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Abstract—The eigenfilter method for digital filter design
involves the computation of filter coefficients as the eigenvector of
an appropriate Hermitian matrix. Because of its low complexity as
compared to other methods as well as its ability to incorporate var-
ious time and frequency-domain constraints easily, the eigenfilter
method has been found to be very useful. In this paper, we present
a review of the eigenfilter design method for a wide variety of
filters, including linear-phase finite impulse response (FIR) filters,
nonlinear-phase FIR filters, all-pass infinite impulse response
(IIR) filters, arbitrary response IIR filters, and multidimensional
filters. Also, we focus on applications of the eigenfilter method
in multistage filter design, spectral/spacial beamforming, and in
the design of channel-shortening equalizers for communications
applications.

Index Terms—Channel-shortening equalizers, constrained filter
design, eigenfilter, least-squares filter design.

I. INTRODUCTION

T HE EIGENFILTER design method for discrete time fil-
ters involves the determination of filter coefficients as

the eigenvector of a particular Hermitian positive definite (and
often real and symmetric) matrix. As opposed to other filter de-
sign algorithms such as the least-squares approach [48], which
requires the computation of a matrix inverse, the eigenfilter
method only requires the computation of a single eigenvector,
which can be found efficiently via the iterative power method
[49]. In addition to its inherently low design complexity, the
eigenfilter method can also incorporate a variety of time and
frequency-domain constraints into the design problem with rel-
ative ease, in contrast to other well known filter design methods
such as the McClellan–Parks algorithm [16]. Furthermore, be-
cause of the myriad of design problems that can be posed
as an eigenfilter problem, the method has been shown to be
useful for a variety of applications, ranging from spectral/spa-
cial filtering or beamforming to communications regarding the
design of channel-shortening equalizers for discrete multitone
(DMT) systems.

The notion of such a filter design technique was introduced
by Slepian in 1978 [42] in the context of the design of window
functions for the ideal low-pass filter response. Slepian consid-
ered the problem of designing a window with a minimum stop-
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band energy (subject to a unit norm constraint on the window
coefficients to avoid a trivial solution). It was found that the op-
timal window coefficients could be found from the eigenvector
of a real, symmetric, positive definite, Toeplitz matrix corre-
sponding to its smallest eigenvalue.

In 1987, Vaidyanathan and Nguyen [50] generalized
Slepian’s method for window design to the design of
linear-phase finite impulse response (FIR) filters and formally
introduced the eigenfilter design method. They generalized
Slepian’s method to account for both passband and stopband
conditions and showed how to design a variety of filters (mainly
low pass, high pass, and band pass) with various time- and
frequency-domain constraints, including the Nyquist constraint
and flatness constraints [49]. Numerous simulation results were
provided showing the power and usefulness of the eigenfilter
method.

Since then, various generalizations of the eigenfilter method
have been proposed. The design of linear-phase FIR Hilbert
transformers and arbitrary order digital differentiators was con-
sidered by Pei and Shyu in [24], [25], [28], [36]. More general
FIR design methods were considered by Nguyen as well as Pei
and Shyu, including the design of linear-phase filters with arbi-
trary amplitude response [20], the design of arbitrary complex
coefficient nonlinear-phase filters [27], [29], [21], and the de-
sign of th band nonlinear-phase filters by Wisutmethangoon
and Nguyen [52]. Multidimensional extensions to the eigenfilter
method (mostly two dimensional) were originally proposed by
Nashashibi and Charalambous [18] and later considered by Pei
and others [26], [30], [31], [35], [8]. The eigenfilter method has
even been used to design infinite impulse response (IIR) filters,
including all-pass filters [14], [41], [33], [22], [55], arbitrary
IIR filters using a time-domain [32] and a frequency-domain
approach [1], [2], and IIR filters with time and frequency-do-
main constraints [39]. Recently, eigenfilter methods for filters
with general linear constraints were proposed [37] along with
methods based on a total least-squares-error criterion [38], [54].

As many design problems can be posed as an eigenfilter
problem, the eigenfilter method has been found to be useful for
several applications. For example, it has been used to design
multistage interpolated FIR (IFIR) filters [9] as well as arbitrary
log magnitude and phase response filters [34]. In addition, it has
been used to develop prototype filters for pseudo-quadrature
mirror filter (pseudo-QMF) uniform and nonuniform cosine
modulated filter banks [3], [4]. The generalization of the eigen-
filter approach to solve general least-squares approximation
problems was proposed in [10]. Applications to spectral/spatial
filtering were also shown in [10] and more recently in [11].
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In addition, the eigenfilter method has been found useful for
cancelling selective signals in an acoustic environment [6],
[7]. Use of this method for image scaling or size conversion
was shown in [53]. Recently, the eigenfilter method has been
shown to be very important in communications, especially for
the design of channel-shortening equalizers in DMT systems
[43]. Melsa et al. [17] were the first to apply the eigenfilter
method to the problem of channel shortening. Since then, many
other eigenfilter based channel-shortening equalizers have
been proposed [40], [45]–[47], [5]. Several of these methods
have been found to perform nearly optimally in terms of the
observed bit rate.

A. Outline

This paper is organized as follows. In Section II, we give a
brief review of the early work on eigenfilters and focus mainly
on the work of Slepian [42] and Vaidyanathan and Nguyen [50].
Various generalizations of the eigenfilter approach for filter de-
sign are discussed in Section III. In Section IV, applications of
the eigenfilter method are considered, such as multistage filter
design, spectral/spacial beamforming, and channel shortening
for communications. Finally, concluding remarks are made in
Section V.

B. Notations

All notations are as in [49] unless mentioned otherwise.
In particular, ( ), ( ), and ( ) correspond, respectively, to
the conjugate, transpose, and conjugate transpose operations.
Vectors and matrices are in bold font with lowercase letters
corresponding to vectors and uppercase letters to matrices. The

th element of a vector will be denoted by , whereas the
th element of a matrix will be denoted by .

II. HISTORICAL BACKGROUND

A. Prolate Spheroidal Wave Sequences

A classical approach for designing FIR low-pass filters is the
windowing method [49], in which the impulse response of an
ideal low-pass filter is multiplied by a window function .
Typically, the window is also low-pass and it turns out that two
parameters of the frequency response of the window
most prominently affect the quality of the overall response [49].
As the main lobe width of increases, the transition band-
width of the windowed response likewise tends to get larger,
while as the peak sidelobe level of increases, the peak
passband and stopband ripples of the overall response also tend
to as well. To mitigate the sidelobe level effects of , in
[42], Slepian considered designing a real window of unit norm
for which the energy in the frequency region is
minimized, for some with . Such a window is
a discrete timeprolate spheroidal wave function, also called a
prolate spheroidal wave sequence[49]. Slepian showed that the
coefficients of a prolate spheroidal wave sequence could be ob-
tained from the eigenvector corresponding to the smallest eigen-
value of a real, symmetric, positive definite, Toeplitz matrix, as
we now show.

