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Abstract—The eigenfilter method for digital filter design band energy (subject to a unit norm constraint on the window
involves the computation of filter coefficients as the eigenvector of coefficients to avoid a trivial solution). It was found that the op-
an appropriate Hermitian matrix. Because of its low complexity as  jma window coefficients could be found from the eigenvector

compared to other methods as well as its ability to incorporate var- f | tri itive definite. Toenlit i
ious time and frequency-domain constraints easily, the eigenfilter Of a real, symmetric, positve aefinite, Toeplitz. matrix corre-

method has been found to be very useful. In this paper, we present Sponding to its smallest eigenvalue.
a review of the eigenfilter design method for a wide variety of In 1987, Vaidyanathan and Nguyen [50] generalized
filters, including linear-phase finite impulse response (FIR) filters, Slepian’s method for window design to the design of

nonlinear-phase FIR filters, all-pass infinite impulse response . L !
(IIR) filters, arbitrary response IIR filters, and multidimensional linear-phase finite impulse response (FIR) filters and formally

filters. Also, we focus on applications of the eigenfilter method intrOQUced the eigenfilter design method. They generalized
in multistage filter design, spectral/spacial beamforming, and in Slepian’s method to account for both passband and stopband

the design of channel-shortening equalizers for communications conditions and showed how to design a variety of filters (mainly

applications. low pass, high pass, and band pass) with various time- and
Index Terms—Channel-shortening equalizers, constrained filter - frequency-domain constraints, including the Nyquist constraint
design. eigenfilter, least-squares filter design. and flatness constraints [49]. Numerous simulation results were
provided showing the power and usefulness of the eigenfilter

I. INTRODUCTION method.

. : . . Since then, various generalizations of the eigenfilter method
HE EIGENFILTER design method for discrete time ﬂl_have been proposed. The design of linear-phase FIR Hilbert

Fers involves the d_eterm|nat|0r_1_of f||te_r _coefﬁc_le_nts 8% ansformers and arbitrary order digital differentiators was con-
the eigenvector of a particular Hermitian positive definite (angdered by Pei and Shyu in [24], [25], [28], [36]. More general
often real and symmetric) matrix. As opposed to other filter dé- y y ' ' ' ) 9

sign algorithms such as the least-squares approach [48], Whi(llﬁ design methods were considered by Nguyen as well as Pei

requires the computation of a matrix inverse, the eigenfilgre >\ including the design of linear-phase filters with arbi-
q b . . c19 ?rary amplitude response [20], the design of arbitrary complex
method only requires the computation of a single 8|genveCt06efﬁcient nonlinear-phase filters [27], [29], [21], and the de-

which can be found efficiently via the iterative power method. . - e
[49]. In addition to its inherently low design complexity, the'd" of Mth band nonllln.ear-pr.]ase filters b.y W|sutmethangpon
i ' adnd Nguyen [52]. Multidimensional extensions to the eigenfilter

eigenfilter method can also incorporate a variety of time an . . .
! o . . ethod (mostly two dimensional) were originally proposed by
frequency-domain constraints into the design problem with rel: . . .
; . h . ashashibi and Charalambous [18] and later considered by Pei
ative ease, in contrast to other well known filter design methoa§1d others [26], [30], [31], [35], [8]. The eigenfilter method has
such as the McClellan—Parks algorithm [16]. Furthermore, be- ' ' ' o 9

cause of the myriad of design problems that can be pos%\éen been used to design infinite impulse response (lIR) filters,
as an eigenfilter problem, the method has been shown to! gluding all-pass filters [14], [41], [33], [22], [55], arbitrary

i L . IR filters using a time-domain [32] and a frequency-domain
useful for a variety of applications, ranging from spectral/spa- ! o
o ) o2 . approach [1], [2], and IIR filters with time and frequency-do-
cial filtering or beamforming to communications regarding the’ . : : ) i
. ; . : .._main constraints [39]. Recently, eigenfilter methods for filters
design of channel-shortening equalizers for discrete multitone : . :
(DMT) systems with general linear constraints were proposed [37] along with

The notion of such a filter design technique was introducerHethOdS based on a total least-squares-error criterion [38], [54].

by Slepian in 1978 [42] in the context of the design of window As many design problems can be posed as an eigenfilter

functions for the ideal low-pass filter response. Slepian consf%r-Oblem’ the eigenfilter method has been found to be useful for

ered the problem of desianing a window with a minimum sto several applications. For example, it has been used to design
P gning pmultistage interpolated FIR (IFIR) filters [9] as well as arbitrary

log magnitude and phase response filters [34]. In addition, it has
Manuscript received February 5, 2003; revised April 23, 2003. This work Wgseen used to develop prototype filters for pseudo—quadrature
supported in part by the Office of Naval Research Grant NO0014-99-1-1002, . . . . .
A. Tkacenko and P. P. Vaidyanathan are with the Department of Electrid®!lmor filter (pseUdO'QMF) uniform and nonuniform cosine
Engineering, California Institute of Technology, Pasadena, CA 91125 ugnodulated filter banks [3], [4]. The generalization of the eigen-

(e-mail: andre@systems.caltech.edu). _ __filter approach to solve general least-squares approximation
T.Q.NguyenlswnhtheDepartmentofElectrlcalandComputerEngmeerlnﬂmmemS was proposed in [10]. Applications to spectral/spatial

University of California at San Diego, La Jolla, CA 92093 USA. rob prop 401 App pectral/sp
Digital Object Identifier 10.1109/TCSI1.2003.816942 filtering were also shown in [10] and more recently in [11].

1057-7130/03%$17.00 © 2003 IEEE



498 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—II: ANALOG AND DIGITAL SIGNAL PROCESSING, VOL. 50, NO. 9, SEPTEMBER 2003

In addition, the eigenfilter method has been found useful fommelyV (z), is a real coefficient polynomial in—! of orderN
cancelling selective signals in an acoustic environment [@iven byV (z) = ZT]LO v(n)z~™. The prolate spheroidal wave
[7]. Use of this method for image scaling or size conversiagequence is the one that minimizes

was shown in [53]. Recently, the eigenfilter method has been

shown to be very important in communications, especially for bs & / [V (e7)? dw (1)
the design of channel-shortening equalizers in DMT systems o i
[43]. Melsaet al. [17] were the first to apply the eigenfilter subject to the unit norm constraint
method to the problem of channel shortening. Since then, many
other eigenfilter based channel-shortening equalizers have al 9
been proposed [40], [45]-[47], [5]. Several of these methods Z“ (n) = 1. @
have been found to perform nearly optimally in terms of the =0
observed bit rate. If we define the following(V + 1) x 1 column vectors:
A. Outline vEO) o) - o(N)]T
This paper is organized as follows. In Section Il, we give a e(z é[1 z7b o N

brief review of the early work on eigenfilters and focus maing/
on the work of Slepian [42] and Vaidyanathan and Nguyen [5 r
Various generalizations of the eigenfilter approach for filter dé’-(
sign are discussed in Section Ill. In Section 1V, applications of
the eigenfilter method are considered, such as multistage filter

design, spectral/spacial beamforming, and channel shortening

for communications. Finally, concluding remarks are made fi¢ R is clearly Hermitian, we can decompaBeasR = P +
7Q, whereP andQ are, respectively, real symmetric and anti-

enV(z) = vTe(z) and|V (e7)[2 = vTe(ei*)el (ei%)v (as
n) is real). Using this in (1) yields

dw

s = vIRv, whereR = /7r e(ej‘”)eT(ejW) (3)

™

Section V. [ : :
symmetric matrices [12]. Then, asis real, we haver” Qv =

B. Notations 0, and so from (3) we get
All notations are as in [49] unless mentioned otherwise. bs = vTPv. (4)

In particular, §&), (I'), and {) correspond, respectively, to

the conjugate, transpose, and conjugate transpose operatidhs.(k, [)th element ofP is given by
Vectors and matrices are in bold font with lowercase letters - dw
corresponding to vectors and uppercase letters to matrices. Th@], | :/ cos(k — lw —

kth element of a vector will be denoted byfv], , whereas the ’ o T

(k,1)th element of a matri® will be denoted byP], ,. =6(k —-1)— 7 sinc (g(k; - l)) ,0<kI<N. (5
’ s s
Il. HISTORICAL BACKGROUND Clearly, P is a Toeplitz matrix (agP],, ; depends only ok —

1)), in addition to being real, symmetric, and positive definite

(as¢s > 0) [12]. The unit norm constraint of (2) is equivalent
A classical approach for designing FIR low-pass filters is thg the statement

windowing method [49], in which the impulse response of an

ideal low-pass filter is multiplied by a window functiar(n). viv=1l (6)

Typically, the window is also low-pass and it turns out that twi

parameters of the frequency response of the winditi’«)

most prominently affect the quality of the overall response

As the main lobe width oF (¢/*) increases, the transition band- Minimize ¢s = vT Pv, subject tovv = 1.

width of the windowed response likewise tends to get larger,

while as the peak sidelobe level Bf(¢’~) increases, the peak As P is Hermitian, it follows byRayleigh’s principle[12]

passband and stopband ripples of the overall response also tiadl the minimum value of is Ay where )\ is the smallest

to as well. To mitigate the sidelobe level effectsiofe’), in  eigenvalue ofP. Furthermore, this minimum value is achieved

[42], Slepian considered designing a real window of unit norifi v. = vy, wherevy denotes a unit norm eigenvector Bf

for which the energy in the frequency regien< w < wis corresponding tdg. (More generallyp = A iff v is any unit

minimized, for somer with 0 < ¢ < . Such a window is norm vector in the eigenspace correspondinggdoHowever,

a discrete timgorolate spheroidal wave functigo@also called a for sake of clarity, we will ignore this scenario.)

prolate spheroidal wave sequerd®]. Slepian showed thatthe The magnitude response of a prolate spheroidal wave se-

coefficients of a prolate spheroidal wave sequence could be gjrence obtained using Rayleigh’s principle is shown in Fig. 1.

tained from the eigenvector corresponding to the smallest eigétere, we chose the order to Bé = 32 and the frequency

value of a real, symmetric, positive definite, Toeplitz matrix, ggarameter as = 0.2x. As can be seen from Fig. 1, the window

we now show. exhibits a large attenuation near= 0.1 orw = ¢ = 0.27 and
Suppose that(n) is a real causal sequence of lengfht+ 1 most of the energy is concentrated in the regiorl w < o

for some nonnegative integ®f. Then, the: transform ofv(n), as expected. Windows designed using the above method were

