 9. Noiseless constellation density plots for GMSK for a normalized bandwidths of (a) BT = 0.25 and

(b) BT = 0.5.

From Figure 9, it can be seen that there was more dispersion for the case of BT = 0.25

[Figure 9(a)] than for BT = 0.5 [Figure 9(b)]. The reason for this is primarily that the

first AMP component for BT = 0.25 is less dominant over the other components than for

BT = 0.5 [3]. As a result, there is effectively more residual ISI for BT = 0.25 than for

BT = 0.5 when a single matched filter is used for symbol-by-symbol detection. As will be

shown in Section III.B.3, this increased dispersion manifests itself as a degradation in BER.

Finally, in Figure 10, we have plotted the noiseless output constellation density plot for

16-QAM using an SRRC pulse shaping filter with roll-off ρ = 0.35. As can be seen, both

carrier phase and symbol timing offsets were tracked for this case, even though the RWGR

was specifically designed for QPSK/OQPSK. This brings to light the possibility of using

the RWGR to receive higher order modulation types.
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Figure 10. Noiseless constellation density plot for 16-QAM using an SRRC pulse shaping filter with roll-off

ρ = 0.35.

B. Uncoded BER Results

We now proceed to present uncoded BER hardware performance results for the RWGR. In

addition to presenting high data rate results in Section III.B.1, which include simulations

which only require the high-rate receiver core FPGA, we also present results for various

data rates in Section III.B.2, which include simulations that require both the front-end

filter-decimate FPGA and the receiver core FPGA. Furthermore, we also present results

for demodulation of GMSK in Section III.B.3.

Unless specified otherwise, all BER results were carried out for QPSK using an SRRC

pulse shape with a roll-off of ρ = 0.35. Also, all BER results were plotted alongside the

ideal uncoded BER [2]. For QPSK, this is given by the following expression:

Pb = Q

(√
2Eb
N0

)
(12)

Here, Pb denotes the bit-error probability, Eb/N0 is the bit SNR, and Q(x) is the Marcum

Q-function [2].

1. High Data Rate Results

A plot of the uncoded BER hardware results for QPSK at the maximal symbol rate of

320 MBd is shown in Figure 11. As can be seen, the implementation losses can be

somewhat large for lower BERs. Specifically, it can be seen that for a BER of 2× 10−6,

the implementation loss is about 1.75 dB.

Experimentally, it was verified that one of the primary causes of this large implementation

loss was that the test equipment used to generate the IF waveform input to the RWGR

limited the bandwidth of the transmitted signal. Specifically, the arbitrary waveform

generator (AWG) used to generate the IF input signal non-negligibly low-pass filtered the

transmit waveform for symbol rates above ∼ 240 MBd. This low-pass filtering significantly
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Figure 11. Uncoded BER results for QPSK at the maximum symbol rate 320 MBd (corresponding to

640 Mbps).

increased the ISI of the received signal and resulted in degraded performance for

demodulation at the receiver end.

For all symbol rates below 240 MBd that were tested here, it was found that

implementation losses were less than 1 dB and typically ∼ 0.5 dB. This can be seen, for

example, for the BER results shown in Figure 12 for QPSK and OQPSK at a symbol rate

of 160 MBd. From Figure 12, it is indeed seen that the implementation losses in this case

were around 0.5 dB. As expected, it can be seen that the performance yielded for both

QPSK and OQPSK were about the same here.

2. Variable Data Rate Results

In Figure 13, we have plotted the uncoded BER hardware results for a variety of input

data rates. For several of these rates, the filter-decimate front-end FPGA was utilized in

addition to the fine interpolator system of the receiver core FPGA. As can be seen, the

empirical BER measured was very close to the ideal BER from Equation (12) for all rates

considered here. Implementation losses for all rates considered were found to be on the

order of 0.5 dB.

To highlight the advanced acquisition/tracking capabilities and low implementation losses

of the RWGR, zoomed in versions of the results from Figure 13 are shown in Figure 14 for
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Figure 12. Uncoded BER results for QPSK and OQPSK at a symbol rate of 160 MBd (corresponding to

320 Mbps).
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Figure 13. Uncoded BER results for QPSK at several data rates.
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Figure 14. Close-up of Figure 13 for (a) the low bit SNR regime and (b) the high bit SNR regime.