Suppose that is a real causal sequence of length
for some nonnegative integer. Then, the transform of ,

namely , is a real coefficient polynomial in of order
given by . The prolate spheroidal wave
sequence is the one that minimizes

(1)

subject to the unit norm constraint

(2)

If we define the following column vectors:

then and (as
is real). Using this in (1) yields

where (3)

As is clearly Hermitian, we can decomposeas
, where and are, respectively, real symmetric and anti-

symmetric matrices [12]. Then, asis real, we have
, and so from (3) we get

(4)

The th element of is given by

(5)

Clearly, is a Toeplitz matrix (as depends only on
), in addition to being real, symmetric, and positive definite

(as ) [12]. The unit norm constraint of (2) is equivalent
to the statement

(6)

Combining (4) and (6), the optimization problem can be posed
as follows:

Minimize subject to

As is Hermitian, it follows byRayleigh’s principle[12]
that the minimum value of is where is the smallest
eigenvalue of . Furthermore, this minimum value is achieved
if , where denotes a unit norm eigenvector of
corresponding to . (More generally, iff is any unit
norm vector in the eigenspace corresponding to. However,
for sake of clarity, we will ignore this scenario.)

The magnitude response of a prolate spheroidal wave se-
quence obtained using Rayleigh’s principle is shown in Fig. 1.
Here, we chose the order to be and the frequency
parameter as . As can be seen from Fig. 1, the window
exhibits a large attenuation near or and
most of the energy is concentrated in the region
as expected. Windows designed using the above method were
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Fig. 1. Magnitude response of a prolate spheroidal wave sequence (N = 32,
� = 0:2�).

shown to yield good windowed low-pass FIR filters. Slepian’s
approach for calculating such sequences paved the way for
more general filters to be designed via Rayleigh’s principle.

B. Transition From Optimal Windows to Eigenfilters

Although designing FIR filters using the window method is
easy, in general the resulting filters are not optimal in any sense,
even if the window is optimal in some sense. Furthermore, we
may be interested in filters other than low-pass filters, in which
case it is not immediately clear how to use the window method.

1) The Least-Squares Approach for FIR Filter De-
sign: Often, we would like the amplitude response of a real co-
efficient FIR filter to approximate a real desired response,
say , over a particular frequency region . To
prevent phase distortion, we constrain to have linear
phase. For simplicity, we will focus on Type 1 linear-phase
filters here, although other types can be used as well. In
this case, is of order , i.e., ,
where is even, and satisfies the symmetry condition

[49]. As such, is of the form
, where is the amplitude

responseof . Here, is of the form

(7)

where and is given by

.
(8)

One approach to get to approximate the desired response
over the region is to choose the coefficients to

minimize the mean-squared error between and ,
given by

(9)

This method for filter design is known as theleast-squares ap-
proach [48]. A slight generalization is to incorporate a non-

negative weighting function in (9), yielding a weighted
mean-squared-error measure

(10)

By defining the following vectors:

we have from (7), and it can be shown [48]
that the optimal coefficient vector which minimizes the ob-
jective function in (10) is given by

(11)

where is an matrix and is an
vector given by

This solution can be obtained by using the trick of completing
the square [12].

Though the filter coefficient vector from (11) is optimal
in the least-squares sense, its computation requires the calcu-
lation of a matrix inverse which is high in complexity and
subject to numerical inaccuracies. Several approaches have
been made to overcome these problems. In [23], Okudaet al.
proposed a recursive method based on constructing a set of
orthonormal functions. Their method was shown to be both
lower in complexity and less susceptible to numerical errors
than the conventional least-squares design method in that no
direct matrix inversion is involved. Despite these advantages,
their method suffers from the drawback that the actual filter
coefficients must be found from the coefficients of the or-
thonormal function expansion, which adds to the complexity
of the algorithm. In [50], Vaidyanathan and Nguyen suggested
the optimization of a different objective function which can
be expressed as a quadratic form in terms of the coefficient
vector . By subjecting to a unit norm constraint to avoid
trivial solutions, the resulting optimal can be obtained via
Rayleigh’s principle [12] in much the same way that prolate
spheroidal wave sequences are obtained [42].

C. Early Work on Eigenfilters: Low-Pass Eigenfilters

Vaidyanathan and Nguyen [50] introduced the notion of
an “eigenfilter,” namely a filter whose coefficients are the
components of an eigenvector, by first focusing on designing
a low-pass filter. They considered approximating a low-pass
filter with passband frequency and stopband frequency ,
whose desired response is

don't care,
(12)

To approximate as in (12), two quantities were consid-
ered in [50], a stopband error measureand a passband error
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measure . For the stopband error , the mean-squared error
of (9) was used, given by

(13)

where is a real, symmetric, positive definte matrix given by

Unlike the stopband error measure, if the mean-squared error of
(9) for the passband error is used, the resulting expression will
not be in the form of a quadratic form in terms of the vector. To
bypass this dilemma, a reference frequency was introduced into
the design problem and the passband error measure was taken
to be the deviation of the amplitude response from its value at
the reference frequency. In particular, for, the deviation of

from its value at the reference frequency was
measured. As , where is an vector
of all 1’s, was chosen to be

(14)

where is a real, symmetric, positive definite matrix given by

To jointly minimize both and , the authors in [50] con-
sidered minimizing a convex combination [12] of the two. In
particular, the vector was chosen to minimize

(15)

where is a tradeoff parameter between stopband and passband
performances. In light of (13) and (14),in (15) can be ex-
pressed as follows:

where (16)

Note that the matrix is itself a real, symmetric, positive def-
inite matrix since . If we impose that has unit
norm, i.e., , to avoid trivial solutions, then the optimal

which minimizes in (16) is simply the eigenvector corre-
sponding to the minimum eigenvalue of by Rayleigh’s
principle [12].

As opposed to the least-squares approach for filter design
which requires the computation of a matrix inverse as can be
seen from (11), the eigenfilter method only requires the com-
putation of a single eigenvector of a Hermitian positive definite
matrix. This eigenvector can be calculated efficiently using the
iterative power method [12], [49]. The power method, which is
formally used to calculate the largest eigenvalue of a Hermitian
positive semidefinite matrix and its corresponding eigenvector,
is known to converge quickly when the largest eigenvalue is
much larger in magnitude than the next largest eigenvalue. In

Fig. 2. Magnitude responses obtained using the least-squares approach along
with the eigenfilter approach. (! = 0:3�,! = 0:35�,N = 24,W (!) = 1,
� = 1=2).

such cases, the complexity of the eigenfilter method is much
less than that of the least-squares approach.

In Fig. 2, the magnitude responses using the eigenfilter
method as well as the least-squares approach are plotted for
a low-pass filter with and . Here, the
filter order was chosen to be and equal weighing
was used for both the passband and stopband (i.e., we chose

for the least-squares approach and for the
eigenfilter method). The eigenfilter was rescaled to have unity
gain at . From the plots, it can be seen that the eigenfilter
is very similar to the least-squares filter, although the former
performs slightly worse in some parts of the stopband. As
increases, the two responses become more and more alike.
The close agreement between the least-squares approach and
the eigenfilter method, along with the lower complexity of the
latter, show the merits of the eigenfilter method.

As mentioned earlier, the tradeoff parametercontrols the
performances of the passband and stopband. When , most
of the design emphasis is on the stopband, and consequently the
stopband ripple sizes are smaller than for other values of. A
similar scenario holds for the passband when .

In addition to designing low-pass filters using the eigenfilter
approach, the authors in [50] also showed how to design band-
pass and multiband filters with the introduction of different ref-
erence frequencies.

1) Incorporating Time- and Frequency-Domain Con-
straints: Another advantage of the eigenfilter method shown
by Vaidyanathan and Nguyen is the ease with which certain
time and frequency-domain constraints can be accounted for
in the design. In particular, they focused on the time-domain
Nyquist constraint [49] and also a frequency-domain flatness
constraint. It was shown that even with such constraints, the
resulting filter coefficients could be found using the eigenfilter
technique.