A. Prolate Spheroidal Wave Sequences

8ombining (4) and (6), the optimization problem can be posed
[49:115 follows:
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negative weighting functioV (w) in (9), yielding a weighted
0 mean-squared-error measure
o A 1 2
) -50 E\VLS = — W(w) [D((U) — HR((U)] dw. (10)
8 T JRr
3
= By defining the following(M + 1) x 1 vectors:
S -100¢ . .
b2&[by by --- by
c(w)&[1 cosw --- cosMw]T
-150 ]
0 01 02 03 04 05 we haveH g(w) = bTc(w) from (7), and it can be shown [48]
f=wi2n that the optimal coefficient vectds which minimizes the ob-
_ _ _ . jective function in (10) is given by
Fig. 1. Magnitude response of a prolate spheroidal wave sequéhee §2,
o = 0.27). b=A"d (11)

. . i ._whereAisan(M+1) x (M +1) matrixandd isan(M+1) x 1
shown to yield good windowed low-pass FIR filters. Slepian ector given by

approach for calculating such sequences paved the way \?or

more general filters to be designed via Rayleigh’s principle. él W(w)c(w)el (w) dw
T JR

B. Transition From Optimal Windows to Eigenfilters d él W (w)D(w)c(w) dw.
Although designing FIR filters using the window method is TR

easy, in general the resulting filters are not optimal in any sendéyis solution can be obtained by using the trick of completing
even if the window is optimal in some sense. Furthermore, \lge square [12].
may be interested in filters other than low-pass filters, in which Though the filter coefficient vectas from (11) is optimal
case it is not immediately clear how to use the window methoith. the least-squares sense, its computation requires the calcu-
1) The Least-Squares Approach for FIR Filter Delation of a matrix inverse which is high in complexity and
sign: Often, we would like the amplitude response of a real csubject to numerical inaccuracies. Several approaches have
efficient FIR filter h(n) to approximate a real desired responsdéeen made to overcome these problems. In [23], Olaida.
say D(w), over a particular frequency regidR C [0,7]. To proposed a recursive method based on constructing a set of
prevent phase distortion, we constraiin) to have linear orthonormal functions. Their method was shown to be both
phase. For simplicity, we will focus on Type 1 linear-phas®wer in complexity and less susceptible to numerical errors
filters here, although other types can be used as well. tinan the conventional least-squares design method in that no
this case/:(n) is of orderN, i.e., H(z) = Y.~_ h(n)z~", direct matrix inversion is involved. Despite these advantages,
where N is even, andh(n) satisfies the symmetry conditiontheir method suffers from the drawback that the actual filter

h(n) = h(N — n) [49]. As such,H(e’*) is of the form coefficients must be found from the coefficients of the or-
H(e?) = e 7“N/2Hp(w), where Hp(w) is the amplitude thonormal function expansion, which adds to the complexity
responsef H(e/*). Here,Hg(w) is of the form of the algorithm. In [50], Vaidyanathan and Nguyen suggested

the optimization of a different objective function which can
M be expressed as a quadratic form in terms of the coefficient
Hp(w) = Z by, COSwN (7) vectorb. By subjectingb to a unit norm constraint to avoid
n=0 trivial solutions, the resulting optima can be obtained via
Rayleigh’s principle [12] in much the same way that prolate

whereM = N/2 andb, is given by spheroidal wave sequences are obtained [42].
; 2h(M —mn), 1<n<M 8 C. Early Work on Eigenfilters: Low-Pass Eigenfilters
" {h(M) n = 0. ® Vaidyanathan and Nguyen [50] introduced the notion of

an “eigenfilter,” namely a filter whose coefficients are the
One approachto géf r(w) to approximate the desired responsgomponents of an eigenvector, by first focusing on designing
D(w) over the regiorR is to choose the coefficient®,.} 0  a low-pass filter. They considered approximating a low-pass
minimize the mean-squared error betwee(w) and Hr(w), filter with passband frequenay, and stopband frequenays,

given by whose desired response is
17 1, 0<w<w,
bis 2~ / [D(w) ~ Hp(w)]” dw. © D(w) = { 0, wsSwsm (12)
TJRr don'tcare, w, <w < ws.

This method for filter design is known as tleast-squares ap- To approximateD(w) as in (12), two quantities were consid-
proach [48]. A slight generalization is to incorporate a nonered in [50], a stopband error measggeand a passband error
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measure,. For the stopband errdg, the mean-squared error 0 —— Least Squares ||
of (9) was used, given by — - Eigenfilter
™ ~ =20
1
és 2= | [D(w) = Hr(w)] dw g
™ wg '8 -40
1 [ 2
=— | ble(w)ch(w)bdw =bTPsb (13) g
T Jos 8 -60
wherePg is a real, symmetric, positive definte matrix given by -80
a1 [ T -100 : -
Ps =1 /ws c(w)e” () dw. 0 01 02 03 04 05

f=wi2n

Unlike the stopband error measure, if the mean-squared error ,of2 Magnitud btained using the | bl

. . H 2. agnitude responses obtained using the least-squares approach alon
(9) for the passband error is used, the resulting expression \&Jlﬂn the eigegnﬁlterapprgachdé o :90'357T’N :%%W(WF)’F’: T 9
not be in the form of a quadratic formin terms of the ve&iofo o = 1/2).

bypass this dilemma, a reference frequency was introduced into

the design problem and the passband error measure was tagih cases, the complexity of the eigenfilter method is much
to be the deviation of the amplitude response from its value|gks than that of the least-squares approach.

the reference frequency. In particular, g, the deviation of | Fig. 2, the magnitude responses using the eigenfilter

Hp(w) from its value atTthe reference frequency= 0 was method as well as the least-squares approach are plotted for
measured. A$/r(0) = b" 1, wherel isan(M +1) x 1 vector 5 |ow-pass filter withw, = 0.37 andws = 0.357. Here, the

of all 1's, £, was chosen to be filter order was chosen to b& = 24 and equal weighing
A1 [er ) was used for both the passband and stopband (i.e., we chose
& == / [Hr(0) — Hr(w)]” dw W (w) = 1 for the least-squares approach ane- 1/2 for the
71r 70 eigenfilter method). The eigenfilter was rescaled to have unity

=— / T (1—c(w))(1—c(w))" bdw=bTP,b (14) gain atw = 0. From the plots, it can be seen that the eigenfilter
TJo is very similar to the least-squares filter, although the former
whereP,, is a real, symmetric, positive definite matrix given byperforms slightly worse in some parts of the stopband.\s
" increases, the two responses become more and more alike.
P, = 1 / ! (1 —c(w)) (1 - c(w))T dw. The close agreement between the least-squares approach and
T Jo the eigenfilter method, along with the lower complexity of the

To jointly minimize bothés and¢,, the authors in [50] con- latter, show the merits of the eigenfilter method.
sidered minimizing a convex combination [12] of the two. In AS mentioned earlier, the tradeoff parametecontrols the

particular, the vectob was chosen to minimize performances of the passband and stopband. When , most
of the design emphasis is on the stopband, and consequently the
E2ats+ 1-a),,0<a<l1 (15) stopband ripple sizes are smaller than for other values. &

) similar scenario holds for the passband whes 0.
wherex is a tradeoff parameter between stopband and passbangh aqgdition to designing low-pass filters using the eigenfilter
performances. In light of (13) and (14).in (15) can be ex- gpproach, the authors in [50] also showed how to design band-
pressed as follows: pass and multiband filters with the introduction of different ref-
T A _ erence frequencies.
¢ =Db"Pb,whereP = aPs + (1 — a)P,. (16) 1) Incorporating Time- and Frequency-Domain Con-

Note that the matri¥P is itself a real, symmetric, positive def-Straints: Another advantage of the eigenfilter method shown
inite matrix since0 < « < 1. If we impose thab has unit by Vaidyanathan and Nguyen is the ease with which certain
norm, i.e..b”b = 1, to avoid trivial solutions, then the optimaltime and frequency-domain constraints can be accounted for
b which minimizes¢ in (16) is simply the eigenvector corre-in the design. In particular, they focused on the time-domain
sponding to the minimum eigenvalug of P by Rayleigh's Nyquist constraint [49] and also a frequency-domain flatness
principle [12]. constraint. It was shown that even with such constraints, the

As Opposed to the |east-squares approach for filter desiwumng filter coefficients could be found using the eigenfilter
which requires the computation of a matrix inverse as can ehnique. _ _ _ _
seen from (11), the eigenfilter method only requires the com-In [50], the authors first considered the Nyquist constraint.
putation of a single eigenvector of a Hermitian positive definitehe causal FIR filteti(n) of order2M we have focused on
matrix. This eigenvector can be calculated efficiently using tHBUS far is said to satisfy the Nyquist constraint [or said to be
iterative power method [12], [49]. The power method, which idlyquist (K)] if [49], [50]
formglly usec_i to _cglculate_the Iargest elgenvalu_e ofa_l Hermitian W(Km + M) = C8(m) 17)
positive semidefinite matrix and its corresponding eigenvector,
is known to converge quickly when the largest eigenvalue wghere K is some positive integer and is some constant. In

much larger in magnitude than the next largest eigenvalue.dther words, the advanced respoisén) = h(n + M) be-
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comes an impulse after being decimatediby49]. Using (8), (15) takes on the fornd = d?Pd, whereP is as in (16) but

the coefficients{b,,} must satisfy with Pg andP,, given by
b = C8(m), 0 < m < {%J . Ps :l/ §(w)eT (w) duw
K T Jws
As such, the coefficient vectds is of the form in (18), shown 1 RIS A S T
at the bottom of the page. From (16) and (18), it is apparent that Py 7)o (1 S(w)) (1 S(w)) dw

the rows and columns @& whose indices are nonzero multiples
of K do not contribute to the overall errér= b”Pb. Hence,
& can be rewritten as

Wherel = [1 0 0 --- 0]7. Under the unit norm con-
straintd”d = 1, ¢ can be minimized using Rayleigh’s principle
as before. To generalize this approach to ha2é & 1 degree
&= bIPb of flatness at any arbitrary frequengy, we need only expand
o _ Hp(w) in terms of the functiongsin** (w — w0/2)}i{0

whereb is simply the vectob of (18) with the zeros removed,  2) |terative Eigenfilter Method for the Design of Equiripple
as shown in the second equation at the bottom of the page qtbrs: The McClellan—Parks algorithm [16], which mini-
P is the matrix obtained by removing the rows and columns @fizes thel., norm of the response error, is widely used for
P whose indices are nonzero multiples &t From (18), the equiripple filter design on account of its rapid convergence
constrainb”b = 1 is equivalent t td”b = 1. Thus, the design and good performance. However, incorporating time- and
problem is to minimiz& = b” Pb subject tob”b = 1, which frequency-domain constraints into the design, such as those
is the traditional eigenfilter problem, but with the smaller matrifom above, is often very difficult. The relative ease with which
P. the eigenfilter method can accomodate such constraints was the

