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Abstract— Many noncoding RNAs (ncRNAs) have character-
istic secondary structures that give rise to complicated base
correlations in their primary sequences. Therefore, when per-
forming an RNA similarity search to find new members of a
ncRNA family, we need a statistical model – such as the profile-
csHMM or the covariance model (CM) – that can effectively
describe the correlations between distant bases. However, these
models are computationally expensive, making the resulting RNA
search very slow. To overcome this problem, various prescreening
methods have been proposed that first use a simpler model to
scan the database and filter out the dissimilar regions. Only
the remaining regions that bear some similarity are passed
to a more complex model for closer inspection. It has been
shown that the prescreening approach can make the search
speed significantly faster at no (or a slight) loss of prediction
accuracy. In this paper, we propose a novel prescreening method
based on matched filtering of stem patterns. Unlike many existing
methods, the proposed method can prescreen the database solely
based on structural similarity. The proposed method can handle
RNAs with arbitrary secondary structures, and it can be easily
incorporated into various search methods that use different
statistical models. Furthermore, the proposed approach has a
low computational cost, yet very effective for prescreening, as
will be demonstrated in the paper.

I. INTRODUCTION

Recent studies on various genomes have revealed that there
exist a large number of noncoding RNAs (ncRNAs), which
are RNA molecules that function without being translated into
proteins [6]. Unlike mRNAs (messenger RNAs) that passively
carry protein-coding information, the ncRNAs actively par-
ticipate in diverse biological processes. Although examples
such as the tRNAs (transfer RNAs) and rRNAs (ribosomal
RNAs) have been known for a long time, systematic research
on ncRNAs shows that the number of RNAs and the variety
and extent of their roles are much larger than it was previously
thought [6].

As the annotation of ncRNAs is still at an early stage, it is
of great importance to develop computational tools that can
be used for screening the genome to identify new RNAs. An
effective way for finding new ncRNAs is to search for RNAs
that look similar to already known RNAs. Given a set of
related RNAs that belong to the same family, we may construct
a statistical model that represents the RNA family, and use this
model to find similar regions in a genome database. This is
usually called a similarity search or a homology search.

For a successful RNA similarity search, we need a suitable
statistical model that can effectively describe the main char-
acteristics of ncRNAs. One distinguishing feature of many
ncRNAs is the conservation of their secondary structures.
As the secondary structure of a ncRNA plays a crucial role
in carrying out its biological function, many RNA families
have characteristic secondary structures that are commonly
shared by their members [1]. For this reason, it is important
to consider both sequence similarity as well as structural
similarity when performing an RNA similarity search. In
fact, using a scoring scheme that can reasonably combine
sequence and structural similarities can considerably increase
the discriminative power of the search [1], [9].

The secondary structure of an RNA can be described in
terms of correlations between distant bases in its primary
sequence [9]. Therefore, in order to represent ncRNA families
and develop a scoring scheme that can combine contributions
from sequence similarity and structural similarity, we need
a statistical model that can describe these base correlations.
Examples of such models are the CM1 (covariance model) [1]
and the profile-csHMM (profile context-sensitive HMM) [8],
[11]. Unfortunately, the computational cost for using these
models is often too high for scanning a large genome database.
In order to solve this problem, a number of methods have been
proposed to expedite the RNA similarity search [3], [4], [7],
[10]. The main idea underlying these methods is to prescreen
the database using a simpler model (e.g., a profile-HMM) to
filter out the dissimilar regions as much as possible. Only
the remaining regions that bear some similarity are passed
to a more complex (hence, more discriminative) model, such
as the profile-csHMM or the CM, for further inspection. It
has been shown that this prescreening approach can make the
search speed significantly faster, either without any loss of
accuracy [3], [4], [10] or at a slight loss of accuracy [7].