In [50], the authors first considered the Nyquist constraint.
The causal FIR filter of order we have focused on
thus far is said to satisfy the Nyquist constraint [or said to be
Nyquist ( )] if [49], [50]

(17)

where is some positive integer and is some constant. In
other words, the advanced response be-
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comes an impulse after being decimated by[49]. Using (8),
the coefficients must satisfy

As such, the coefficient vector is of the form in (18), shown
at the bottom of the page. From (16) and (18), it is apparent that
the rows and columns of whose indices are nonzero multiples
of do not contribute to the overall error . Hence,

can be rewritten as

where is simply the vector of (18) with the zeros removed,
as shown in the second equation at the bottom of the page and

is the matrix obtained by removing the rows and columns of
whose indices are nonzero multiples of. From (18), the

constraint is equivalent to . Thus, the design
problem is to minimize subject to , which
is the traditional eigenfilter problem, but with the smaller matrix

.
In addition to showing how the Nyquist constraint could be

incorporated in the design of eigenfilters, it was also shown how
to incorporate flatness constraints in the frequency domain. By
definition [49], a frequency response is said to have a
degree of flatness of at the frequency if we have

(19)

For simplicity, the authors in [50] focused on a flatness
constraint at and later showed how to accomodate for
any arbitrary frequency . Recall that from (7) is
an expansion in terms of the functions . Alter-
natively, can be expressed in terms of the functions

, yielding the expansion

(20)

With this expansion, it can easily be shown that the flatness
constraints of (19) are satisfied for ,

, and iff for . Thus, if
for , then has a degree of flatness
at . Assuming this to be the case, then by defining the
following vectors:

(21)

we have . Note that the vector is completely
arbitrary and that the flatness constraint is automatically satis-
fied by construction. In this case, the objective function from

(15) takes on the form , where is as in (16) but
with and , given by

where . Under the unit norm con-
straint , can be minimized using Rayleigh’s principle
as before. To generalize this approach to have a degree
of flatness at any arbitrary frequency, we need only expand

in terms of the functions .
2) Iterative Eigenfilter Method for the Design of Equiripple

Filters: The McClellan–Parks algorithm [16], which mini-
mizes the norm of the response error, is widely used for
equiripple filter design on account of its rapid convergence
and good performance. However, incorporating time- and
frequency-domain constraints into the design, such as those
from above, is often very difficult. The relative ease with which
the eigenfilter method can accomodate such constraints was the
primary motivation for Vaidyanathan and Nguyen to develop an
iterative eigenfilter technique for designing equiripple filters.

To formulate an iterative technique, the authors in [50] intro-
duced a weight function for the passband and stopband
error measures of (14) and (13), respectively, given by

where and . For uni-
form weighting (i.e., ), the errors and
were observed to be large near the band edges and smaller away
from them. As and are not knowna priori, an iter-
ative procedure to identify the appropriate was suggested
based on the above observation. If and denote
the passband and stopband error curves after theth iteration,
the weighting function for the th iteration was chosen as

with the initialization . Here, either and
or their envelopes can be used. The iteration is car-

ried out until the magnitude of the difference in the solutions
is smaller than a prescribed small constant. In other words, the
iteration is carried out until .

In Fig. 3, we have plotted the magnitude response of an
equiripple filter designed using the iterative eigenfilter method
along with that obtained by the Remez exchange algorithm
used in the McClellan–Parks program. To compare both
methods, we designed a low-pass filter without any time or
frequency-domain constraints, as the McClellan-Parks algo-
rithm is incapable of incorporating them. Here,

(18)
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Fig. 3. Magnitude response of equiripple filters designed using the eigenfilter
and Remez exchange algorithms. (a) Magnitude response plot on a decibel scale.
(b) Passband details using a nondecibel scale.

and , and we chose for both methods.
For the eigenfilter method, we chose . A decibel plot
of the magnitude response is shown in Fig. 3(a), while the
passband details are shown in Fig. 3(b) on an nondecibel scale.
From Fig. 3(a), we see that both methods are in excellent
agreement. The eigenfilter is only approximately equiripple
since the reference frequency condition at prevents
this frequency from being an extremal frequency. As such, the
eigenfilter exhibits a larger, albeit only slightly larger, error
than the filter designed using the Remez exchange algorithm.
Using the methods of the previous subsection, we can create
approximately equiripple eigenfilters that satisfy certain time
and frequency-domain constraints.

III. GENERALIZATIONS OF THEEIGENFILTER METHOD

Since the work of Vaidyanathan and Nguyen [50], many gen-
eralizations have been made to the eigenfilter method. In this
section, we will focus on several such extensions, including
using the eigenfilter method to design arbitrary amplitude and
frequency response filters and incorporating general linear con-
straints into the design. In addition, we will review a recent
eigenfilter method based on a total least-squares-error criterion.
Then, we will show how the eigenfilter method can be used to

design IIR filters including all-pass filters. Finally, we will focus
on designing multidimensional FIR filters using the eigenfilter
method.

A. Arbitrary Desired Response Eigenfilters

Nguyen originally considered the problem of using the eigen-
filter method to approximate an arbitrary real desired amplitude
response using linear-phase FIR filters [20]. Later, the
method was generalized to approximating a general complex de-
sired response with a complex coefficient FIR filter [21],
[29]. Here, we present the methods of [20], as well as those of
[29].

1) Arbitrary Amplitude Response Case:In order to approx-
imate any real desired amplitude response with a linear-
phase FIR filter using the eigenfilter method, Nguyen [20]
considered modifying the least-squares-error criterion (9) by
incorporatinga reference frequencyatwhich theFIR filterampli-
tude response would exactly match . More specif-
ically, Nguyen considered minimizing the objective function

(22)

(In [20], Nguyen considered the special case , but
here we include an arbitrary for sake of generality.) Here,

is the reference frequency which is chosen by the designer.
Note that the error function is chosen by construction to be
zero at . In [20], was chosen to be

(23)

where denotes the boundary of the region, whereas in
[21], was chosen to be

(24)

Pei and Shyu [29] showed through a design example that the
choice of had a noticable effect on the overall performance
of the resulting filter. From their simulations, it could be seen
heuristically that choosing where was large in magni-
tude yielded better results, thus justifying the choices ofsug-
gested by Nguyen in (23) and (24). Using the fact that

, it can be shown from (22) that we have the equa-
tion shown at the bottom of the page. As before, the matrix

is a real, symmetric, positive definite matrix. With the usual
unit norm constraint on , the optimal coefficients
for can be obtained using the eigenfilter method as be-
fore. It should be noted that after the optimalis found, the
solution must be scaled in order to satisfy the reference fre-
quency condition that , which is equivalent
to .
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2) Arbitrary Desired Response Case:Nguyen as well as Pei
and Shyu independently developed different methods to design
a complex coefficient FIR filter to approximate a generally com-
plex valued desired response using the eigenfilter method [29],
[21]. Here, we present the method of Pei and Shyu [29].