In addition to showing how the Nyquist constraint could bprimary motivation for Vaidyanathan and Nguyen to develop an
incorporated in the design of eigenfilters, it was also shown hatgrative eigenfilter technique for designing equiripple filters.
to incorporate flatness constraints in the frequency domain. ByTo formulate an iterative technique, the authors in [50] intro-
definition [49], a frequency respong&(e’«) is said to have a duced a weight functiom (w) for the passband and stopband

degree of flatness dk at the frequency if we have error measures of (14) and (13), respectively, given by
dk T
mG(eM) =0,1<k<K. 19 ¢, = / W(w)e?(w)dw, & = ! W(w)e(w) dw
w=wq ™ ws

For simplicity, the authors in [50] focused on a flatnesgherec »(w) = bT (1 — c(w)) andes(w) = bTc(w). For uni-
constraint atv = 0 and later showed how to accomodate fofgrm welghtlng (i.e.W(w) = 1), the errorse, (w) andes(w)

any arbitrary frequency. Recall thatHg(w) from (7) is  were observed to be large near the band edges and smaller away
an expansion in terms of the functiofgoswn},lo. Alter-  from them. Ase, (w) andes(w) are not knowra priori, an iter-
natively, Hr(w) can be expressed in terms of the functionative procedure to identify the appropriat&w) was suggested

{sin®™ ( w/2)}]‘i0, yielding the expansion based on the above observationeJf,(w) andes (w) denote
the passband and stopband error curves aftektinéeration,
_ Z d,, sin®" (g) ' (20) the weighting function for thék + 1)th iteration was chosen as

Wit (w) = Wi(w) lepp(w)], 0<w<w,
With this expansion, it can easily be shown that the flatness k1 T\ Wik(w) lesk(w)], ws Sw<m

constraints of (19) are satisfied fét(e’*) = H K = . L .
I (19) ISt (e™) R(w) with the initialization W (w) = 1. Here, eithere, ,(w) and

2L +1,andwg = 0iff d, =0forl1 < k < L. Thus, ifd;, =0 . : o
for1 < k < L, thenHp(w) has a2, + 1 degree of flatness es.r(w) or their envelopes can be used. The iteration is car-
atw = 0. Assuming this to be the case, then by defining théed out until the magnitude of the difference in the solutions
following vectors: IS smaller than a prescribed small constamh other words, the
g
N iteration is carried out untilb41 — bg|| < e.
d é[do drv1 dpyo - du ]t In Fig. 3, we have plotted the magnitude response of an
S(w) £[1 sin?HD (2) sin2(L+2) () - sin?™ ()" equirippl.e filter desig|_’1ed using the iterative eigenfilter method
21) along with that obtained by the Remez exchange algorithm
R R used in the McClellan—Parks program. To compare both
we haveH r(w) = dTs(w). Note that the vectat is completely methods, we designed a low-pass filter without any time or
arbitrary and that the flatness constraint is automatically satfsequency-domain constraints, as the McClellan-Parks algo-
fied by construction. In this case, the objective function fromithm is incapable of incorporating them. Hetg, = 0.3«

b=1[bp b1 -+ bxk—1 0 brgi1 --- bag—1 0 bagy1 -+ -] (18)

Bé [bO bl bK—l bK+1 b2I(—1 b2K+1 ]
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design lIR filters including all-pass filters. Finally, we will focus

0 — Eigenfilter e N ‘ ) ’ ; )
\| — - Remez Exchange on designing multidimensional FIR filters using the eigenfilter
-20 method.
-40 A. Arbitrary Desired Response Eigenfilters

Nguyen originally considered the problem of using the eigen-
filter method to approximate an arbitrary real desired amplitude
| I ] responseD(w) using linear-phase FIR filters [20]. Later, the
i method was generalized to approximating a general complex de-
-100 sired respons®(w) with a complex coefficient FIR filter [21],

0.1 0.2 0.3 0.4 0.5 [29]. Here, we present the methods of [20], as well as those of
f=wl2n [29].
@) 1) Arbitrary Amplitude Response Casén order to approx-
—— Eigenfilter imate any real desir_ed amplitl_Jde rgspoﬁe;) with a linear-
— - Remez Exchange phase FIR filter using the eigenfilter method, Nguyen [20]
considered modifying the least-squares-error criterion (9) by
incorporating areference frequency atwhich the FIR filter ampli-
tude responsé r(w) would exactly matctD(w). More specif-
ically, Nguyen considered minimizing the objective function

Magnitude (dB)

1.02

Magnitude

2

gél/RW(w) D(©) o) — Ha(w)| do. (22)

. T D(wo)
0 0.05 0.1 0.15 h e g
f=o02n
(b) (In [20], Nguyen considered the special ca8dw) = 1, but

Fig. 3. Magnitude response of equiripple filters designed using the eigenfil@?r_e we include an arbltraW(w) fqr Sa_lke of generahty') Her.e,

and Remez exchange algorithms. (a) Magnitude response plot on a decibel seagelS the reference frequency which is chosen by the designer.

(b) Passhand details using a nondecibel scale. Note that the error functiof(w) is chosen by construction to be

zero atwg. In [20], wy was chosen to be

andws = 0.4w, and we choseéV = 28 for both methods.

For the eigenfilter method, we chose= 0.5. A decibel plot wy Sargmax |D(w)| (23)

of the magnitude response is shown in Fig. 3(a), while the weIR

passband details are shown in Fig. 3(b) on an nondecibel scajiere R denotes the boundary of the regi@) whereas in

From Fig. 3(a), we see that both methods are in excellgpt], w, was chosen to be

agreement. The eigenfilter is only approximately equiripple

since the reference frequency conditionuat= 0 prevents wo Zargmax | D(w)). (24)

this frequency from being an extremal frequency. As such, the wel0,x]

T e e vt o e S 4l and Sty 29 showed tough a design example it e
. . . oice ofwy had a noticable effect on the overall performance

Using the methods of the previous subsection, we can creg

. . . X . N CrégiShe resulting filter. From their simulations, it could be seen
approximately equiripple eigenfilters that satisfy certain t'mﬁeuristicallythat choosing, whereD(w, ) was large in magni-
and frequency-domain constraints.

tude yielded better results, thus justifying the choicesgfug-
gested by Nguyen in (23) and (24). Using the fact Hia{w) =
bTc(w), it can be shown from (22) that we have the equa-

Since the work of Vaidyanathan and Nguyen [50], many getion shown at the bottom of the page. As before, the matrix
eralizations have been made to the eigenfilter method. In tisis a real, symmetric, positive definite matrix. With the usual
section, we will focus on several such extensions, includinmit norm constrainb™b = 1 on b, the optimal coefficients
using the eigenfilter method to design arbitrary amplitude arfior Hr(w) can be obtained using the eigenfilter method as be-
frequency response filters and incorporating general linear cdare. It should be noted that after the optinkais found, the
straints into the design. In addition, we will review a recergolution must be scaled in order to satisfy the reference fre-
eigenfilter method based on a total least-squares-error criterignency condition that/gr(wy) = D(wp), which is equivalent
Then, we will show how the eigenfilter method can be used to b7 c(wy) = D(wp).

I1l. GENERALIZATIONS OF THEEIGENFILTER METHOD

1
fszPb,whereP:—/
T™JR
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2) Arbitrary Desired Response Cas&lguyen as well as Pei 1D(¢”)|
and Shyu independently developed different methods to desi 2.0
a complex coefficient FIR filter to approximate a generally com: 207 X '
plex valued desired response using the eigenfilter method [2¢
[21]. Here, we present the method of Pei and Shyu [29].

Let h(n) be a causal FIR filter of lengtlV, so thatH (z) =
Zi:;‘ol h(n)z~™. Defining theN x 1 vectors
2[h(0) A1) -+ MN-1)]F
e(z) £[1 27! ... ~(N-DIT (25)

1

'

A !
!
!
P !
v
!
[
[
[
1

0 02 0303
we clearly haveH (z) = h%e(z). To develop an eigenfilter- (a)
based method for approximating a complex valued desired re,,
sponseD(w), Pei and Shyu considered modifying the following

least-squares objective function, 25 1 —

el
o

ot

o J

o

o

e

~ 4

at

O d = - = - -
e

g

=}

~

I

e

wis £ o [ W) D) - HE) do (26
TJRr 15 +—— —
in order to express it as a quadratic form in terms of the vdctor
(In [29], the authors did not include the weight functidf(w)
or the constant /(2) in their analysis. We have decided toin- 5 7T
clude both quantities for sake of completeness.) The frequenc — X '
regionR is now a subset of the intervil, 2] and the desired 0 03035 05 0.8 10 f=£
responsé)(w) is allowed to be complex. Similarly to what was (b)
done in the previous section, to pose the design problem as an
eigenfilter problem, Pei and Shyu modified (26) to incorporatg. 4. (a) Desired magnitude response. (b) Desired group delay response.
areference frequency at which the frequency response of the

filter would match the desired response. In particular, they Cofb(w)|ej¢(”> thenr(w) = —do(w)/dw. With a filter length

sidered minimizing the objective of N = 50, a reference frequency af, = 0.857, and uni-
A1 D(w) ) 2 form weighting, the resulting eigenfilter magnitude and group
€= 2—/ W(w) D H(e!) — H(e’*)| dw (27) delay responses are shown in Fig. 5(a) and (b). As we can see,
IR (wo) the eigenfilter designed here yielded a good fit to the desired re-
subject to the unit norm constraihih = 1. UsingH(z) =
hTe(z), it can be shown that we have the equation shown a

sponse in the frequency regions of interest.
the bottom of the page. Here, thé x N matrix P is a com- B_F Incprporating General Linear Constraints Using the
plex-valued Hermitian, positive definite matrix. Under the unfe'9enfilter Approach
norm constrainhh = 1, the optimal filter coefficients can be  Often times in the design of FIR filters, it is desired that
found using Rayleigh’s principle, which applies for any Herthe filter coefficients satisfy a general linear constraint. For ex-
mitian matrix, be it real or complex. After obtaining the optimagmple, if we consider the complex coefficient FIR filter from
coefficients, the resulting filter must be scaled in order to satisBection I1I-A-2, suppose that in addition to choositige’ ) to
the reference frequency conditidif(e’“°) = hTe(e/*0) = approximateD(w), we would like H (¢’“) as well as its first.,
D(wp). In [21], Nguyen solved the same problem, but decoglerivatives to match those éf(w) at some reference frequency
pledh(n) into real and imaginary parts and then expressed te. Namely, we wish to choos# (e’“) to satisfy
objective as a quadratic form in terms of the vector of real and ,
imaginary parts ofi(n). Whereas Pei and Shyu's method in-  d"H(¢/*) _ d*D(w)
volved anN x N complex matrix, Nguyen’'s method involved dw* | ,_., C dwk =g
a2N x 2N real matrix.