In this paper, we propose a novel prescreening method based
on matched filtering of stem patterns. Unlike the previous
methods, the proposed method can scan the database solely
based on structural similarity, which can be especially use-
ful for RNA families with low sequence similarity. As the

1A CM can be viewed as a SCFG (stochastic context-free grammar) with
a special structure.



matched filter is constructed from the secondary structure of
the reference RNA instead of a specific statistical model, the
proposed method can be used in combination with any kind of
model, including profile-csHMMs and CMs. Furthermore, as
the matched filter can be constructed for any kind of RNA
secondary structure, the proposed method can be used for
searching any RNA family, including those with pseudoknots2

Finally, the proposed method has a low computational cost, yet
very effective in detecting the structural similarity, as will be
demonstrated in our experiments.

This paper is organized as follows. In Sec. II, we present
a brief review of the existing prescreening methods. The
proposed prescreening method based on structural similarity
is elaborated in Sec. III. We present experimental results in
Sec. IV that demonstrate the effectiveness of the proposed
method, and the paper is concluded in Sec. V.

II. FAST RNA SEARCH USING PRESCREENING FILTERS

A typical RNA similarity search is carried out as follows.
Given a set of related RNAs that belong to the same family, we
first find their multiple sequence alignment based on their se-
quence and/or structural similarity. There exist many heuristic
methods that can be used to find a reasonably good alignment
of the given sequences [2]. Based on this multiple sequence
alignment, we predict the common secondary structure of the
RNAs and construct a statistical model – such as a profile-
csHMM [8], [11] or a CM (covariance model) [1] – that can
closely represent the alignment.3

Once the model is constructed, it can be used for searching
a genome database to find similar sequences which might
be new members of the same RNA family. Given a target
RNA, we compute a similarity score based on the constructed
model, to find out how much it resembles the reference RNA
family. The observation probability of the target RNA is a
common choice for the similarity score, although it is typical
to use either the log-probability or a log-likelihood ratio
after normalizing the log-probability with respect to a random
sequence model. Unfortunately, computing the observation
probability of a target RNA based on profile-csHMMs or CMs
is computationally expensive. This is due to the complexity of
these models that is necessary for describing the complicated
base correlations in RNA sequences. For example, the com-
putational complexity of the optimal alignment algorithm4 for
CMs – called the CYK (Cocke-Younger Kasami) algorithm –
is O(L3M), where L is the length of the target RNA and M
is the number of states in the model. The number of states

2RNA secondary structures that have crossing base-pairs are called pseu-
doknots.

3Although we have described the procedure in three separate steps (i.e.,
finding the alignment, predicting the common secondary structure, and con-
structing the model) for simplicity, these steps are closely interrelated and it
is typical to repeat these steps until the model converges to the optimal one.

4In general, there can be many different state sequences (or “paths”) that
give rise to the same symbol sequence. An optimal alignment algorithm tries to
find the optimal path among all feasible paths that maximizes the observation
probability of the sequence based on the given model. As this is conceptually
identical to finding the best alignment between the symbol sequence and the
statistical model, it is typically called an optimal alignment algorithm.
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Fig. 1. Using a prescreening method can make the search significantly faster.

M is proportional to the length of the reference RNA. Sim-
ilarly, the SCA (sequential component adjoining) algorithm
for profile-csHMMs has a high computational complexity.
The complexity of the SCA algorithm is variable, typically
between O(L2M) and O(L4M), depending on the structure
of the reference RNA. Compared to O(LM) of the Viterbi
algorithm5 for profile-HMMs, the computational complexity
of the CYK and SCA algorithms is relatively high. Because of
the high computational cost of these algorithms, RNA search
based on profile-csHMMs and CMs are usually too slow for
scanning a large database, especially if the size of the RNA
is large.