Let be a causal FIR filter of length , so that
. Defining the vectors

(25)

we clearly have . To develop an eigenfilter-
based method for approximating a complex valued desired re-
sponse , Pei and Shyu considered modifying the following
least-squares objective function,

(26)

in order to express it as a quadratic form in terms of the vector.
(In [29], the authors did not include the weight function
or the constant in their analysis. We have decided to in-
clude both quantities for sake of completeness.) The frequency
region is now a subset of the interval and the desired
response is allowed to be complex. Similarly to what was
done in the previous section, to pose the design problem as an
eigenfilter problem, Pei and Shyu modified (26) to incorporate
a reference frequency at which the frequency response of the
filter would match the desired response. In particular, they con-
sidered minimizing the objective

(27)

subject to the unit norm constraint . Using
, it can be shown that we have the equation shown at

the bottom of the page. Here, the matrix is a com-
plex-valued Hermitian, positive definite matrix. Under the unit
norm constraint , the optimal filter coefficients can be
found using Rayleigh’s principle, which applies for any Her-
mitian matrix, be it real or complex. After obtaining the optimal
coefficients, the resulting filter must be scaled in order to satisfy
the reference frequency condition

. In [21], Nguyen solved the same problem, but decou-
pled into real and imaginary parts and then expressed the
objective as a quadratic form in terms of the vector of real and
imaginary parts of . Whereas Pei and Shyu’s method in-
volved an complex matrix, Nguyen’s method involved
a real matrix.

As an example, suppose that the magnitude and group delay
of the desired response are as shown in Fig. 4(a) and (b),
respectively. (This example was considered by Nguyen [21].)
Recall that the group delay is the negative of the deriva-
tive of the phase with respect to [49]. Namely, if

Fig. 4. (a) Desired magnitude response. (b) Desired group delay response.

, then . With a filter length
of , a reference frequency of , and uni-
form weighting, the resulting eigenfilter magnitude and group
delay responses are shown in Fig. 5(a) and (b). As we can see,
the eigenfilter designed here yielded a good fit to the desired re-
sponse in the frequency regions of interest.

B. Incorporating General Linear Constraints Using the
Eigenfilter Approach

Often times in the design of FIR filters, it is desired that
the filter coefficients satisfy a general linear constraint. For ex-
ample, if we consider the complex coefficient FIR filter from
Section III-A-2, suppose that in addition to choosing to
approximate , we would like as well as its first
derivatives to match those of at some reference frequency

. Namely, we wish to choose to satisfy

(28)

Note that this is similar to the flatness constraints of (19) con-
sidered in Section II-C-1. As we have

, the constraints in (28) can be rewritten in the form

(29)
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Fig. 5. (a) Magnitude response of the complex eigenfilter. (b) Group delay
response. (N = 50, ! = 0:85�).

where is a matrix and is a column
vector given by

...
...

Note that the constraint equation in (29) is linear with respect to
the coefficient vector . Incorporating general linear constraints
as in (29) using the eigenfilter approach was first considered by
Chen [10] for the special case where and later generalized
by Peiet al. [37] for . We present the results of [37].

Recall that for the complex case, the eigenfilter problem is
typically formulated as follows:

Minimize subject to

where is some Hermitian matrix. It should be noted that the
constraint here is really just included to prevent trivial solu-
tions from occuring. Typically after the optimalis found, the
true coefficient vector that we use is the optimal scaled
by a factor in order to satisfy the reference frequency condi-
tion. In other words, we use , where is chosen
such that we have (which implies

). By expressing as a Rayleigh quotient

[12] in terms of the true coefficient vector, the design problem
becomes

Minimize

over all nonzero vectors. By Rayleigh’s principle, the min-
imum value of is the smallest eigenvalue of which occurs
iff is in the eigenspace corresponding to. Note that here the
length of is arbitrary. In the eigenfilter design problem, the
length of is then chosen to satisfy the condition

(30)

If must satisfy linear constraints of the form given in (29), the
design problem becomes

Minimize subject to

To solve this optimization problem, Pei, Tseng, and Yang [37]
used the equivalent form of the reference frequency condition
of (30) to express the linear constraint equation in a
more simplified form. Using (30), the linear constraint equation
can be expressed as follows:

where

Hence, the filter design problem becomes

Minimize subject to

The key to solving this constrained minimization problem is to
note that iff lies in the null space of [12]. Any such

can be expressed as , where is a rectangular unitary
matrix (i.e., ) whose columns form an orthonormal
basis for the null space of and is any arbitrary vector [12].
With this decomposition of , the design problem becomes

Minimize where

over all nonzero vectors. As is clearly Hermitian, we can use
Rayleigh’s principle to find the optimal and then use
to find the optimal . Here, the length of must be chosen to
satisfy the reference frequency condition of (30). Simulation
results in [37] using the derivative constraints of (28) showed
the usefulness of this eigenfilter technique for designing filters
with generalized linear constraints.

C. Eigenfilter Method Based on a Total Least-Squares-Error
Criterion

Most eigenfilter techniques arose by altering the
least-squares-error criterion of (10) or (26) in order to ex-
press it as a quadratic form in terms of the filter coefficient
vector. As mentioned earlier, this was done by introducing
a reference frequency condition into the objective. Recently
[38], Pei and Tseng suggested a novel modification to the
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least-squares objective based on atotal least-squareserror
criterion. The resulting objective is still in the form of a
Rayleigh quotient in terms of the filter coefficient vector, and
so the optimal vector can be found using Rayleigh’s principle
as before. One advantage of the total least-squares eigenfilter
objective over the traditional ones of (22) and (27) is that the
former does not require a reference frequency. Another advan-
tage is that for low filter orders, this method has been shown
through simulations to come closer to the desired least-squares
solution than the conventional eigenfilter method. In addition,
for high filter orders, it has been shown to be less susceptible
to numerical inaccuracies than the traditional least-squares
method which requires matrix inversion.

To properly introduce the total least-square eigenfilter
method, we first briefly review the principle of total
least-squares. A more thorough description of this prin-
ciple is provided in [44, pp. 533–535]. In many typical linear
modeling problems, given a set of data in the form of a
matrix , a linear model of the form (where is an
vector) is formed to best approximate a desired vector

in some sense. For the traditional least-squares method,is
chosen to minimize the squared magnitude of the error

(31)

Namely, is chosen to minimize . An implicit as-
sumption \bfrom the second equation in (31) is that the error is
associated with the desired vector. In the total least-squares
method, an error is not only associated with the desired vector

, but also with the data matrix . If is a matrix repre-
senting the error in the matrix , then the error equation \bfrom
(31) becomes

(32)

For the total least-squares method, the vectoris chosen to
minimize the “total” error in both and . In particular, is
chosen to minimize the objective

where (33)

The matrix represents the error in both the data
and desired response. From (32), we get

where and

It can be shown [44], that the minimum value of in (33)
is , where is the smallest eigenvalue of . Further-
more, iff , where is any vector in the
eigenspace corresponding to, and is a constant chosen to
make the last component ofequal (assuming that such a
constant exists). Because of this, from Rayleigh’s principle, an
alternative total least-squares-error criterion can be chosen as

where (34)

There is an interesting geometric interpretation between the
total least-squares objective \bfrom (34) and the least-
squares objective , where is as in (31). First note

Fig. 6. Geometric interpretation of the least-squares and total least-squares
problem.

that it can easily be shown that . If we define
and , then clearly we have

(35)

If is defined as the linear approximation to, i.e., ,
then represents the length of the path , whereas
represents the minimum distance betweenand the hyperplane

, the path of which lies in a direction normal to the hyper-
plane. These paths are always separated by an angle of\bfrom
each other, where . This is shown \bfor
the one-dimensional case in Fig. 6.

