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Abstract. It has been observed by many researchers that
the protein-coding regions of DNA sequences exhibit a
period-3 behavior due to codon structure. Identification
of the period-3 regions helps in predicting the gene loca-
tions, and in fact allows the prediction of specific exons
within the genes of eucaryotic cells. Traditionally these
regions are identified with the help of techniques such as
the windowed DFT. In this paper we consider the use of
efficient digital filters for the same purpose. The filters can
be designed not only to extract the period-3 component,
but at the same time effectively eliminate the background
1/f spectrum exhibited by nearly all DNA sequences.1

I. INTRODUCTION

It is well-known that base sequences in the protein-coding
regions of DNA molecules exhibit a period-3 pattern be-
cause of the codon structure involved in the translation
of base sequences into amino acids [11], [12]. For eucary-
otes (cells with nucleus) this periodicity has mostly been
observed within the exons (coding subregions inside the
genes [1]) and not within the introns (noncoding subre-
gions in the genes). There are theories explaining the rea-
son for such periodicity, but there are also exceptions to
the phenomenon. Nevertheless, many researchers have re-
garded the period-3 property to be a good (preliminary)
indicator of gene location. Techniques which exploit this
property for gene prediction proceed by computing the dis-
crete Fourier transform (DFT) with a sliding window. This
is expected to exhibit a peak at the frequency 2π/3 due
to the periodicity. This technique has successfully been
used to identify exons within the genes of eucaryotic cells
[2, 11]. The periodic behavior indicates strong short-term
correlation in the coding regions, in addition to the long-
range correlation or 1/f -like behavior exhibited by DNA
sequences of many organism in general [6,9,15].

Digital signal processing techniques offer more efficient
ways to identify regions of the DNA exhibiting periodic
behavior. Such methods have typically not been used in
the biotechnology community. For example, digital band-
pass filters with a narrow passband are often very effective
in extracting the period-3 information and attenuating the
1/f behavior. In this paper we describe a number of meth-
ods to obtain such filters, and examine their performance
on DNA sequences from the genome database.

1Work supported in part by the ONR grant N00014-99-1-
1002, USA.

II. PERIODICITY IN CODING REGIONS

Figure 1(a) demonstrates a simple schematic for part of a
DNA molecule [1], with the double helix straightened out
for convenience. The four bases or nucleotides attached
to the sugar phosphate backbone are denoted with the
usual letters A, C, G, and T . The forward genome se-
quence . . . ATTCATAGT . . . corresponds to the upper
strand of the DNA molecule. Note that the ordering is
from the so-called 5′ to the 3′ end (left to right).
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Figure 1. (a) The DNA double helix (linearized schematic),
and (b) various regions in a DNA molecule.

As shown in Figure 1(b), a DNA sequence can be divided
into genes and intergenic spaces. The genes are responsible
for protein synthesis. A gene can be divided into two sub-
regions called the exons and introns. (Procaryotes, which
are cells without a nucleus, do not have introns). Only the
exons are involved in protein-coding. The bases in the exon
region can be imagined to be divided into groups of three
adjacent bases. Each triplet is called a codon. Scanning the
gene from left to right, a codon sequence can be defined by
concatenation of the codons in all the exons. Each codon
(except the so-called stop codon) instructs the cell ma-
chinery to synthesize an amino acid. The codon sequence
therefore uniquely identifies an amino acid sequence which
defines a protein. Since there are 64 possible codons but
only 20 amino acids, the mapping from codons to amino
acids is many-to-one. The introns do not participate in the
protein synthesis.



It has been observed more than two decades ago [12]
that the base sequence in the coding regions (exons) have
a strong period-3 component. Some authors have claimed
that this is due to nonuniform codon usage: even though
there are several codons which could code a given amino
acid, they are not used with uniform probability, and this
creates a codon bias. There is an excess of guanine (G) in
position 1, leading to strong period 3 oscillation [5]. The
work by Tiwari, et al. [11] seems to indicate that this expla-
nation is not complete. Indeed, these authors “synthesize
genes” by starting from proteins and mapping aminoacids
back to codons. In this reverse mapping process, they
assign “uniform probability” to the different codons that
might lead to a given amino acid. The resulting pseudo
gene has been found to retain the period 3 property!