As an example, suppose that the magnitude and group ddNgte that this is similar to the flatness constraints of (19) con-
of the desired respondg(w) are as shown in Fig. 4(a) and (b)sidered in Section II-C-1. As we havé(e/*) = hTe(el?) =
respectively. (This example was considered by Nguyen [21] (¢7“)h, the constraints in (28) can be rewritten in the form
Recall that the group delay(w) is the negative of the deriva-
tive of the phase with respect to [49]. Namely, if D(w) = Ch=d (29)

L,0<Kk<L. (28)

g:hhmqwmmfn:%aémqw{waqJW)—qaﬂr[waqa%)—qaﬂ dw
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[12]in terms of the true coefficient vecth the design problem
becomes
. hiPh
Minimize §{ = ——

Magnitude

over all nonzero vectorh. By Rayleigh’s principle, the min-
imlim value of is the smallest eigenvalug of P which occurs

iff his in the eigenspace corresponding\to Note that here the
length ofh is arbitrary. In the eigenfilter design problem, the
length ofh is then chosen to satisfy the condition

0.8 1
f—(0/21t T( i )A ( ) eT(ejwo) N ( )
e’ (e7“°)h = D(wq <:><—)h:1. 30
40 D(wo)
If h must satisfy linear constraints of the form given in (29), the
30 design problem becomes
) -
3 h!'Ph
izo Minimize £ = subject toCh = d.
2 ‘hfh
© 10 : To solve this optimization problem, Pei, Tseng, and Yang [37]
| used the equivalent form of the reference frequency condition
[ of (30) to express the linear constraint equat©h = d in a
0 018 1 more simplified form. Using (30), the linear constraint equation
‘ can be expressed as follows:
(b) N ~ deT (eiwo
Ch = 0 whereC 2 C — %
w
Fig. 5. (a) Magnitude response of the complex eigenfilter. (b) Group delay 0
response.l{ = 50, wo = 0.857). Hence, the filter design problem becomes
. . . . hPh .
whereCisa(L+1) x N matrixandd isa(L +1) x 1 column Minimize ¢ = T subject toCh = 0.

vector given by
The key to solving this constrained minimization problem is to

el (e7«0) D(w) note thaCh = 0 iff h liesin the null space ot [12]. Any such

%QT(ejwo) % D(wyp) hcanbe expressed Bs= Ua, whereU isa rectangular unitary
C= . ,d= . . matrix (i.e.,UTU = I) whose columns form an orthonormal

PR o basis for the null space & anda is any arbitrary vector [12].
d T (,jwo d D i K . -~ .
e (¢7°) dor D(wo) With this decomposition oh, the design problem becomes

i ion in (29) is I i fufpua afP -
Note that the constraint equation in (29) is linear with respect to Minimize ¢ = a a_alra rereb 2 ufPu

the coefficient vectoh. Incorporating general linear constraints alutua ala

as in (29) using the eigenfilter approach was first considered by

Chen [10] for the special case whele= 0 and later generalized OVer all nonzero vectos AsP is clearly Hermitian, we can use
by Peiet al.[37] for d # 0. We present the results of [37].  Rayleigh’s principle to find the optimal and then usk = Ua

Recall that for the complex case, the eigenfilter problem 1@ find the optimalh. Here, the length o& must be chosen to
typically formulated as follows: satisfy the reference frequency condition of (30). Simulation

results in [37] using the derivative constraints of (28) showed
o ; ) t the usefulness of this eigenfilter technique for designing filters
Minimize { = h'Ph,subjecttoh'h = 1 with generalized linear constraints.

whereP is some Hermitian matrix. It should be noted that th&- Eigenfilter Method Based on a Total Least-Squares-Error

constraint here is really just included to prevent trivial solJcriterion

tions from occuring. Typically after the optimhlis found, the ~ Most eigenfilter techniques arose by altering the
true coefficient vectoh that we use is the optimdl scaled least-squares-error criterion of (10) or (26) in order to ex-
by a factor in order to satisfy the reference frequency congiress it as a quadratic form in terms of the filter coefficient
tion. In other words, we ush = Kh, where K is chosen vector. As mentioned earlier, this was done by introducing
such that we haveT(eJ“JO)h = D(wp) (which impliesK = a reference frequency condition into the objective. Recently
D(wp) /e (e?“0)h). By expressingt as a Rayleigh quotient [38], Pei and Tseng suggested a novel modification to the
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least-squares objective based ortotal least-squareserror d
criterion. The resulting objective is still in the form of a
Rayleigh quotient in terms of the filter coefficient vector, and (X,d)
so the optimal vector can be found using Rayleigh’s principle Erws = E5c0s 6
as before. One advantage of the total least-squares eigenfilte 4
objective over the traditional ones of (22) and (27) is that the Eis
former does not require a reference frequency. Another advan-
tage is that for low filter orders, this method has been shown cosf) = o
through simulations to come closer to the desired least-square:
solution than the conventional eigenfilter method. In addition, ]
for high filter orders, it has been shown to be less susceptible X
to numerical inaccuracies than the traditional least-squares
method which requires matrix inversion.

To properly introduce the total least-square eigenfilter o i

. . . L Fig. 6. Geometric interpretation of the least-squares and total least-squares

method, we first briefly review the principle of total,  yem.
least-squares. A more thorough description of this prin-

ciple is provided in [44, pp. 533-535]. In many typical Iinea{hat it can easily be shown thats — hiPh. If we define

modeling problems, given a set of data in the form df & L &2 JEmande 2 /& then clearly we have
matrix X, a linear model of the fornrXh (whereh isanL x 1 LS éus LS bis, y

=W}

= Xh

vector) is formed to best approximate a desifédx 1 vector ErLs = Eus ' (35)
d in some sense. For the traditional least-squares methid, V1+hih

chosen to minimize the squared magnitude of the error ~ . i ) o A
If d is defined as the linear approximationdoi.e.,d = Xh,

e=d—-Xh<—= Xh=d-e (31) thené&ys represents the length of the path- d, wherea€r g
represents the minimum distance betwdeand the hyperplane

Namely,h is chosen to minimizéLs £ ||e||*. Animplicit as- Xh, the path of which lies in a direction normal to the hyper-
sumption \bfrom the second equation in (31) is that the errorgtane. These paths are always separated by an angjMefém
associated with the desired vectbrin the total least-squaresg,ch other, whereos§ = 1 /\/m. This is shown \bfor
method, an error is not only associated with the desired Vec{fk gne-dimensional case in Fig. 6.
d, butalso with the data matriX. If A isak x L matrixrepre- 14 derive the total least-squares eigenfilter objective function,
senting the error in the matriX, then the error equation \bfrom ¢ ngider the complex least-squares-error criterion of (26). Note
(31) becomes that it is of the form

(X-A)h=d-e (32) EwLs :% /R W (w) (Eus(w))” dw

For the total least-squares method, the vetids chosen to ~ Where
minimize the “total” error in botld and X. In particular,h is
chosen to minimize the objective Ers(w) A |D(w) _ hTe(ejw)l _ (36)

ris 2 ||ET||§~ - Tr [JFGT] . whereer 2 A €. (33) (In [38], Pei and Tseng analyzed the real least-squares-error
criterion of (10). We have opted to focus on the complex
The K x (L + 1) matrixer represents the error in both the daté@st-squares criterion for sake of generality and notational

and desired response. From (32), we get uniformity.) Note thatf;s(w) is essentially the same quantity
ELs analyzed above, the only difference being that it depends on

h } the variablev. From (35) and (36), itis clear that an appropriate

()A(—eT)ﬂ:mwhere)A(é[X d], andh 2 A
-1 total least-squares-error criterion is given as follows:

It can be shown [44], that the minimum value &fy.s in (33) érLs éi/ W(w) (ErLs(w))? dw
is Ao, where )\, is the smallest eigenvalue &TX. Further- 2r Jr

more,érrs = Ao iff h = Kvo, wherevy is any vector in the where
eigenspace correspondingXg, andK’ is a constant chosen to
make the last component hfequal—1 (assuming that such a £ a Es(w) 37
. . N . TLS(W) = . (37)
constant exists). Because of this, from Rayleigh’s principle, an V1+h'h
alternative total least-squares-error criterion can be chosen @9sing (36), (37) becomes
~ ~ g 2
» hPh s ote _ [XIX XTd 1 / |D(w) — h"e(e)|
= ———, whereP = XX = . (34 =— | W(w dw
s TR atx ata ] @Y s = o L
There is an interesting geometric interpretation between tWQ ich can be expreisedAm the form
total least-squares objectivig-.s \bfrom (34) and the least- _ hiPh here T & h (38)
squares objectivers = ||¢||>, wheree is as in (31). First note TLS = ey WHee R =g )
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20 — LoastSauares reference frequency was chosen tadge= 0. Though difficult
0 = Conven?ional Eigenfilter |4 to see, the total least-squares eigenfilter is noticably closer to
— - Total Least Squares the optimal least-squares filter than the conventional eigenfilter.
@ ~20 | In fact, it is indistinguishable from the least-squares filter.
E -40 Furthermore, the design complexity of the total least-squares
2 eigenfilter is much less than that of the least-squares filter,
€ -60 . . .. . . . .
2 which requires matrix inversion. The filters in Fig. 7(b) are
= -80 high order withN = 148, w, = 0.257, andws = 0.47
-100 (wo = 0). It can be observed that both eigenfilter methods
performed about the same, whereas the least-squares filter
-120 01 02 03 04 05 yielded a poor response. The reason for this is that the matrix
f= w2n which needed to be inverted for the least-squares method was
() extremely ill-conditioned. For this example, the condition
50 ' number was 1.701210'. Both eigenfilter methods, as they
e genfiter do not require matrix inversion, are much less susceptible to
0 — - Total Least Squares numerical inaccuracies caused by ill-conditioned matrices than

filters designed using the least-squares method. This example
serves to show the merits of the total least-squares eigenfilter
method for both low order filters as well as high order ones.