To derive the total least-squares eigenfilter objective function,
consider the complex least-squares-error criterion of (26). Note
that it is of the form

(36)

(In [38], Pei and Tseng analyzed the real least-squares-error
criterion of (10). We have opted to focus on the complex
least-squares criterion for sake of generality and notational
uniformity.) Note that is essentially the same quantity

analyzed above, the only difference being that it depends on
the variable . From (35) and (36), it is clear that an appropriate
total least-squares-error criterion is given as follows:

(37)

Using (36), (37) becomes

which can be expressed in the form

(38)
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Fig. 7. (a) Magnitude responses of several low order low-pass filters. (N =

32, ! = 0:2�, ! = 0:3�) (b) Magnitude responses of several high order
low-pass filters. (N = 148, ! = 0:25�, ! = 0:4�).

Here, is an matrix of the form

(39)

where , , and are, respectively, the , , and
1 1 quantities

Thus, we have expressed as a Rayleigh quotient in terms
of the vector . Note the similarities between the matrixfrom
(39) and that from (34). By Rayleigh’s principle, we can find the
optimum and thus . To obtain the proper , we must scale
the optimum to satisfy (38).

The merits of the total least-squares eigenfilter method
are best seen via simulations. Following an example from
Pei and Tseng [38], in Fig. 7(a) and (b), we have plotted
the magnitude response of several low-pass filters designed
using the traditional least-squares method, the conventional
eigenfilter method (which requires a reference frequency), and
the total least-squares eigenfilter method. The filters shown in
Fig. 7(a) are low order with parameters , ,
and . For the conventional eigenfilter method, the

reference frequency was chosen to be . Though difficult
to see, the total least-squares eigenfilter is noticably closer to
the optimal least-squares filter than the conventional eigenfilter.
In fact, it is indistinguishable from the least-squares filter.
Furthermore, the design complexity of the total least-squares
eigenfilter is much less than that of the least-squares filter,
which requires matrix inversion. The filters in Fig. 7(b) are
high order with , , and
( ). It can be observed that both eigenfilter methods
performed about the same, whereas the least-squares filter
yielded a poor response. The reason for this is that the matrix
which needed to be inverted for the least-squares method was
extremely ill-conditioned. For this example, the condition
number was 1.7012 . Both eigenfilter methods, as they
do not require matrix inversion, are much less susceptible to
numerical inaccuracies caused by ill-conditioned matrices than
filters designed using the least-squares method. This example
serves to show the merits of the total least-squares eigenfilter
method for both low order filters as well as high order ones.
An extension of the total least-squares method was recently
proposed by Zhang and Chen [54] which asymptotically
approaches the conventional least-squares solution.

D. Designing IIR Filters Using the Eigenfilter Method

1) Design of All-Pass Filters:Thus far, we only focused
on designing FIR filters using the eigenfilter method. Several
methods for designing IIR filters have also been considered in
the literature. The first to consider this problem were Laakso
et al. [14] for the design of all-pass phase compensators. Pei
and Shyu [33], as well as Nguyenet al. [22], later suggested
alternative design methods for these filters. Recently, Zhang
and Iwakura [55] considered the design of phase equiripple
all-pass filters based on an eigenfilter method. They showed
that the optimality criterion for the phase error in the Chebyshev
sense could be posed as a generalized eigenvalue problem and
proposed an iterative eigenfilter method to design equiripple
phase responses. Here, we focus on the method of Pei and Shyu
in [33], which is optimal with respect to its error criterion,
which is a modification of the phase error norm. In contrast,
the methods proposed in [14] and [22] are only approximations
to the phase error norm.

The transfer function of a causalth order all-pass function
is of the form [49]

where

and

Here, we will focus on real coefficient all-pass functions for
which is real for all . In this case, is of the form

. By construction, the frequency re-
sponse of is of unit magnitude, i.e., . Hence,
the only design freedom present is in the selection of the phase
of . The phase of , which we denote here by

, is of the form

(40)
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where is the phase of given by

(41)

Let and denote the desired phase
responses for the all-pass filter and its corre-
sponding denomiator polynomial . From (40), we
have . Pei and Shyu [33]
considered choosing to match , which can be
obtained from using the above formula.

In obtaining a criterion to choose the coefficients of the poly-
nomial , Pei and Shyu noted that if was approxi-
mately equal to , then heuristically we would have

Equivalently, we would have, using (41)

Defining the vectors shown at the bottom of the page, then we
would have approximately for all . To choose to
ensure this condition as best as possible, Pei and Shyu [33] con-
sidered minimizing a mean-squared-error measure of the form

subject to a unit norm constraint on(namely ). Since
the “desired response” of is 0, the error metric can be
expressed as a quadratic form in terms of. In particular, we
have

(42)

and so the optimal denominator coefficient vectorcan be
found using Rayleigh’s principle as before.

One problem with designing IIR filters not present when de-
signing FIR filters is that of stability [49]. In order to have a
causal, stable transfer function, all of its poles must lie inside the
unit circle. In general, this constraint is very difficult to enforce.
However, for all-pass filters, often times it is possible to obtain
stable solutions by imposing constraints on the desired phase re-
sponse . The phase of a real coefficient all-pass filter

with poles inside the unit circle and poles out-
side the unit circle satisfies [22]

Hence, for a stable all-pass filter of order, we have

(43)

where is the group delay of . It was observed by
Pei and Shyu [33], as well as by Nguyenet al.[22], that by con-
straining the desired group delay response to satisfy
(43), often times stable all-pass filters would be obtained. How-
ever, enforcing (43) for does not guarantee stability.

Following an example considered by Pei and Shyu in [33],
suppose that the desired phase response is

.
(44)

It can be verified that in (44) satisfies (43) for
. From this, it can be inferred that an all-pass filter of order

70 would be best suited to approximate as in (44). In
[33], the authors designed such an all-pass filter using the eigen-
filter objective of (42), in which the weighing function
was chosen as

otherwise.

(45)

It should be noted that choosing as in (45) introduces
two transition bands into the design, namely ( ) and
( ), which were found necessary to yield a good
phase approximation for the rest of the frequency region of
interest. In Fig. 8(a), the group delay of the 70th-order all-pass
eigenfilter designed using the above parameters is shown,
whereas in Fig. 8(b), the phase error has
been plotted. From both plots, we can see that the eigenfilter
method yielded a good approximation to the desired phase.
For the eigenfilter designed here, the pole farthest away from
the origin had magnitude 0.9262, and so the filter is stable.
Despite the fact that in this example we have stability, it should
be stressed that an all-pass filter designed using the eigenfilter
method need not be stable, even if satisfies (43).

2) Design of Arbitrary IIR Filters: Pei and Shyu [32], [41],
[39], as well as Argenti and Del Re [1], [2] proposed different
methods to design arbitrary IIR filters using the eigenfilter ap-
proach. In [41], Shyu and Pei proposed a method for designing
multiband IIR filters using sums and differences of all-pass fil-
ters. The all-pass filter coefficients were found using a method
similar to that described in the previous subsection. In [32], the
authors proposed a time-domain method to approximate a de-
sired impulse response , which need not be causal. How-
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Fig. 8. (a) Group delay response of the all-pass eigenfilter. (b) Phase error
� (!) � � (!). [N = 70,W (!) as in (45)].

ever, to get good performance, computations must be performed
on matrices of very large sizes (in [32], matrices of size 512
were used). Furthermore, there is no guarantee that the resulting
filter will be stable. In [39], Pei and Shyu considered the de-
sign of special classes of IIR eigenfilters satisfying certain time
and frequency-domain constraints. Recently, Argenti and Del
Re [1], [2] proposed an IIR eigenfilter design method using a
frequency-domain approach which we present here.