In order to overcome this problem, a general prescreening
method has been proposed in [3] to make CM-based searches
faster. The basic idea of the prescreening method is as follows.
Instead of using a CM to scan the entire database, the method
first uses a simple “prescreening filter” to scan the database.6

The prescreening filter quickly filters out regions that are
dissimilar, and passes only the regions that are similar enough
to the reference RNA family to the second stage. In the
second stage, a full CM is used to investigate these regions
more closely. The basic idea of the prescreening approach
is illustrated in Fig. 1. If the prescreening filter runs fast
enough compared to the more complex model (a CM, in this
case) yet effective enough to filter out most of the dissimilar
regions, the overall speed of the search can be improved
significantly. In [3], profile-HMMs were used as prescreening
filters, whose parameters were chosen based on the CM
parameters such that it guarantees that there is no loss in the
prediction accuracy. It was shown that the search speed could
be improved by 25 times on average, and by more than 200

5The complexity of the Viterbi algorithm for general HMMs is O(LM2).
6This should not be confused with the filters in signal processing. The

prescreening filters are in fact simple statistical models that are used to “filter
out” the dissimilar regions, hence called filters.



RNA 1: 5’- A A A C C C U U U C - 3’

< < < - - - > > > -

RNA 2: 5’- C C C A A A A G G G - 3’

< < < - - - - > > >

RNA 3: 5’- A A G G G A A C C U - 3’

- - < < < - - > > >

RNA 4: 5’- C A A A G G U U U C - 3’

- < < < - - > > > -

Fig. 2. Examples of RNAs with similar secondary structures.

times for many ncRNA familes [4]. Similarly, a prescreening
method for profile-csHMMs was proposed in [10], which
also used profile-HMMs for prescreening. Unlike CMs that
cannot be used for finding RNAs with pseudoknots, profile-
csHMMs have the advantage that they can represent any kind
of RNAs, including pseudoknots. The original prescreening
method proposed in [3] was improved further. For example,
in [4], the profile-HMM based filters were augmented with
some secondary structure information (though limited), and
in [7], profile-HMM based heuristic filters were proposed that
allow us to trade prediction accuracy for speed.

One disadvantage of the previous methods is that they
mainly rely on sequence similarity. Although the method
proposed in [4] augments the profile-HMM with sub-CMs
(parts of the full CM) to detect simple stem-loops (hairpins),
this hybrid prescreening filter can represent the structure
of the reference RNA only partially. Furthermore, although
the hybrid filter will still be faster than the full CM, it is
considerably slower than the one solely based on the profile-
HMM.

In the following section, we propose a novel prescreening
method that effectively overcomes the shortcomings of the
previous methods. The proposed method is based on matched
filtering of stem patterns, which can scan the database to find
regions that are structurally similar to the reference RNA. The
structural matched filter can be constructed for any kind of
RNA secondary structure, making the proposed approach gen-
erally applicable. Furthermore, it has a very low computational
cost, hence suitable for scanning large databases.

III. MATCHED FILTERING FOR STRUCTURAL SIMILARITY

Assume that we have a reference RNA with a known
secondary structure. Given a target RNA sequence with no
structural annotation, how can we quickly find out if a similar
structure can be also found in the target RNA? For example,
let us consider the RNAs shown in Fig. 2. As we can see
in Fig. 2, all four RNAs have similar secondary structures,
where every RNA has a single stem-loop at a different location
and/or a different loop size. Their structural similarity can be
easily recognized if we draw the dot-plots for their structures.
Given an RNA sequence x = x1x2 . . . xL with a structural
annotation, we define the corresponding L×L dot-plot matrix
P as follows. The (m,n)-th element pmn of the dot-plot
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Fig. 3. The dot-plots corresponding to the RNAs in Fig. 2.
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Fig. 4. Detecting structural similarity by comparing the dot-plot patterns.

matrix (base-pairing matrix) is defined as

pmn =
{

1, if xi and xj form a base-pair
0, otherwise. (1)

The dot-plot matrix P is always symmetric by definition.
Fig. 3 shows the dot-plots that correspond to the structure
of the RNAs in Fig. 2. From Fig. 3, we can readily recognize
the structural similarity among the four RNAs.