III. DNA SPECTRUM VERSUS DNA FILTERING

To perform gene prediction based on the period-3 prop-
erty, one defines indicator sequences for the four bases and
computes the DFTs of short segments of these. Given a
DNA sequence, the indicator sequence for the base A is a
binary sequence, e.g.,

xA(n) = 000110111000101010 . . .

where 1 indicates the presence of an A and 0 indicates its
absence. The indicator sequences for the other bases are
defined similarly. It is clear that the sequence 111111 . . .
is obtained by adding the four indicator sequences. The
DFT of a length-N block of xA(n) is defined as

XA[k] =
N−1∑

n=0

xA(n)e−j2πkn/N , 0 ≤ k ≤ N − 1,

where we have assigned the number n = 0 to the begin-
ning of the block. The DFTs XT [k], XC [k], and XG[k]
are defined similarly. The period-3 property of a DNA se-
quence implies that the DFT coefficients corresponding to
k = N/3 are large. Thus if we take N to be a multiple of
3 and plot

S[k] ∆= |XA[k]|2 + |XT [k]|2 + |XC [k]|2 + |XG[k]|2 (1)

then we should see a peak at the sample value k = N/3
as demonstrated in many papers (e.g., [11]). While this is
generally true, the strength of the peak depends markedly
on the gene. It is sometimes very pronounced, sometimes
quite weak. Notice that a calculation of the DFT at the
single point k = N/3 is sufficient. The window can then
be slided by one or more bases and S[N/3] recalculated.
Thus, we get a picture of how S[N/3] evolves along the
length of the DNA sequence. It is necessary that the win-
dow length N be sufficiently large (typical window sizes are
a few hundreds, eg., 351, to a few thousands) so that the
periodicity effect dominates the background 1/f spectrum
which makes its strong presence in DNA sequences [9], [15].
However a long window implies longer computation time,
and also compromises the base-domain resolution in pre-
dicting the exon location.

Digital filtering method. The sliding window method
can be regarded as digital filtering followed by a decimator

which depends on the separation between adjacent posi-
tions of the window [3, 13]. The filter itself has a very
simple impulse response

w(n) =
{

ejω0n 0 ≤ n ≤ N − 1
0 otherwise.

This is a bandpass filter with passband centered at ω0 =
2π/3 and minimum stopband attenuation of about 13 dB
(Fig. 2). This tells us that if we pay more careful at-
tention to the design of the digital filter, we can isolate
the period-3 behavior from background information such
as 1/f noise more effectively. We can also use efficient
methods to design and implement the filter, thereby re-
ducing computational complexity.
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Figure 2. The filtering effect of DFT computation.
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Figure 3. A digital filter H(z) with indicator sequence
xG(n) as its input.

Consider a narrow band bandpass digital filter H(z) with
passband centered at ω0 = 2π/3. With the indicator se-
quence xG(n) taken as input, let yG(n) denote its output.
Note that n should be interpreted as base location. In the
coding regions, the sequence xG(n) is expected to have a
period-3 component, which means that it has large energy
in the filter passband. So we expect the output yG(n) to
be relatively large in the coding regions as demonstrated
in Fig. 3. With similar notation for the other bases, define

Y [n] = |yA(n)|2 + |yT (n)|2 + |yC(n)|2 + |yG(n)|2

A plot of this function can be used as a preliminary indi-
cator of coding regions. The narrow band filter H(z) can
be regarded as an antinotch filter (i.e., complement of a
notch). We now describe some efficient ways to design and
implement such filters.

IV. IIR ANTINOTCH FILTERS

The use of IIR antinotch filters for gene prediction was pro-
posed in [14]. Such IIR filters can be obtained by starting



from a second order allpass filter

A(z) =
R2 − 2R cos θz−1 + z−2

1 − 2R cos θz−1 + R2z−2

which has poles at Re±jθ and zeros at 1/Re±jθ. Thus,
consider a filter bank with two filters G(z) and H(z) de-
fined according to

[
G(z)
H(z)

]
=

1
2

[
1 1
1 −1

] [
1

A(z)

]
(2)

Then G(z) has the form

G(z) = K

(
1 − 2 cos ω0z

−1 + z−2

1 − 2R cos θz−1 + R2z−2

)

where

cos ω0 =
2R cos θ

1 + R2

This shows that G(z) is a notch filter [10] with a zero at the
frequency ω0. When the pole radius R is close to the unit
circle we see that ω0 gets close to θ. That is, the pole and
zero of the filter G(z) are very close to each other. Thus, at
frequencies sufficiently away from ω0, the response is close
to unity. This is demonstrated in Fig. 4, which shows the
magnitude response of G(z) for two values of R. From Eq.
(2) we see that

[
G(ejω)
H(ejω)

]
=

U√
2

[
1

A(ejω)

]

where U is unitary, that is, UtU = I. This shows that

|G(ejω)|2 + |H(ejω)|2 =
1 + |A(ejω)|2

2
= 1

where we have used the property |A(ejω)| = 1. It there-
fore follows that G(z) and H(z) are power complementary.
This shows, in particular, that the filter H(z) is a good
antinotch filter as demonstrated in Fig. 5, for the same
pole radii chosen in Fig. 4.

By choosing ω0 = 2π/3 the filter H(z) can be used to
extract the period-3 regions of the DNA effectively. The
allpass filter A(z) can be implemented with either the di-
rect form structure or the cascaded lattice structure [8],
[13]. The lattice structure with one-multiplier sections [13]
is especially attractive [10], and Fig. 6 shows the imple-
mentation of H(z) using this lattice. The multipliers in
this structure are the lattice coefficients

k1 = R2, k2 = − cos ω0.