Suppose that we have a causal IIR filter of the form

where and

Instead of choosing and to minimize the usual
weighted mean-squared-error criterion of (26), which is diffi-
cult to do, the authors of [1] and [2] proposed choosing them to
minimize the following error measure:

where (46)

Heuristically, can be argued to be a valid error crite-
rion, since if , then we should also have

and conversely. The advantage
here is that can be expressed as a quadratic form in terms
of the polynomial coefficients, as we now show.

Define the following vectors:

It should be noted that here we define the vector
vector for any nonnegative integer. Clearly, we have

and . As such,
from (46) is simply

Let us now define the following vectorobtained by concate-
nating and :

Then we have

Using this in (46), we have

and hence is a quadratic form in terms of the vector of
numerator and denominator coefficients. By subjectingto the
usual unit norm condition , the optimal is obtained
using Rayleigh’s principle.

As an example, suppose that the desired response is a
low-pass filter with passband frequency and stopband
frequency that has been delayed by for some .
Namely, suppose that is

don't care .

Suppose that and . If we choose
, , and , the resulting magnitude, phase,

and group delay plots of the IIR eigenfilter are shown in
Fig. 9(a)–(c), respectively. The phase and group delay are only
plotted for the passband region, where we desire linear phase.
From the plots, we see that the IIR eigenfilter has a relatively
good magnitude response with a peak passband ripple size of
about 0.08 and stopband attenuation of about 60 dB, as well as
very approximately linear phase in the passband region. The de-
viation of the phase from linearity is best seen from the group
delay plot of Fig. 9(c). From this, we see that the phase becomes
less linear as we approach the passband frequency. Despite
this, the fluctuations in the group delay in the passband are not-
icably less than those of elliptic and Chebyshev filters designed
for the above observed passband and stopband ripple character-
istics. To obtain this kind of performance with a linear-phase
FIR filter, the filter order would have to be much larger than
the ones used here, showing the merit of the designed IIR filter.
However, it should be noted that the results are very sensitive
to the choices of , , and . Many choices yielded a poor
response either in the magnitude or phase (or both) and many
choices yielded an unstable filter. Here, the pole of far-
thest away from the origin had magnitude 0.9334 and so
is stable. If we are not interested in the phase of and we
obtain an unstable filter with an adequate magnitude response,
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Fig. 9. (a) Magnitude response of the IIR low-pass eigenfilter. (b) Phase response in the passband region. (c) Group delay response in the passband region.
(! = 0:3�, ! = 0:4�, M = 12,N = 5,K = 12).

then we can replace each pole outside the unit circle with its re-
ciprocal conjugate pair. In [1], [2], Argenti and Del Re proposed
an iterative equiripple eigenfilter technique to improve the mag-
nitude characteristic of the filter in this case, which was shown
to work well through simulations. However, since we often de-
sire exact or approximate linear phase in practice, IIR eigenfil-
ters have not been as widely used as their FIR counterparts.

E. Multidimensional Eigenfilters

The eigenfilter method can easily be extended to the multi-
dimensional case. Nashashibi and Charalambous [18] were the
first to design multidimensional eigenfilters by considering the
two-dimensional (2-D) case. Most, if not all, contributions re-
garding multidimensional eigenfilters have been for the 2-D
case and have come from Pei and Shyu [26], [30], [31], [35],
although others have also considered this problem, including T.
Chen [10], as well as H. Chen and Ford [8]. Here, we focus on
the general -dimensional case by generalizing the objective
functions (22) and (27).

Suppose that we have an FIR-dimensional signal ,
where is an -dimensional integer vector. By FIR, we mean
that is only nonzero for a finite number of integer vectors

. The frequency response of is a function of
variables given by the following [49]:

(47)

where is a subset of the set of all -dimensional integer
vectors. Here, has finite cardinality and consists of those
integer vectors such that is nonzero. If has linear
phase [49], then we have

where is a real constant vector and is a real -dimen-
sional function of the form

(48)

where is, like , a subset (of finite cardinality) of the set of
all -D integer vectors, is a real sequence, and is
a real function consisting of trigonometric functions (products
of sines and cosines in particular). Note that if we impose some
sort of lexicographical ordering on the coefficients of for

as in (47) or for as in (48), then we have

(49)

where , , , and consist of the respective elements
of , , , and for appropriate arranged
according to some order.

If the goal is to design a filter to approximate a desired
response , then one approach is to choose the filter
coefficients to minimize either

(50)

if the desired response is a real function, or alternatively

(51)

if is complex. Note that and are simply -dimen-
sional extensions of the objectives (22) and (27) previously con-
sidered for the one-dimensional (1-D) case. Here, the region

in (50) is a subset of the -dimensional interval ,
whereas in (51). Using the decompositions of

and from (49), it can be shown that we get the
equations shown at the bottom of the page. Hence, by imposing

where

where
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Fig. 10. Frequency response of a zero-phase 12� 12 circular low-pass
eigenfilter.

a unit norm constraint on or , we can minimize or via
Rayleigh’s principle as before.

As an example, suppose that is a 2-D circularly sym-
metric low-pass filter of the form

don't care otherwise.

The frequency response of a zero-phase 1212 eigenfilter de-
signed for this desired response is shown in Fig. 10. Here, equal
uniform weighing was used and the reference frequency was
chosen to be . As we can see, the eigenfilter method
produced a good approximation to the desired response.

In addition to designing circularly symmetric filters, the
eigenfilter method has been used to design a plethora of other
multidimensional filters, most notably 2-D. Several of these
include fan filters, elliptical filters, and quadrantally symmetric
filters. An alternative method to design 2-D filters using a 1-D
prototype with the McClellan transformation [15] has been
considered by Pei and Shyu [31] as well as Chen and Ford [8].

IV. A PPLICATIONS OF THEEIGENFILTER METHOD

Thus far, we have only focused on the use of the eigenfilter
method to design single filters of various desired responses.
However, the eigenfilter approach has been found to be useful
in other applications as well. For example, it has been used to
design multistage IFIR [19] filters [9], arbitrary log magnitude
and phase response filters [34], as well as prototype filters for
uniform and nonuniform cosine-modulated filter banks [3], [4].
Eigenfilters have also been successfully employed for selec-
tive signal cancellation in acoustic environments [6], [7]. The
eigenfilter technique has been shown useful for spectral/spa-
tial selectivity, or beamforming, for antenna and microphone
arrays [10], [11]. Recently, in image processing, eigenfilters
which satisfy the Nyquist constraint have been shown to be
suitable prototype filters for interpolation filters for image size
conversion [53].

Fig. 11. IFIR filter implementation.

Among the various applications where the eigenfilter method
has been shown to be beneficial, the one in which it has had
the most impact is in communications. With the advent of
DMT systems such as the digital subscriber loop (DSL) [43] in
recent years, much attention has been given to theshortening
of channels encountered in practice. For this problem, the
eigenfilter method has been found to be very useful [17], [40],
[5], [45]–[47]. Several such channel-shortening eigenfilters
have been shown to be nearly optimal in terms of observed bit
rate, which is the primary criterion of interest in DMT systems.