This shows that using dot-plots can be very useful in de-
tecting the structural similarity between RNAs. To demonstrate
this idea, let us consider the following example. Assume that
RNA-1 in Fig. 2 is used as the reference, and we assume that
we know its structure. Based on its secondary structure, let us
construct the base-pairing matrix Pr as shown in Fig. 4(a).
As the matrix Pr is symmetric, we keep only the upper-
triangular portion of Pr to obtain P̄r. This (strictly) upper-
triangular matrix P̄r is shown in Fig. 4(b), where the removed



portion is shown in gray. Note that this matrix contains the
structural pattern (or the stem pattern) of the reference RNA.
Now assume that RNA-4 is the target RNA whose structure
we do not know. In order to find out whether the target
(RNA-4) has a similar structure as the reference (RNA-1),
we compute the base-pairing matrix Pt of RNA-4. Since we
do not know its structure, we cannot construct Pt = {pmn}
based on the actual base-pairing information. Instead, we set
pmn = 1 for all (m,n) where xm can form a base-pair with
xn. For example, if xm = A, then we let pmn = 1 for every
n that satisfies xn = U . As Pt is also symmetric, we keep
only the upper-triangular portion of Pt, and denote it as P̄t.
The matrix P̄t is shown in Fig. 4(c). Now that we have P̄r

and P̄t, we can compare these matrices to find out whether
the target RNA has a similar structure as the reference RNA.
One way to do this is to find the maximum overlap between
the matrices as illustrated in Fig. 4(d). As expected, the stem
pattern in P̄r completely overlaps with the base-pairing region
in P̄t, showing that the target (RNA-4) has a (nearly) identical
structure as the reference (RNA-1).

Based on this idea, we propose an efficient method for com-
paring the structural similarity between a structured reference
RNA and an unstructured target RNA. The proposed method is
as follows. Firstly, we construct a Lr×Lr base-pairing matrix
Pr = {pmn} based on the secondary structure of the reference
RNA, where Lr is the length of the RNA. We keep the upper-
triangular portion of Pr to construct an upper-triangular matrix
P̄r = {p̄mn} as follows

p̄mn =
{
pmn, if m < n
0, otherwise. (2)

From P̄r, we construct the matched filter matrix S = {smn}
such that smn = p̄(Lr−m)(Lr−n). This is identical to keeping
the lower-tringular portion of Pr to obtain S. Secondly, for
a target RNA of length Lt, we construct a Lt × Lt base-
pairing matrix Pt for all possible base-pairs. As before, we
take the upper-triangular portion of Pt to get P̄t. Thirdly,
in order to compare the structures of the RNAs, we find the
maximum overlap between the matrix P̄r, which contains
the stem pattern of the reference RNA, and the matrix P̄t,
which shows the base-pairing region of the target RNA. The
maximum overlap can be easily found by computing

Y = P̄t ∗ S, (3)

and finding the largest element of Y, where A∗B denotes the
two-dimensional convolution of A and B. For Y = {ymn},
we define λ to be the value of the largest element

λ = max
m,n

(
ymn

)
. (4)

This λ gives us the maximum number of base-pairs that the
two RNAs have in common. The larger the value of λ, the
closer will be the structure of the reference RNA and that of
the target RNA. The process described so far can be viewed
as “matched filtering” of a noisy signal (structural pattern of
the target RNA) based on the shape of the original signal
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Fig. 5. Matched filtering based on stem patterns.

(structural pattern of the reference RNA). The entire matched
filtering process is illustrated in Fig. 5.

At first sight, the computational complexity of the proposed
method seems to be O(L2

rL
2
t ) as it involves the convolution

of an Lr × Lr matrix and an Lt × Lt matrix. However,
the actual complexity is much smaller, because the matrix S
is very sparse. In fact, the number of non-zero elements in
S is identical to the number of base-pairs in the reference
RNA. The actual computational complexity will be O(NL2

t ),
where N (≤ 1

2Lr) is the number of base-pairs. Although
the complexity is still quadratic in Lt (length of the target
RNA), this is not a serious problem in practice, as it simply
corresponds to the addition of N matrices of size Lt × Lt.