\.
|
| An extension of the total least-squares method was recently

Magnitude (dB)
1
S
o

~150 \W‘, _ " proposed by Zhang and Chen [54] which asymptotically
00 |..i’ﬂmlfmlmlm“mﬂl!ﬂmmﬂm approaches the conventional least-squares solution.
-250 - N - - igni ' i igenfi
0 0.1 0.2 03 04 0.5 D. Designing IR Filters Using the Eigenfilter Method
f=wi2n 1) Design of All-Pass Filters:Thus far, we only focused
(b) on designing FIR filters using the eigenfilter method. Several

. _ _ methods for designing IIR filters have also been considered in
Fig. 7. (a) Magnitude responses of several low order low-pass filldis=( the |iterature. The first to consider this problem were Laakso
32,w, = 0.27,ws = 0.37) (b) Magnitude responses of several high order | f h . f all h .
low-pass filters. IV = 148, w, = 0.257, ws = 0.47). et al. [14] for the design of all-pass phase compensators. Pei
and Shyu [33], as well as Nguyest al. [22], later suggested
) i alternative design methods for these filters. Recently, Zhang
Here,P is an(V + 1) x (N + 1) matrix of the form and Iwakura [55] considered the design of phase equiripple

A b all-pass filters based on an eigenfilter method. They showed
P = [bf c } (39) that the optimality criterion for the phase error in the Chebyshev
sense could be posed as a generalized eigenvalue problem and
whereA, b, andc are, respectively, th& x N, N x 1, and proposed an iterative eigenfilter method to design equiripple

1 x 1 quantities phase responses. Here, we focus on the method of Pei and Shyu
X in [33], which is optimal with respect to its error criterion,
A :L / W(w)e*(ejw)eT(ejw) dw which is a modification of the phase errbg norm. In contrast,
2m Jr the methods proposed in [14] and [22] are only approximations
b :i (w)D(w)e*(ejw) dw to the phase error norm. _
2 Jr The transfer function of a causaith order all-pass function
1 is of the form [49]

¢ W (w) |D(w)]” dw.

_271' R
_N %

2 VA(2) S
, whereA(z) = Z anz™"
n=0

Thus, we have expressédrs as a Rayleigh quotient in termsH (z) = w
z

of the vectoth. Note the similarities between the matixfrom
(39) and that from (34). By Rayleigh’s principle, we can find the “ A
optimumﬂ and thush. To obtain the propeh, we must scale andA(z) = A (;) )
the optimumh to satisfy (38).

The merits of the total least-squares eigenfilter methddere, we will focus on real coefficient all-pass functions for
are best seen via simulations. Following an example frowhich a,, is real for alln. In this case H(z) is of the form
Pei and Tseng [38], in Fig. 7(a) and (b), we have plotteH (z) = 2~ A(2~1)/A(z). By construction, the frequency re-
the magnitude response of several low-pass filters desigregbnse off (z) is of unit magnitude, i.e|H (¢’“)| = 1. Hence,
using the traditional least-squares method, the conventiotta only design freedom present is in the selection of the phase
eigenfilter method (which requires a reference frequency), aafl H(e¢“). The phase offf (¢/*), which we denote here by
the total least-squares eigenfilter method. The filters showndny (w), is of the form
Fig. 7(a) are low order with parametehs = 32, w, = 0.2,
andwgs = 0.37. For the conventional eigenfilter method, the dp(w) = —Nw — 2¢4(w) (40)
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where¢ 4 (w) is the phase ofi(e?“) given b H (=) with N;, poles inside the unit circle amdl,,; poles out-
p g y p p
N side the unit circle satisfies [22]
kX::O ai sin(kw) ¢r(m) = —(Nin — Nout)7.
¢pa(w) = —arctan | = (41)
> ay cos(kw) Hence, for a stable all-pass filter of ord®&T, we have
k=0
Let ¢raes(w) and ¢4 aes(w) denote the desired phase ¢u(m) = —/0 T (w)dw = —N7w (43)

responses for the all-pass filteH(z) and its corre- _
sponding denomiator polynomiald(z). From (40), we wherery(w) is the group delay off (/). It was observed by

have g ges(w) = —Nw — 2¢ 4 qes(w). Pei and Shyu [33] Peiand Shyu [33], as well as by Nguyetal.[22], that by con-
considered choosing(z) to match¢ 4 ges(w), Which can be straining the desired group delay respongei.s(w) to satisfy
obtained fromyp g 4es(w) using the above formula. (43), often times stable all-pass filters would be obtained. How-

In obtaining a criterion to choose the coefficients of the polyever, enforcing (43) fory qes(w) does not guarantee stability.
nomial A(z), Pei and Shyu noted that f4 (w) was approxi-  Following an example considered by Pei and Shyu in [33],
mately equal t@h 4 qes(w), then heuristically we would have  suppose that the desired phase response is

N —85w, 0<w<0lx
<Z aj, cos(kw)) Sin(¢a,des(w)) PH,des(w) = { —65w — 27, 0.l7r <w < 0.77 (44)

k=0 —Thw 4+ 57, 0.7t <w < .

N
- It can be verified thad g qes(w) in (44) satisfies (43) forV =
— : k % os ~ 0. L 1 ;
(Z ax c08( w)) an(¢a(w)) cos(a.des(w)) 70. From this, it can be inferred that an all-pass filter of order

_ h=0 _ 70 would be best suited to approximatg qes(w) as in (44). In
Equivalently, we would have, using (41) [33], the authors designed such an all-pass filter using the eigen-
N filter objective of (42), in which the weighing functioW (w)
ar (Sin(p 4 des(w)) cos(kw) + cos(p 4 des(w)) sin(kw)) was chosen as
k=0 90, 0 < w < 0.087
N 1, 0.127 < w < 0.6857
= Z ar sin(pa,des(w) + kw) = 0. W(w) = 30, 0.715sr <w<m (45)
k=0 0, otherwise.

Defining the vector_s shown at the bottom of the page, then Wesnould be noted that choosiflg (w) as in (45) introduces
would have apprg?(|matebyTs(w) ~ Oforallw. Tochoosa 10 g transition bands into the design, namelpgr, 0.127) and
ensure thl§ (_:or_1d_|t|0n as best as possible, Pei and Shyu [33] CANGS5, 0.7157), which were found necessary to yield a good
sidered minimizing a mean-squared-error measure of the forﬂ?ﬁase approximation for the rest of the frequency region of
1 . ) interest. In Fig. 8(a), the group delay of the 70th-order all-pass
£= p / W(w)(a' s(w))” dw eigenfilter designed using the above parameters is shown,
R whereas in Fig. 8(b), the phase erthf qos(w) — ¢u(w) has
subject to a unit norm constraint an(namelya”a = 1). Since been plotted. From both plots, we can see that the eigenfilter
the “desired response” ef’ 's(w) is 0, the error metri¢ can be method yielded a good approximation to the desired phase.
expressed as a quadratic form in termsaofn particular, we For the eigenfilter designed here, the pole farthest away from
have the origin had magnitude 0.9262, and so the filter is stable.
1 Despite the fact that in this example we have stability, it should
¢ = a’Pa, where P = — / W(w)s(w)s” (w)dw (42) be stressed that an all-pass filter designed using the eigenfilter
TR method need not be stable, evemf 4., (w) satisfies (43).
and so the optimal denominator coefficient vectocan be 2) Design of Arbitrary IIR Filters: Pei and Shyu [32], [41],
found using Rayleigh'’s principle as before. [39], as well as Argenti and Del Re [1], [2] proposed different
One problem with designing IIR filters not present when denethods to design arbitrary IR filters using the eigenfilter ap-
signing FIR filters is that of stability [49]. In order to have gproach. In [41], Shyu and Pei proposed a method for designing
causal, stable transfer function, all of its poles must lie inside thaultiband IIR filters using sums and differences of all-pass fil-
unit circle. In general, this constraint is very difficult to enforceters. The all-pass filter coefficients were found using a method
However, for all-pass filters, often times it is possible to obtaisimilar to that described in the previous subsection. In [32], the
stable solutions by imposing constraints on the desired phaseagthors proposed a time-domain method to approximate a de-
sponsepr.qes(w). The phase of a real coefficient all-pass filtesired impulse responsé&n), which need not be causal. How-

lao a1 - an]’,
[si0(Pa,es(@))  SIN(Pades(w) + @) -+ sin(Paaes(w) + Nw) |

> >

s(w)
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90 Define the following vectors:
85 a2lag ay - au] ,b2[by by --- by]"
80 er(2) £[1 27t .o 27LTT.

It should be noted that here we define the ve¢tbr+ 1) x 1
vectorer,(z) for any nonnegative integdr. Clearly, we have
A(Z) = aTeM(z) andB(z) = bTeN(z). As SUCh,EHR(w)
from (46) is simply

Group Delay
~
[$]

~
o

° err(w) = D(w)bTen(e?*) —aley(e7¥).
60 01 02 03 04 05 Let us now define the following vecter obtained by concate-
f=w2n natinga andb:
(2)
x 107 ' ' c2 [ lﬂ ,

N

Then we have

enr(w) = cT'd(w), where d(w) 2 |:Dzj)]\é](\fet];)w):| .