In this section, we will focus on three applications of the
eigenfilter method. First, we will show how the eigenfilter ap-
proach can be applied to the design of multistage IFIR filters.
Then, we show how the eigenfilter technique can be used for
spectral/spacial beamforming. Finally, we will focus on appli-
cations in communications regarding the shortening of channels
for DMT systems.

A. Multistage IFIR Eigenfilters

When designing linear-phase low-pass FIR filters, it can be
shown, for fixed passband and stopband ripples sizes, that the
filter order approximately varies inversely with the length of the
transition band [49]. Namely, if is a linear-phase low-pass
filter of order , then , where .
If the transition band length is relatively small, then designing
a single filter to accomodate the given specifications often be-
comes cumbersome due to the large filter order required. Fur-
thermore, as the filter order increases, design methods such as
the McClellan–Parks algorithm and the least-squares approach
become subject to numerical inaccuracies.

One simple way to overcome this problem is to implement the
single FIR filter as a cascade of two filters as shown in Fig. 11,
called the IFIR filter implementation [19]. Here, is a posi-
tive integer called the interpolation factor. The filter is de-
signed to be low pass with a passband frequency of and a
stopband frequency of (assuming that ). As
such, the expanded version consists of a desired low-pass
portion with passband and stopband frequenciesand , as
well as ( ) undesired bandpassimages[49] which occur
by virtue of the expansion. These images are suppressed via the
filter , which is designed to be low-pass with passband fre-
quency and stopband frequency .

The advantage to implementing as is that
the transition bands of and , denoted here by
and , may be much larger than , thus transforming
the problem of designing one filter with a high order into that
of two filters with much smaller order. In particular,
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and , both
of which are larger than assuming .

In [9], Chen and Vaidyanathan showed how to design the filter
for the specifications of the original filter using the

eigenfilter method, assuming that the image suppressor
has already been designed. To properly describe their method,
we must introduce a few new quantities. Suppose that is
some Type I linear-phase filter of order for some even .
Then

Using (8), we can express the’s in terms of the ’s. If
is the vector of filter coefficients

of and , then is the folded
version of and we have

(52)

where and are, respectively, the
and matrices

(53)

where and denote, respectively, the identity and
reversal matrices. With these definitions, we can now proceed to
show how to design for the specifications of using
the eigenfilter approach.

Suppose that and are real Type 1 linear-phase fil-
ters of orders and . Then clearly is
also a Type 1 linear-phase filter of order . Let
and denote the vectors of coefficients of and , and
denote the folded versions of and by and . Recall that
the original goal is to make a good low-pass narrowband
filter. In [9], the authors considered choosing using the
eigenfilter approach of Section II. Namely, the folded version
(the same vector considered in Section II) was chosen mini-
mize the objective with is as in (16), subject to
the usual unit-norm condition . It was shown that this
filter design problem could be posed as an eigenfilter problem in
terms of the vector, the folded version of , as we now show.

First note that using (52) and (53). Then note that
the coefficients of are obtained by inserting ( ) con-
secutive zeros between each coefficient of . As such, if
denotes the vector of coefficients of , then we
have , where is the matrix

Fig. 12. Magnitude response of a low-pass IFIR eigenfilter.

consisting of the ( ) identity matrix with ( ) rows of
zeros inserted between each row. For example

...
...

...
. . .

...

Now note that the coefficients of
can be expressed as , where is the

Toeplitz convolution matrix

...
...

. . .
...

. . .

. . .
...

...
...

. . .

consisting of the coefficients of the predesigned filter
. Hence, the folded version of,

namely the vector , is given by the following:

With this, the objective function from (16) becomes

To avoid trivial solutions, we subject to the usual unit norm
constraint . This shows that the eigenfilter problem
for the original can be posed as an eigenfilter problem
for the model filter . We should note that once the optimal

is found, the resulting solution should be scaled so that
.

As an example (taken from [9]), suppose we wish to design a
low-pass filter with and using the IFIR
eigenfilter approach. If we choose , , ,
and (so that ), we obtain the magnitude response
shown in Fig. 12. Here, was chosen to be a low-pass filter
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with equal and maximal flatness at [49]. The resulting
response has a passband ripple of and a stopband
ripple of (or ). To obtain the same
specifications using a single eigenfilter would require an order
of 36 [9]. One advantage from using the IFIR approach comes
in the savings from implementing in the cascade form

. As and are linear phase of orders 18
and 6, we only require multipliers
and adders using the IFIR implementation [49].
In contrast, by using the single eigenfilter, we would require

multipliers and 36 adders.

B. Spectral/Spacial Beamforming

A common problem in array signal processing is that
of beamforming [13], in which a group of waves (such as
electromagnetic or audio) impinge upon an array of sensors
(such as antennas or microphones) and the goal is to tune the
output of these sensors to focus only on a specific set of waves
corresponding to a certain temporal frequency arriving from
a certain spacial direction. For example, if a radio station is
transmitting a signal in an environment with reflective paths
between the transmitter and antenna array at the receiver, the
receiver may wish to focus only on waves near the carrier fre-
quency of the radio signal coming directly from the transmitter
(following a path known as the line-of-sight path). It turns
out that for delay-and-sum beamformers [13], such as the arc
array with delay lines that we shall soon consider, the problem
of steering the gain of the array to accept certain temporal
frequencies and spacial directions while rejecting others is
analogous to designing a filter to match a desired response. As
a result, the eigenfilter approach can be applied to the problem
of beamforming.

Chen was the first to consider using the eigenfilter method for
the design of beamformers in [10]. In particular, he considered
the design of an arc array with delay lines shown in Fig. 13.
The array consists of sensors that are placed along a circle
of radius . As can be seen in Fig. 13, theth sensor is at an
angle with respect to a certain reference point and has
delay lines attached to it. Each delay path is weighed by the
quantity which is chosen at the receiver and used to steer
the beam or gain of the array to a desired response. Waves from
a particular source impinging upon the array are assumed to be
in the far field and arrive at the array at an angle ofas shown in
Fig. 13. The signals from the various sensors and delay paths are
combined to obtain a gain pattern given by the following
expression:

where is the delay of theth tap of the th sensor due
to wave propagation and taps given by [10]

Here, is the speed of the wave in the given medium (such
as the speed of light or the speed of sound),is the radius

Fig. 13. Arc antenna array with delay lines.

Fig. 14. Magnitude of the gain pattern of an arc array with delay lines.

of the arc array, and is the length of the unit delay. If we
define the weight vector
where the ’s are simply the ’s arranged ac-
cording to some order and similarly define the vector

where the
’s are just the ’s arranged according to the same

order, then the gain pattern can be expressed as

Analogous to the multidimensional objective of (51), Chen
chose to make best approximate a desired gain
scaled by a factor , where is some reference
point. Namely, was chosen to minimize

As , we clearly have
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Fig. 15. Typical DMT system.

With the usual unit norm constraint on, the optimal can be
found using Rayleigh’s principle as before.

As an example (adapted from [10]), suppose that we have an
arc array with ten sensors ( ), each attached with ten
delay taps ( for all ). Let the be chosen to be 0,
2 , 4 , 6 , 8 , 10 , , , , and . Suppose that we
desire the response to be unity in the range and

, whereas we desire zero gain for
for all . In other words, is given by

don't care otherwise.

For the fictitious example in which , , and ,
the optimal gain pattern we obtain is shown in Fig. 14. As we
can see, though the gain pattern takes on a wide range of values
in the “don’t care” regions, the gain in the regions of interest
match closely with the desired response.