IV. EXPERIMENTAL RESULTS

To demonstrate the effectiveness of the proposed method,
we performed numerical experiments using the RNAs in
the CORONA PK3 and FLAVI PK3 families in the Rfam
database [5]. Note that both RNA families contain pseudo-
knots, which cannot be represented by CMs though they
can be represented by profile-csHMMs. The computational
complexity of the SCA algorithm would be O(L4M) for
these RNA families [11]. Due to the high computational cost,
an RNA search based on profile-csHMM alone would be
too slow for scanning a large database, and it necessitates
the incorporation of an efficient search strategy such as the
prescreening approach.

In our experiments, we used the RNAs in the seed align-
ments [5] of the RNA families. For each family, we carried
out the following cross-validation experiment. We first chose
one of the members as the reference RNA, and constructed
the matched filter matrix S based on its secondary structure.
Using this matrix S, we carried out the matched filtering
process elaborated in Sec. III for the remaining members and
computed λ as in (4). This value has been normalized to obtain
the normalized structural similarity score

σ = λ/N, (5)
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Fig. 6. Cumulative distribution of the structural similarity score. (Top) Score
distribution of the CORONA PK3 RNA family. (Bottom) Score distribution of
the FLAVI PK3 RNA family.

where N is the number of base-pairs in the reference RNA.
Note that we always have 0 ≤ λ ≤ N , hence the normalized
score σ is in the region 0 ≤ σ ≤ 1. This experiment has
been repeated by using every member in the given family as
the reference RNA, so that we can obtain a better estimate
of σ. For comparison, we also computed the average structural
similarity score for randomly generated RNA sequences.

If the score distribution of real RNAs (with similar sec-
ondary structures) is well-separated from that of random
RNAs, we can use this score σ for filtering out the sequences
that are structurally dissimilar from the reference RNA. In
order to make this more reliable, we considered only stems
with more than three base-pairs. Furthermore, we limited the
region for finding the largest element of Y as follows

λ = max
|m−me|≤D, |n−ne|≤D

(
ymn

)
. (6)

In (6), (me, ne) is the expected location of the largest element
for the case when the target RNA has an identical structure as
the reference RNA. The parameter D restricts the region for
finding the largest element around (me, ne).

The experimental results are shown in Fig. 6, which shows
the cumulative distribution function (CDF)

Fσ(s) = P (σ ≤ s) (7)

of the structural similarity score σ. Fig. 6 (Top) shows the
score distribution of real RNAs and that of random RNAs,
where the reference RNA family was the CORONA PK3. As
we can see in Fig. 6 (Top), the score distributions of real
and random RNAs are well-separated.7 For example, if we

7We used D = 3 in our experiments.

choose a threshold value of σ∗ = 0.45, prescreening based
on the proposed method can filter out 97% of the unrelated
RNAs at a false negative prediction rate of 3% (i.e., 97%
sensitivity). Considering that the proposed method performs
much faster than the SCA algorithm for finding the optimal
alignment, a rejection rate of 97% leads to a 33 (= 1/0.03)
times increase in the average search speed. For FLAVI PK3
family, the proposed method performed even better. From
Fig. 6 (Bottom) we can see that if we choose the threshold
as σ∗ = 0.33, more than 98% of the unrelated RNAs can be
rejected at no loss of sensitivity. In this case, the search speed
can be made around 50 times faster without any loss in the
prediction performance.

V. CONCLUDING REMARKS

In this paper, we proposed an efficient method for com-
paring the structural similarity of RNAs, based on matched
filtering of stem patterns. The proposed method has a very
low computational cost, yet it is applicable to RNAs with
arbitrary secondary structures. As demonstrated in this paper,
the proposed method can make RNA searches faster by
prescreening the database based on structural similarity. Ex-
perimental results show that the search speed can be improved
up to 50 times by the proposed method alone. We expect that
the search speed can be improved even further when combined
with other sequence-based prescreening methods.
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