-

Using this in (46), we have

1
&R = CTPC, where P 2 o / W(w)d*(w)dT(w) dw
. R

|
-

and henceyrg is a quadratic form in terms of the vector of

Phase Error (¢H' des(co) - ¢H(0)))
o
H

2 numerator and denominator coefficients. By subjectirig the
0 0.1 0.2 0.3 0.4 0.5 usual unit norm conditiorc = 1, the optimalc is obtained
f=o2n using Rayleigh’s principle.
(b) As an example, suppose that the desired response is a

_ o low-pass filter with passband frequency, and stopband
Fig. 8. (a) Group delay response of thg all-pass eigenfilter. (b) Phase erﬁ%quencyws that has been delayed H\j for someK > 0.
O aes(w) — ¢ (w). [N = 70, W(w) as in (45)]. . =

Namely, suppose thdd(w) is

ever, to get good performance, computations must be performed eI R, |w| < wp
on matrices of very large sizes (in [32], matrices of size 512 D(w) =<0, |w| > ws
were used). Furthermore, there is no guarantee that the resulting dontcare wj, < |w| <ws.

filter will be stable. In [39], Pei and Shyu considered the deSuppose thab, = 0.37 andws = 0.4~. If we chooseM =

sign of special classes of IIR eigenfilters satisfying certaintime, N = 5, and K = 12, the resulting magnitude, phase,
and frequency-domain constraints. Recently, Argenti and Dehd group delay plots of the IIR eigenfiltéf(z) are shown in

Re [1], [2] proposed an IIR eigenfilter design method using Rig. 9(a)—(c), respectively. The phase and group delay are only

frequency-domain approach which we present here. plotted for the passband region, where we desire linear phase.
Suppose that we have a causal IIR filté(z) of the form From the plots, we see that the IIR eigenfilter has a relatively

A(2) good magnitude response with a peak passband ripple size of

H(z)= about 0.08 and stopband attenuation of about 60 dB, as well as

B(z)’ very approximately linear phase in the passband region. The de-

viation of the phase from linearity is best seen from the group
delay plot of Fig. 9(c). From this, we see that the phase becomes
) o less linear as we approach the passband frequepcpespite
Instead of choosingd(z) and B(z) to minimize the usual thjs the fluctuations in the group delay in the passband are not-
weighted mean-squared-error criterion of (26), which is diffizaply less than those of elliptic and Chebyshev filters designed
cult to do, the authors of [1] and [2] proposed choosing them {gy the above observed passband and stopband ripple character-

M N
whereA(z) = Z apz~" and B(z) = Z bz~
n=0 n=0

minimize the following error measure: istics. To obtain this kind of performance with a linear-phase
a1 9 FIR filter, the filter order would have to be much larger than
SR = o /R W(w) lenr (@) dw, the ones used here, showing the merit of the designed IIR filter.

a jw jw However, it should be noted that the results are very sensitive
whereeqr () = D(w)B(e”™) = A(e™). (46) " choices ofV/, N, and K. Many choices yielded a poor
Heuristically, é;ir can be argued to be a valid error criteresponse either in the magnitude or phase (or both) and many
rion, since if H(e’*) =~ D(w), then we should also havechoices yielded an unstable filter. Here, the polg&if:) far-
D(w)B(e?*) — A(e’*) = 0 and conversely. The advantagehest away from the origin had magnitude 0.9334 and/$o)

here is thatr can be expressed as a quadratic form in ternisstable. If we are not interested in the phaséigt) and we

of the polynomial coefficients, as we now show. obtain an unstable filter with an adequate magnitude response,
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Fig. 9. (a) Magnitude response of the IIR low-pass eigenfilter. (b) Phase response in the passband region. (c) Group delay response in theipassband reg
(wp =037, ws =047, M =12, N =5, K = 12).

then we can replace each pole outside the unit circle with its reherek is a real constant vector afflz (w) is a realM/ -dimen-
ciprocal conjugate pair. In [1], [2], Argenti and Del Re proposesional function of the form
an iterative equiripple eigenfilter technique to improve the mag-
nitude characteristic of the filter in this case, which was shown Hp(w) = Z b(n)t(w, n)
to work well through simulations. However, since we often de- neM
sire exact or approximate linear phase in practice, IIR eigenfithereN; is, like Ny, a subset (of finite cardinality) of the set of
ters have not been as widely used as their FIR counterparts.all M-D integer vectorsh(n) is a real sequence, an@v, n) is

a real function consisting of trigonometric functions (products
E. Multidimensional Eigenfilters of sines and cosines in particular). Note that if we impose some

The eigenfilter method can easily be extended to the mul§rt Of lexicographical ordering on the coefficientsigh) for

dimensional case. Nashashibi and Charalambous [18] were thg”) @ in (47) o(n) for H(w) as in (48), then we have

first to design multidimensional eigenfilters by considering the H(w) = hTe(w), Hr(w) = bTt(w) (49)
two-dimensional (2-D) case. Most, if not all, contributions re-

garding multidimensional eigenfilters have been for the 2-phereh, b, e(w), andt(w) consist of the respective elements
case and have come from Pei and Shyu [26], [30], [31], [35)f i(n), b(n), e™7* *, andt(w, n) for appropriaten arranged
although others have also considered this problem, includingaEcording to some order.

Chen [10], as well as H. Chen and Ford [8]. Here, we focus onlf the goal is to design a filter to approximate a desired
the generall/-dimensional case by generalizing the objectiveesponseD(w), then one approach is to choose the filter

(48)

functions (22) and (27). coefficients to minimize either
Suppose that we have an FIR-dimensional signah(n), N D(w) -2
wheren is anM-dimensional integer vector. By FIR, we mean & = —7 / (w) {D(w )HR(wo) — Hp(w)| dw (50)
. 0 i

thath(n) is only nonzero for a finite number of integer vectors
n. The frequency response hfn) is a functionH (w) of M if the desired response(w) is a real function, or alternatively

variables given by the following [49]: 2

A 1 / D(w)

) e = ——— W(w)| —H(wy) — Hw)| dw (51

Hw) = Z h(n)e‘”"Tn (47) & 2m)M [ (w) ‘ w (wo) (w) (51)
neNo if D(w) is complex. Note tha§, andé¢. are simplyM-dimen-

where\ is a subset of the set of alll-dimensional integer Sional extensions of the objectives (22) and (27) previously con-

vectors. HereN has finite cardinality and consists of thoséidered for the one-dimensional (1-D) case. Here, the region

integer vectors such that(n) is nonzero. Iff (w) has linear R in (50) is a subset of tha/-dimensional interval0, 7]/,

phase [49], then we have whereasR C [0,27]M in (51). Using the decompositions of
. Hp(w) and H (w) from (49), it can be shown that we get the
H(w) = ce ™% “Hp(w) equations shown at the bottom of the page. Hence, by imposing

¢ = bTP, b, whereP, 2 %/ W (w) [ D(@) o) — t(w)] [ D(@) 4oy — t(w)r dw
7T R
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Among the various applications where the eigenfilter method

o> ” I/I["N““““‘H \‘“\Q ‘ has been shown to be beneficial, the one in which it has had
‘ mﬂ"%’f&mgg\\!\“\ 05 the most impact tis in communic,:attions. With the azivent of

DMT systems such as the digital subscriber loop (DSL) [43] in
f,= 0 2n recent years, much attention has been given tcstigtening

of channels encountered in practice. For this problem, the
Fig. 10. Frequency response of a zero-phasex 12 circular low-pass €igenfilter method has been found to be very useful [17], [40],
eigenfilter. [5], [45]-[47]. Several such channel-shortening eigenfilters
have been shown to be nearly optimal in terms of observed bit
rate, which is the primary criterion of interest in DMT systems.

f1 = (u1/21t

a unit norm constraint obh or h, we can minimize,. or &, via

Rayleigh's principle as before. _In this section, we will focu_s on three applicgtiong of the
As an example, suppose thB{w) is a 2-D circularly sym- eigenfilter method. First, we will show how the eigenfilter ap-
metric low-pass filter of the form proach can be applied to the design of multistage IFIR filters.

Then, we show how the eigenfilter technique can be used for
1, wd + w? < (0.47)? spectral/spacial beamforming. Finally, we will focus on appli-
D(w) = 0, wi 4 w? > (0.6m)? cations in communications regarding the shortening of channels
don't care otherwise. for DMT systems.

T.he frequen_cy response ofa zerlo—phasa 112 (_aigenfilter de- A Multistage IFIR Eigenfilters
signed for this desired response is shown in Fig. 10. Here, equal
uniform weighing was used and the reference frequency was/Vhen designing linear-phase low-pass FIR filters, it can be
chosen to beyy = (0,0). As we can see, the eigenfilter methogshown, for fixed passband and stopband ripples sizes, that the
produced a good approximation to the desired response. filter order approximately varies inversely with the length of the
In addition to designing circularly symmetric filters, theransition band [49]. Namely, (=) is a linear-phase low-pass
eigenfilter method has been used to design a plethora of otfiker of order N, thenN « 1/Awy, whereAwpy 2 g — Wp-
multidimensional filters, most notably 2-D. Several of thesk the transition band length is relatively small, then designing
include fan filters, elliptical filters, and quadrantally symmetri@a single filter to accomodate the given specifications often be-
filters. An alternative method to design 2-D filters using a 1-Bomes cumbersome due to the large filter order required. Fur-
prototype with the McClellan transformation [15] has beethermore, as the filter order increases, design methods such as
considered by Pei and Shyu [31] as well as Chen and Ford [8he McClellan—Parks algorithm and the least-squares approach
become subject to numerical inaccuracies.
IV. APPLICATIONS OF THEEIGENFEILTER METHOD One simple way to overcome this problem is to implement the

) _single FIR filter as a cascade of two filters as shown in Fig. 11,
Thus far, we have only focused on the use of the eigenfiligg|ieq the IFIR filter implementation [19]. Herd, is a posi-

method to design single filters of various desired responsgge integer called the interpolation factor. The filtg(z) is de-
However, the eigenfilter approach has been found to be US@fﬂﬂned to be low pass with a passhand frequend.gf and a

in other applications as well. For example, it has been Usedstl@)pband frequency dfws (assuming thabs < (r/L)). As
design multistage IFIR [19] filters [9], arbitrary log magnitudesych, the expanded versi6ifz") consists of a desired low-pass
and phase response filters [34], as well as prototype filters fg6rtion with passband and stopband frequencieandws, as
uniform and nonuniform cosine-modulated filter banks [3], [4lvell as (L — 1) undesired bandpassiages[49] which occur
Eigenfilters have also been successfully employed for selésy virtue of the expansion. These images are suppressed via the
tive signal cancellation in acoustic environments [6], [7]. Theiter K (z), which is designed to be low-pass with passband fre-
eigenfilter technique has been shown useful for spectral/sprencyw, and stopband frequen¢gr/L) — ws.

tial selectivity, or beamforming, for antenna and microphone The advantage to implementirg(z) asG(z%)K(z) is that
arrays [10], [11]. Recently, in image processing, eigenfiltetae transition bands af(z) and K(z), denoted here bAwg
which satisfy the Nyquist constraint have been shown to b@d Awr, may be much larger thaAwy, thus transforming
suitable prototype filters for interpolation filters for image sizéhe problem of designing one filter with a high order into that
conversion [53]. of two filters with much smaller order. In particulabhwg =
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L(ws —wp) = LAwg andAwg = (2r/L) — (w, + ws), both
of which are larger thathwy assumingus < (7w/L). 0
In[9], Chen and Vaidyanathan showed how to design the filter 8 _oo
G(z) for the specifications of the original filtei (z) using the =
. . . . (]
eigenfilter method, assuming that the image suppreksa) ]
has already been designed. To properly describe their method, §'4°
we must introduce a few new quantities. Suppose #@ is <
some Type | linear-phase filter of ordér for some ever(). -60
Then m
-80

0.1 0.2 0.3 0.4 0.5
f=w/2r

Q
F(e/) = f(n)e " = 7702 Fp(w), | | -
0 Fig. 12. Magnitude response of a low-pass IFIR eigenfilter.