(a) the low bit SNR and (b) the high bit SNR regimes. Specifically, the exceptional

tracking performance of the RWGR can be seen in Figure 14(a), where it can be seen that

acquisition and tracking is feasible for very low bit SNR (less than −10 dB). This tracking

ability is especially important for deep space applications which typically operate at low

bit SNRs (can be as low as −5 dB bit SNR for advanced error correcting codes such as

LDPC).

In Figure 14(b), the implementation losses at high bit SNR are on the order of 0.5 dB and

indicate that the receiver is operating close to its theoretically optimal value. The

implementation losses here are a combination of losses due to quantization internal to the

receiver and residual ISI due to the finite length matched filters used at the receiver. From

Figure 14(b), it is seen that the net effects of these losses is minimal.

3. GMSK Demodulation Results

To evaluate the uncoded BER performance of GMSK in hardware, for all cases considered

here, the first AMP component [10] of the GMSK waveform under consideration was used

as the matched filter. In Figure 15, we have plotted the BER obtained for GMSK at a

symbol rate of 160 MBd. Here, we considered normalized bandwidths of BT = 0.25 and

BT = 0.5.

From Figure 15, it can be seen that the implementation losses at a BER of 10−5 were

around 1.5 dB for BT = 0.25 and around 0.5 dB for BT = 0.5. One of the reasons for the

larger implementation loss for BT = 0.25 is that in this case, the first AMP component is

not as dominant over the rest of the components as it is for BT = 0.5. As a result, there is

more residual ISI for this case than for BT = 0.5 and hence larger implementation losses.

To elucidate the acquisition/tracking abilities and implementation losses for GMSK,

zoomed in versions of the results from Figure 15 are shown in Figure 16 for (a) the low bit
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Figure 15. Uncoded BER results for GMSK at a symbol rate of 160 MBd (corresponding to 320 Mbps).

SNR and (b) the high bit SNR regimes. From Figure 16(a), it can be seen that the RWGR

exhibited exceptional tracking performance for low bit SNRs. Implementation losses in

this case were very low and less than 0.5 dB for both BT = 0.25 and BT = 0.5. This

suggests that effects due to noise are more pronounced for this region than residual ISI

effects inherent to the GMSK waveform.

In Figure 16(b), we highlight the implementation losses for GMSK at high bit SNR. It can

be seen that the losses at 10−5 are around 1.5 dB for BT = 0.25 and 0.5 dB for BT = 0.5.

As mentioned above, this is primarily due to the fact that there is more residual ISI for

BT = 0.25 than for BT = 0.5. Specifically, this is consistent with the GMSK constellation

density plots shown in Figure 9.

This brings to light the fact that symbol-by-symbol demodulation of GMSK is suboptimal

[2]. In order to obtain optimal performance, a Viterbi algorithm based trellis

demodulation [2] would be required here in order to fully address the memory or ISI

inherent to the GMSK waveform. Such demodulation however is highly computationally

complex. In many cases, it is worthwhile accepting the increased implementation losses of

a symbol-by-symbol based demodulation in order to preserve the simplicity of the receiver

implementation.
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Figure 16. Close-up of Figure 15 for (a) the low bit SNR regime and (b) the high bit SNR regime.

IV. Concluding Remarks

In addition to providing a hardware implementation description of the RWGR, several

laboratory performance results were presented. As was shown, the RWGR was capable of

demodulating a variety of telemetry waveform types (QPSK, OQPSK, GMSK, etc.) at

several data rates. Furthermore, it was shown that for most cases, the implementation loss

was on the order of 0.5 dB bit SNR. In addition, we also demonstrated carrier

phase/symbol timing tracking for low bit SNR (< −5 dB) for all cases considered. This

brings to light the advantages of the RWGR for deep space communications applications.

Future work consists of incorporating frame synchronizer & FEC decoder FPGAs to the

RWGR soft symbol outputs. Once this has been accomplished, it will be necessary to

characterize performance losses of the combined demodulation and decoding functions of

the receiver through a series of laboratory hardware tests.
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