Since the antinotch frequency is ω0 = 2π/3 we have

k2 = − cos ω0 = 1/2

which can be implemented with a binary shift. So the
only significant multiplier is R2, and controls the antinotch
quality without affecting the frequency ω0 (Fig. 5). Thus

we can adjust R2 depending on the base-domain resolution
desired.
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Figure 4. Notch filter responses for two values of R.
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Figure 5. Antinotch filter responses for two values of R.
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Figure 6. Lattice structure for implementing the antinotch
filter H(z) = V (z)/X(z).

V. MULTISTAGE FILTERS

Even though the IIR antinotch method has been found to
work well [14], there is room for improvement. We will
show that with a slight increase in the number of multipli-
ers we can design filters with much better stopband atten-
uation. Such filters are essential in order to suppress the
background 1/f noise which is always there in the DNAs
of many organisms, due to long-range correlation between
base pairs.
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Figure 7. The multistage design of a narrowband band-
pass filter. (a) Magnitude response of lowpass prototype

H1(z), (b) multiband response of H1(z3), (c) the re-
sponse of H2(z) which eliminates the unwanted passband
at ω = 0.

The method to be presented is based on the idea of multi-
stage filtering [3,13]. To explain this consider a narrowband
lowpass filter H1(z) as shown in Fig. 7(a). If we replace

each delay element z−1 in the filter with z−3, we get the
filter H1(z3) whose response is as shown in Fig. 7(b).
Thus, there is a passband centered at 2π/3 and a pass-
band at ω = 0. If we now cascade this with a filter H2(z)
which attenuates the zero-frequency passband severely, the
resulting filter

H(z) = H1(z3)H2(z)

is a narrowband filter with passband centered at 2π/3. We
will demonstrate that H1(z) and H2(z) can be designed
with very low complexity, and that the filter predicts the
exons with good accuracy. The multistage idea is similar
in principle to the IFIR method introduced by Neuvo, et
al. [7,13].

Figure 8 shows an example. Here H1(z) is a third order
elliptic filter and H2(z) is chosen to have two zeros at
ω = 0, that is,

H2(z) = (1 − z−1)2.

The various filter responses involved in the multistage de-
sign are shown in the figure. The bottom plot shows the
multistage filter H(z) which has a narrow passband at
ω = 2π/3, and excellent attenuation at most frequencies.
Implemented in direct form [8], H1(z) requires 5 multipli-
ers, and H2(z) is multiplierless.

It should be noticed here that H1(z) can be imple-
mented using the allpass decomposition method [13], which
allows the third order elliptic filter to be written in the form

H1(z) =
A0(z) + A1(z)

2

where A0(z) is a first order allpass filter and A1(z) a sec-
ond order allpass filter, both with real coefficients. We
can implement A0(z) and A1(z) with one and two multi-
pliers respectively [13], so that H1(z) requires only three
multipliers. Summarizing, the multistage method has only
slightly higher complexity than the allpass-based antinotch
filter, but its characteristics are significantly better.
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Figure 8. Magnitude responses of filters in the multistage
design method. From top to bottom: the IIR lowpass filter
H1(z), the expanded version H1(z3), the FIR filter H2(z),
and the multistage filter H1(z3)H2(z).



VI. EXAMPLES AND CONCLUSIONS

We show in Fig. 9 the exon prediction results for gene
F56F11.4 in the C-elegans chromosome III. This gene has
five exons. The first plot uses the DFT based spectrum
described in Sec. III. The five peaks corresponding to the
exons can be seen clearly. The middle plot uses the allpass-
based antinotch filter with pole radius R = 0.992. This
scheme can be implemented with only one multiplier per
output sample (i.e., per base pair). Both of these methods
locate the five exons quite well, but we also notice the
background “noise” due to the 1/f characteristics in DNA
sequences. The third plot uses the multistage filter H(z)
shown in the bottom of Fig. 8. Notice that the background
noise has been removed almost completely and the five
exons can be seen clearly.
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Figure 9. Top plot: the DFT based spectrum S[N/3] for
gene F56F11.4 in the C-elegans chromosome III. Middle
plot: the antinotch filter output (Sec. IV) for the same
gene. Bottom plot: the multistage narrowband bandpass
filter output (Sec. V) for the same gene.

As explained in detail in [4], gene identification is a very
complex problem, and the identification of period-3 regions
is only a step towards gene and exon identification. In fact,
Tiwari, et al. [11] have observed that some genes do not
exhibit period-3 behavior at all in S. cerevisiae (e.g., genes
of the mating type locus). The period-3 property has often
been attributed to the dominance of the base G at certain
codon positions in the coding regions. We have, in fact,
observed experimentally that the use of the base G alone,
instead of all four bases, often leads to excellent prediction
of period-3 regions.
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