C. Channel-Shortening Eigenfilter Equalizers for
DMT Systems

A typical DMT system is shown in Fig. 15 [43]. Recently this
communications system has received much attention on account
of its low complexity and excellent performance compared to
traditional modem systems. Practical DMT systems such as the
asynchronous digital subscriber line (ADSL), have become very
popular and have revolutionized telephone wireline communi-
cations.

Perhaps the most important feature of the DMT system of
Fig. 15 is the inclusion of redundancy in the form of acyclic
prefix of length [43]. The beauty of this redundancy is that it
can be shown that in the absence of noise, we have perfect re-
construction, i.e., , if the channel is of length
less than or equal to . Essentially, the DMT system is able
to equalize an FIR channel using only FIR components (namely
the blocking components along with the DFT matricesand

as well as the frequency-domain equalizer). This is only
possible because of the inherent redundancy.

From a practical point of view, we want the cyclic prefix
length as small as possible, since it represents a redundancy
which hinders the overall rate of the system by a factor

. However, the channel may be very long, as is
the case in practical DMT systems such as ADSL in which the

Fig. 16. Channel/equalizer model.

Fig. 17. Decomposition of the effective channelc (n) into a desired channel
c (n) and residual channelc (n).

channel is a telephone wire line [43]. For example, in ADSL,
and [43], although the channels are typically

hundreds of samples long. This suggests the need for an
equalizer at the receiver whichshortensthe channel, as shown
in Fig. 16. Such an equalizer is typically called a time-domain
equalizer or TEQ [43]. As the channel may have zeros near
or outside the unit circle, the equalizer is usually not
chosen to exactly shorten the channel , as this may result
in spurious noise amplification. Instead, is typically an
FIR filter chosen to concentrate the energy of the effective
channel in a window of length .

1) The Channel-Shortening Problem:Suppose that the
length of the channel is and that of the equalizer
is . Then, the effective channel is of
length . The goal is to shorten the channel
to a length , i.e., to concentrate most of the energy of

to a window of length . We can decompose
as a sum of two responses, namely a desired response
which is exactly of length , and a residual response
which consists of whatever remains of after removing
the desired response . This is illustrated in Fig. 17. Here,

is a delay parameter which satisfies .
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Melsaet al.[17], chose the equalizer coefficients to minimize
the energy of the residual response subject to keeping the
energy of the desired response at unity. As we now show,
this problem can be posed as an eigenfilter problem. Define the
following vectors and matrices:

...
...

.. .
...

. . .

. . .
...

...
...

. . .

Here, , , and are, respectively, , , and
. By the convolution

(54)

Now define the following vectors and , as well as the
windowing matrices and , as shown in the equation
at the bottom of the page. Here, and are ,
whereas and are . Clearly, we have

and , where we
have used the convolution equation of (54). The energy of the
desired and residual responses, which we denote here, respec-
tively, by and , are simply the following:

Here we have used the fact that and

. Hence, the design problem considered by
Melsa et al. [17] is tantamount to the following problem:

(55)

where and are Hermitian positive semidefinite matrices.
To show that the problem of (55) can be posed as a traditional
eigenfilter problem, we perform a Cholesky decomposition of
the matrix [12]. Assuming that the matrix is positive def-
inite, then it admits a Cholesky-like decomposition of the form
[12]

where is a squarenonsingularmatrix. If we define the vector
, so that , then as varies over all nonzero

vectors, will as well. Hence, the problem in (55) is equivalent
to

Minimize subject to

where

This problem (in terms of the vector) is in fact the eigenfilter
problem, which can be solved via Rayleigh’s principle as be-
fore. Once the optimal is found, the optimal is found using

. If the matrix is strictly positive semidefinite, the
original optimization problem of (55) can still be posed as an
eigenfilter problem [17]; however, the method by which this is
done is much more complicated.

The method for channel shortening given in (55) is known
as the maximum shortening signal-to-noise ratio (MSSNR)
method [5], since it maximizes the shortening signal-to-noise
ratio defined by

In Fig. 18, the impulse response of a typical channel encoun-
tered in a DMT system is shown, along with the equalized ef-
fective channel designed using the MSSNR method. Here, the
channel is carrier-service area (CSA) loop # 1, a common sub-
scriber loop encountered in an ADSL system [43]. The channel
is of length , the equalizer is of length 16, and the de-
sired length is (corresponding to a cyclic prefix length
of 32). Here, the optimal equalizer was calculated for allin
the range and the actual used was the one which
yielded the largest SSNR. As can be seen, the effective channel
appears to be “shortened” to the desired length. In this example,
the best equalizer occured whenwas 25 corresponding to a
SSNR of 33.3312 dB.
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Fig. 18. Impulse responses of the original channelc(n) and the equalized
channelc (n). (L = 512, L = 16, L = 33, � = 25, SSNR =
33:3312 dB).

Several generalizations of the MSSNR method for channel
shortening have been proposed recently. In [47], the authors
proposed a method to jointly shorten the channel and suppress
the noise power observed after equalization, whereas in [45],
a similar method was proposed requiring only one Cholesky
decomposition (i.e., the decomposition did not depend on the
delay parameter ). Recently, a novel eigenfilter method called
the minimum intersymbol interference (min-ISI) method was
proposed by Arslanet al. [5], which exploited the DMT sub-
channels which cannot be used to improve the DMT channels
used for joint channel shortening and noise suppression. Sim-
ulation results have shown that these methods perform nearly
optimally in terms of observed bit rate (the primary figure of
merit for DMT systems), especially the min-ISI method.

V. CONCLUDING REMARKS

The eigenfilter method has been shown to possess several
advantages over other traditional filter design methods. As op-
posed to the least-squares approach, which requires the compu-
tation of a matrix inverse which may be susceptible to numer-
ical inaccuracies, the eigenfilter method has a much lower de-
sign complexity and remains robust even when ill-conditioned
matrices are present in the design problem. In contrast to the
McClellan–Parks algorithm, which is difficult to modify for cer-
tain design criteria, the eigenfilter method can easily be modi-
fied to satisfy a plethora of design constraints. Such advantages,
when coupled together with the good performance of eigenfilter
method, make it an attractive method to use for filter design.

In addition to its numerous strengths, the eigenfilter method
was shown to be useful in a variety of applications, since many
design problems can be posed as an eigenfilter problem. Here,
the method was shown to be useful for designing model filters
for multistage IFIR filters, which are useful when narrow transi-
tion bands are required. Also, the eigenfilter method was shown
to be applicable to the problem of spectral/spacial filtering or
beamforming for sensor arrays, in which we wish to focus on
temporal frequencies in a particular band arriving from a par-
ticular spacial direction. Finally, the method was found to be
useful for the design of channel-shortening equalizers, which
are commonly needed in popular communications systems such
as ADSL.

The eigenfilter method continues to find applications in
several areas of research. Recently, the eigenfilter method

for channel shortening was extended for the design of
fractionally spaced equalizers [45], [47] as well as for de-
signing channel-shortening equalizers for multiple-input
multiple-output (MIMO) channels [46]. In addition, the eigen-
filter method has been shown to appear in the design of certain
optimum compaction filters [51]. Current open problems in
filter bank theory include using the eigenfilter method to design
FIR compaction filters, using IFIR eigenfilters as compaction
filters, and using the eigenfilter method to design optimal filter
banks. As can be seen, on account of its numerous merits,
together with the myriad of design problems to which it can
be applied, the eigenfilter method is and will continue to be a
versatile design algorithm.
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