Q/2
where F(w) = Z $,, COS W consisting of the {/ + 1) identity matrix with (L — 1) rows of
= zeros inserted between each row. For example
't 0 0 - 07
. . 0 0 0 0
Using (8), we can express tkg's in terms of thef (n)'s. If f £ 01 0 0
[£(0) f(1) --- f(Q)]" is the vector of filter coefficients S, — |0 0 0 0
version off and we have Co .
L0 0 0 --- 1]

f=Dgs, s = Eqf (52)  Now note that the coefficients di(z) = GELHK(z) =

K(2)G'(z) can be expressed & = Kg’, whereK is the

whereDg andEg are, respectively, thg) + 1) x ((Q/2) + 1) Toeplitz convolution matrix

and((Q/2) +1) x (Q + 1) matrices (ko O -+ 0 ]
Ky ko 0
0o J '
1 Q/2 .
DQ—§ 2 0 |,Ep= [JO (1) IO } (53) K= |kr ki-1 ko
2 2 .
0 Iy Q/ Q/ 0 ko
wherel,; andJ; denote, respectively, the x M identity and L 0 0 oo kg

reversal matrices. With these definitions, we can now proceed to

; e : consisting of the coefficients of the predesigned filter
show how to desigit7(z) for the specifications off (z) using K(z) = S _ knz—". Hence, the folded version di,
the eigenfilter approach. n

namely the vectob, is given by the following:
Suppose that/(z) andK (z) are real Type 1 linear-phase fil-

ters of ordersM and.J. Then clearlyH (z) = G(z%)K(z) is b =Exh =EyKg' = EyKS;g = ExKS; Dy c.
also a Type 1 linear-phase filter of ord&r= LM + .J. Leth X

andg denote the vectors of coefficients Bf(z) andG(z), and  \wjith this. the objective functios from (16) becomes
denote the folded versions bfandg by b andc. Recall that

the original goal is to maké/ (=) a good low-pass narrowband (=b"Pb=c"X"PXc=c"Pec
filter. In [9], the authors considered choosififfz) using the 2

eigentfilter approach of Section Il. Namely, the folded version 14 ayoid trivial solutions, we subjeet to the usual unit norm
(the same vectob considered in Section Il) was chosen minizgnstrainte’c = 1. This shows that the eigenfilter problem

mize the objectivé = b”Pb with P is as in (16), subject to for the original (=) can be posed as an eigenfilter problem

the usual unit-norm conditioh”b = 1. It was shown that this o the model filterG(z). We should note that once the optimal
filter design problem could be posed as an eigenfilter probleminjg found, the resulting solution should be scaled so that
terms of the vectoe, the folded version of, as we now show. H(el%) = 1.

First note thay = D,,c using (52) and (53). Then note that As an example (taken from [9]), suppose we wish to design a
the coefficients of7(z~) are obtained by insertind/(— 1) con-  low-pass filter withw,, = 0.157 andws = 0.257 using the IFIR
secutive zeros between each coefficienG@t). As such, ifg’  eigenfilter approach. If we choose= 0.97, L = 2, M = 18,
denotes the vector of coefficients 6f(z) = G(z"), then we and.J = 6 (so thatN = 42), we obtain the magnitude response
haveg’ = Sy g, whereSy isthe(LM + 1) x (M + 1) matrix shown in Fig. 12. Here( (z) was chosen to be a low-pass filter
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with equal and maximal flatnessat= 0, = [49]. The resulting
response has a passband ripplé,p& 0.0641 and a stopband
ripple of 6s = 0.0105 (or —39.5449 dB). To obtain the same
specifications using a single eigenfilter would require an order
of 36 [9]. One advantage from using the IFIR approach comes
in the savings from implementing/(z) in the cascade form
G(z%)K(z). As G(z) and K (z) are linear phase of orders 18
and 6, we only requir€l8/2+ 1)+ (6/2+ 1) = 14 multipliers
and18 + 6 = 24 adders using the IFIR implementation [49].
In contrast, by using the single eigenfilter, we would require
(36/2 4+ 1) = 19 multipliers and 36 adders.

m-th sensor

B. Spectral/Spacial Beamforming

A common problem in array signal processing is that
of beamforming [13], ir_] Which a group of waves (such a‘I§|g. 13. Arc antenna array with delay lines.
electromagnetic or audio) impinge upon an array of sensors
(such as antennas or microphones) and the goal is to tune th~
output of these sensors to focus only on a specific set of wa\
corresponding to a certain temporal frequency arriving fro
a certain spacial direction. For example, if a radio station
transmitting a signal in an environment with reflective path ,,
between the transmitter and antenna array at the receiver, _
receiver may wish to focus only on waves near the carrier fr%
guency of the radio signal coming directly from the transmittez _,,
(following a path known as the line-of-sight path). It turnsg’
out that for delay-and-sum beamformers [13], such as the i

v i ”’II
array with delay lines that we shall soon consider, the proble _g III ’”II >
of steering the gain of the array to accept certain tempol %

i
frequencies and spacial directions while rejecting others

analogous to designing a filter to match a desired response. 0 s
a result, the eigenfilter approach can be applied to the probl 0 50 o1 2
of beamforming.
Chen was the first to consider using the eigenfilter method fp . 14.  Magnitude of the gain pattern of an arc array with delay lines.
the design of beamformers in [10]. In particular, he considere
the design of an arc array with delay lines shown in Fig. 13
The array consists af/ sensors that are placed along a circl
of radiusR. As can be seen in Fig. 13, theth sensor is at an
anglea,,, with respect to a certain reference point and has
delay lines attached to it. Each delay path is weighed by t
quantitywy, ; which is chosen at the receiver and used to ste
the beam or gain of the array to a desired response. Waves frg
a particular source impinging upon the array are assumed tod
in the far field and arrive at the array at an angléd as shown in
Fig. 13. The signals from the various sensors and delay paths are

combined to obtain a gain pattef(¥, ») given by the following Analogous to the multidimensional objective of (51), Chen
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f=wi2r

f the arc array, and’ is the length of the unit delay. If we
efine the weight vectow 2 [wo wi; --- wy_1]"
where the w;'s are simply the w,;'s arranged ac-

rding to some order and similarly define the vector
g%ﬁ,w) 2 [eiwno(®)  iwn(®) ... eiwrn-1()]T where the
)'s are just ther,, ;(#)’s arranged according to the same
er, then the gain pattern can be expressed as

f(x)= erb(x)7 where x = (0, w).

expression: chosew to make f(x) best approximate a desired gaifx)
M—1Ln—1 ' scaled by a factorf(x¢)/g(x0), wherex, is some reference
FOw) =" > wp, elrm® point. Namely;w was chosen to minimize
m=0 1=0
2
wherer,, () is the delay of théth tap of themth sensor due E= / f(x) — f(x0) g((x)) dx.
xeX g Xo

to wave propagation and taps given by [10]
Tt(6) = R [c0s 6 — cos(am — 0)] — T, As f(x) = wib(x), we clearly have
c

0<m<M-1,0<1<Ln-1 E:wTPw. where P

Here, c is the speed of the wave in the given medium (such
as the speed of light or the speed of sourid)is the radius

10060) ~ blxo) 42 | b)) £ f x.

JxeX
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Channel Blocking
\] W \|Cyclic Prefix—L Y & Guard \| W Al Ac N\ .
8(") == 1pFT 7] & Unblocking C) \“‘}'/ Interval [—7| DFT 7] FEQ 7 5
M x1 Mx1
Removal
n(n)
Noise
Ac is diagonal with
-~ 1 21k
A = — wpy=—,0<k<M-1
[ C] k,k C(egwk) k M - -
Fig. 15. Typical DMT system.
With the usual unit norm constraint an, the optimalw can be Channel Equalizer
found using Rayleigh'’s principle as before. z(n) C(2) @ H(z) y(n)
As an example (adapted from [10]), suppose that we have an
arc array with ten sensord/{ = 10), each attached with ten
delay taps L,,, = 10 for all m). Let theq,,, be chosen to be°Q
2°,4°,6°, 8,10, —2°, —5°, —8°, and—11°. Suppose that we n(n)
desire the response to be unity in the radge < § < 49° and Noise
0.47 < w < 0.87, whereas we desire zero gain feB° < 6 < Fig 16, Channellequalizer model.
3° for all w. In other wordsg(x) is given by ’
®
1, 41° < 9 <49°, 047 < w < 0.87 *
g(x) = {0 —3°<H<3°, Vw Caes(n) — @
don't care otherwise. Cres(n) — O

For the fictitious example in whick = 0.1,¢ = 1, andT, = 1,

the optimal gain pattern we obtain is shown in Fig. 14. AS Wecex(n)
can see, though the gain pattern takes on a wide range of valt ? T ? [l
in the “don’t care” regions, the gain in the regions of interes T ' ' ' ' i '

. . 0 A A+L;j—1 L.+L,—2
match closely with the desired response. | L, - | ! o
C. Channel-Shortening Eigenfilter Equalizers for Fig.17. Decomposition of the effective channg} () into a desired channel
DMT Systems caes(n) and residual channel.s(n).

A typical DMT system is shown in Fig. 15 [43]. Recently thischannel is a telephone wire line [43]. For example, in ADSL,
communications system has received much attention on accoliht= 512 and L. = 32 [43], although the channels are typically
of its low complexity and excellent performance compared twundreds of samples long. This suggests the need for an
traditional modem systems. Practical DMT systems such as #gpualizer at the receiver whichortenghe channel, as shown
asynchronous digital subscriber line (ADSL), have become varyFig. 16. Such an equalizer is typically called a time-domain
popular and have revolutionized telephone wireline commurggualizer or TEQ [43]. As the channel may have zeros near
cations. or outside the unit circle, the equalizéf(z) is usually not

Perhaps the most important feature of the DMT system ofiosen to exactly shorten the chan6¥k), as this may result
Fig. 15 is the inclusion of redundancy in the form ofyclic in spurious noise amplification. InsteaH,(z) is typically an
prefix of length L [43]. The beauty of this redundancy is that ifFIR filter chosen to concentrate the energy of the effective
can be shown that in the absence of noise, we have perfectaieannelC.¢(z) = H(z)C(z) in a window of lengthL, + 1.
construction, i.e$(n) = s(n), if the channel’(z) is of length 1) The Channel-Shortening ProblenBuppose that the
less than or equal tb + 1. Essentially, the DMT system is ablelength of the channel(n) is L. and that of the equalizér(n)
to equalize an FIR channel using only FIR components (namédyL.. Then, the effective channelg(n) = h(n) * ¢(n) is of
the blocking components along with the DFT matri8®sand lengthL.g = (L. + L. — 1). The goal is to shorten the channel
W1 as well as the frequency-domain equalizer). This is ontg a lengthL,; < L., i.e., to concentrate most of the energy of
possible because of the inherent redundancy. cof(n) to @ window of lengthZ;. We can decomposeg(n)

From a practical point of view, we want the cyclic prefixas a sum of two responses, namely a desired respgpge)
length L as small as possible, since it represents a redundamdyich is exactly of length’,;, and a residual responsg;(n)
which hinders the overall rate of the system by a factavhich consists of whatever remains @f;(n) after removing
M/(M + L). However, the channel may be very long, as ithe desired responsg.s(n). Thisisillustrated in Fig. 17. Here,
the case in practical DMT systems such as ADSL in which the is a delay parameter which satisfigsX A < Leg — Lq.



514 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—II: ANALOG AND DIGITAL SIGNAL PROCESSING, VOL. 50, NO. 9, SEPTEMBER 2003

Melsaet al.[17], chose the equalizer coefficients to minimizevhere A and B are Hermitian positive semidefinite matrices.
the energy of the residual resporgsg(n) subject to keeping the To show that the problem of (55) can be posed as a traditional
energy of the desired responsg;(n) at unity. As we now show, eigenfilter problem, we perform a Cholesky decompaosition of
this problem can be posed as an eigenfilter problem. Define tthe matrixB [12]. Assuming that the matriB is positive def-

following vectors and matrices: inite, then it admits a Cholesky-like decomposition of the form
[12]
h%[h( ) h(1) - h(Le—1)]" i B_ThT
ceﬂ:[ceﬂ(o) Ceff(l) e Ceﬂ(Leff - 1)]
Q) 0 ... 0 7 whereT is a squar@onsingulamatrix. If we define the vector
6(1) ¢(0) 0 v £ Th, so thath = T v, then ash varies over all nonzero
vectors,v will as well. Hence, the problem in (55) is equivalent
) ) to
C2|c(Le—1) e(L.—2) . c(0) ) ; ;
0 o(Le—1) " : Minimize E,.s =v Pv.:ubject tovlv =1,
A (m—1 -1
(Lo - 2) whereP = (T~!)" A (T7H).
L 0 0 (L. —1) ]

This problem (in terms of the vect®i) is in fact the eigenfilter

problem, which can be solved via Rayleigh’s principle as be-

fore. Once the optimat is found, the optimah is found using

h = T~!v. If the matrixB is strictly positive semidefinite, the
coq — Ch. (54) o_rigina}l optimization problem of (55) can still be poged as an

¢ eigenfilter problem [17]; however, the method by which this is

Now define the following vectorg .. andc,.., as well as the done is much more complicated.

windowing matricesW » and W A, as shown in the equation The method for channel shortening given in (55) is known

at the bottom of the page. Herey.. andc,e, are Leg x 1, a5 the maximum shortening signal-to-noise ratio (MSSNR)

Here, h, c.¢, and C are, respectivelyl.. x 1, L.g x 1, and
Leg X L.. By the convolutioneg(n) = h(n) x ¢(n)

whereasW » andW A areLog X Leg. Clearly, we have . " method [5], since it maximizes the shortening signal-to-noise
W acur = WaCh ande,e. = Wacus = WaCh, where we atio defined by
have used the convolution equation of (54). The energy of the n Eies
desired and residual responses, which we denote here, respec- SSNR = £
tively, by Fq.s and F..s, are simply the following: e
In Fig. 18, the impulse response of a typical channel encoun-
By 2 Z ldes(n descdcs —pt (CTWAC) h tered in a DMT system is shown, along with the equalized ef-
N , fective channel designed using the MSSNR method. Here, the
B channel is carrier-service area (CSA) loop # 1, a common sub-
E... Z leres(n) 2 =c_cres = b (CTWAC) h. scriber loop encountered in an ADSL system [43]. The channel
- 7 is of lengthL. = 512, the equalizer is of length 16, and the de-
A sired length id.; = 33 (corresponding to a cyclic prefix length

t of 32). Here, the optimal equalizer was calculated foraiin
Here we have used the fact th&% \Wa = Wa and therang® < A < 40 and the actual used was the one which

WZWA = W . Hence, the design problem considered byielded the largest SSNR. As can be seen, the effective channel
Melsa et al. [17] is tantamount to the following problem: appears to be “shortened” to the desired length. In this example,

the best equalizer occured whénwas 25 corresponding to a
Minimize Eye = h! Ah, subject to hfBh=1  (55) SSNR of 33.3312 dB.

Caes 2 [Cdes(0)  Caes(1) -+ Caes(Legt —1)]"
=[0 - 0 cer(A) cr(A+1) - ceg(A+Lg—1) 0 --- 0]"
Cros = [Cres(0)  Cres(1) - Cres(Les — )]
=leer(0) cer(l) - cor(A—=1) 0 - 0 cop(A+La) cot(A+Lg+1) - comp(Leg —1)]"
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— Equalized Channel fractionally spaced equalizers [45], [47] as well as for de-
signing channel-shortening equalizers for multiple-input
multiple-output (MIMO) channels [46]. In addition, the eigen-
) \k o _ filter method has been shown to appear in the design of certain
0 - 7 optimum compaction filters [51]. Current open problems in
filter bank theory include using the eigenfilter method to design

‘\ — Original Channel for channel shortening was extended for the design of
|

-0.5 FIR compaction filters, using IFIR eigenfilters as compaction
filters, and using the eigenfilter method to design optimal filter

-1 ] banks. As can be seen, on account of its numerous merits,
0 100 200 300 400 500 togethe_r with the_ myri_ad of design problems to which it can
n be applied, the eigenfilter method is and will continue to be a

versatile design algorithm.
Fig. 18. Impulse responses of the original chanrel) and the equalized
channelceg(n). (L. = 512, L. = 16, Ly = 33, A = 25, SSNR =
33.3312 dB). SELECTED REFERENCES BYTOPIC

o Early Works on Eigenfilters:
Several generalizations of the MSSNR method for channel[42] D. Slepian, 1978
shortening have been proposed recently. In [47], the author§sq) p, p. Vaidyanathan and T. Q. Nguyen, 1987

proposed a method to jointly shorten the channel and SUPPresg g] A. Nashashibi and C. Charalambous, 1988
the noise power observed after equalization, whereas in [45]{24] S. C. Pei and J. J. Shyu, 1988

a similar method was proposed requiring only one Cholesky

decomposition (i.e., the decomposition did not depend on theArbitrary Desired Response Eigenfilters:
delay parameted ). Recently, a novel eigenfilter method called [20] T. Q. Nguyen, 1991

the minimum intersymbol interference (min-1SI) method was [29] S. C. Pei and J. J. Shyu, 1993
proposed by Arslamt al. [5], which exploited the DMT sub-  [21] T. Q. Nguyen, 1993

chagnfels Whichhcann?t Ee used to in(]prove the DMT ChannelSAII-Pass Eigenfilters:

used for joint channel shortening and noise suppression. Sim: . S
ulation results have shown that these methods perform nearl;FA'] Tl Laakso, T Q. Nguyen, and R. D. Koilpillai, 1993
optimally in terms of observed bit rate (the primary figure of 159) S: C- Peiand J. J. Shyu, 1994

merit for DMT systems), especially the min-ISI method.  [22] T- Q- Nguyen, T. 1. Laakso, and R. D. Koilpillai, 1994
[55] X. Zhang and H. Iwakura, 1999

V. CONCLUDING REMARKS IIR Eigenfilters:

The eigenfilter method has been shown to possess severaftil J- J- Shyuand S. C. Pei, 1992
advantages over other traditional filter design methods. As op.32] S- C. Pei and J. J. Shyu, 1994
posed to the least-squares approach, which requires the compl] F- Argenti and E. Del Re, 1998
tation of a matrix inverse which may be susceptible to numer-[2] F- Argenti and E. Del Re, 1998
ical inaccuracies, the eigenfilter method has a much lower de{39]1 S. C. Pei, C. C. Hsu, and P. H. Wang, 2002
sign complexity and remains robust even when ill-conditioned y;itidimensional Eigenfilters:
matrices are present in the design problem. In contrast to the{lS] A. Nashashibi and C. Charalambous, 1988
McClellan—Parks algorithm, which is difficult to modify for cer- [26] S. C. Pei and J. J. Shyu, 1990
tain design criteria, the eigenfilter method can easily be modi- 30] S. C. Pei and J. J. Shyu, 1993
fied to satisfy a plethora of design constraints. Such advantage 10] T. Chen, 1993 '
when coupled together with the good performance of eigenfilter[31] S' C Pe’i and J. J. Shyu, 1993
method, make it an attractive method to use for filter design. [35] S. C. Pei and J' J' Sh u’ 1994
In addition to its numerous strengths, the eigenfilter method [8] H 'Ch'en and G E .Foréll i996
was shown to be useful in a variety of applications, since many' ’ T '
design problems can be posed as an eigenfilter problem. Hereapplications in Spectral/spacial Filtering or Beamforming:
the method was shown to be useful for designing model filters[10] T. Chen, 1993
for multistage IFIR filters, which are useful when narrow transi- [6] S. Bharitkar and C. Kyriakakis, 2000
tion bands are required. Also, the eigenfilter method was shown7] s. Bharitkar and C. Kyriakakis, 2001
to be applicable to the problem of spectral/spacial filtering or [11] S. Doclo and M. Moonen, 2002
beamforming for sensor arrays, in which we wish to focus on
temporal frequencies in a particular band arriving from a par- Applications in Channel-Shortening Equalizer Design:
ticular spacial direction. Finally, the method was found to be [17] P. J. W. Melsa, R. C. Younce, and C. E. Rohrs, 1996
useful for the design of channel-shortening equalizers, which[40] R. Schur and J. Speidel, 2001
are commonly needed in popular communications systems sucfp] G. Arslan, B. L. Evans, and S. Kiaei, 2001
as ADSL. [45] A. Tkacenko and P. P. Vaidyanathan, 2002
The eigenfilter method continues to find applications in [46] A. Tkacenko and P. P. Vaidyanathan, 2002
several areas of research. Recently, the eigenfilter method47] A. Tkacenko and P. P. Vaidyanathan, 2002
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