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ABSTRACT (a)

For many decades, the problem of estimating a pdf based on mea- f(v)
surements has been of interest to many researchers. Even thougt

much work has been done in the area of pdf estimation, most of A .
it was focused on the continuous case. In this paper, we propose
a new model based approach for estimating a discrete probabil-
ity density function. This approach is based on multirate dsp the- Co (V)
ory, and it has several advantages over the traditional histogram (b) 0
method. It is shown that this method yields an unbiased pdf esti- f(v) / \/

mate with small variance, which is guaranteed to have a smaller \ /’\/

/A
estimation error than the histogram. Simulation results are given, y/\{ \/
which show the merit of the proposed method. yd A A i AN .
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1. INTRODUCTION

The problem of density estimation has been widely studied by Fig. 1. (a) Histogram as a special case of kernel based represen-
many researchers in mathematics as well as signal processing comation wheng(v) is rectangular. (b) The pdf representation as a
munities. The goal is to obtain a good estimate of a pdf) of linear combination of shifted versions of the kerpel).

a random variable, given the observations. The most common N

way to estimate density functions is the histogram method, though¢(v) with certain smoothness, the estimgi@) will also enjoy
many other methods have been proposed, each with its own advanthe same. Let us consider the histogram in Fig. 1(a). This can be
tages. Although histograms may yield reasonable estimates of theconsidered to be a special case of (1) whgfe) is chosen to be
original pdf when there are enough observations, it is discontinu- a rectangular pulses,, are fixed so that the width of the pulse is
ous in nature, making it less preferable for estimating continuous A, and the shifts are uniform satisfyisg = £A. In this case, the
random variables. It has been shown that a model based approacmassc, will be taken to be proportional to the number of observa-
has several advantages compared to the histogram method, esp&ons that fall in the domain of thieth pulsep(v —kA). Generally,

cially when the number of observations is limited [1], [2]. ¢(v) can be chosen such that it is smooth so that we can obtain a
For example, the kernel based method assumes that the pdémooth pdf estimate. Figure 1(b) shows an example of sif¢h
f(v) can be represented as with uniform shifts and fixedr.. Further discussions on model
based methods can be found in many references, e.g. [1], [2], [3].
fv) = Z k(v — Sk, Ok) @ Even though much work has been done in the area of pdf esti-
k mation, most of it was focused on the continuous case. In a recent

: . : paper, we proposed a new method for modeling and estimating
whereg(v) is called the kemel function. It disperses the mass probability mass functions of discrete random variables [4]. This

around the center point,, whereo;, decides the extent to which ; ; .
it will disperse the mass. The kernel functiotw) can be any ap- method is based on multirate dsp models, which takes advantage
of well-known results in multirate dsp theory. In this paper, we

propriate positive function, such as a Gaussian, a spline, etc. The . . o :
preceding model tries to represent the unknown pdf with a linear propose an improved model for discrete pdf estimation, which has

combination of shifted copies of the fixed functiofw). With the several advantages over the traditional histogram method as well

shifts sy, and the dispersion factoes; typically fixed, the weight- the one proposed in [4]. The analogy to the kernel model in (1)

ing factore; is adjusted based on the measurements of the randomwi” be stated where appropriate. Simulation results are presented

. . L~ . in the end that clearly show the advantage of the proposed method.
variablev, so that the resulting pdf estimafgv) approximates _ _
the original pdff(v) satisfactorily. One advantage of this method All notations are as in [5]. Thug M and| M represent the
is the fact that the resulting pdf estimaté) retains some of the ~ /-fold decimator and expander respectively. Therefarez)]; 1/

properties of the kernel function. For example, if we choose a d€notes the:-transform ogwthe decimated versior(Mn), and
similarly [X (z)]1m = X (2*) denotes the-transform of the ex-
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2. MULTIRATE MODEL FOR DISCRETE PDFS

Let us consider a discrete probability density functiom) of
an integer random variable. We assume that thig(n) can be
represented as the output of an interpolation fifter) preceded
by an M-fold expander as in Fig. 2. The input signdk) is

the free parameter that is to be adjusted based on the measure-

ments, whileM and f(n) are fixed. If we let the subspad® =
span of{ f(n — Mk)} wherek is any integer, them(n) € M,
and can be written as

w(n) =Y ck)f(n - kM) )

k

which is a linear combination of (n), f(n £ M), f(n £ 2M),
and so on. Notice the analogy to the continuous case in (1).

c(k) —{t1M | F(z) —» x(n)

digital filter

expander

Fig. 2. The basic pdf model.

If both the driving signak(k) and the impulse respongén) of
the interpolation filter are if,, the resulting pdk(n) also belongs
to £2, hence)) is a subspace of the spacé. Since this can be
viewed as one channel of-channel synthesis filter bank, is

a proper subspace éf. For example, If we choosg(n) to be a
lowpass filter, the resultinyy, will be a low frequency subspace.
We may choosg¢ (n) such thad, includes the pdfs that are of our
interest. In fact, we can optimize the filtén) for a given class of

partnerG(z) under mild conditions o"(z). A detailed study of
biorthogonal partners can be found in [7].

The importance of biorthogonal partners in estimating the prob-
ability density function arises as follows. Let us consider a signal
z(n) that can be represented as in Fig. 2. Therefore, we have

X(z) = C(z")F(z)

From thisz(n), we can recover the underlying driving sigrék)
by using a biorthogonal partnéf(z) as in Fig. 3.

x(n) — G(z) M [ (k)
biorthogonal 4. i oor
partner of F(z)

Fig. 3. Reconstruction of the driving signa(k).

This is not hard to see, since the output of Fig. 3 haszthe
transform

[G)X () = [GE)CEF()
= CEIGEF(2)]im
C(2) (From Eq. (3))
hencec(k) is recovered. Figure 3 shows thgk) can be written
as
o(k) = a(n)g(Mk —n) 4)

Notice that the signat(n) is a probability density function of an
integer random variable. Therefore the variable in (4) should
be interpreted as a random variable that is distributed according to

density functions, and some of the related issues are addressed im(n) (instead of as the traditional “time index”). From this point
[6]. We may also add one or more channels to the model, therebyof view, g(Mk—n) is also a random variable becausis random,
adding more fine scale components to the probability density func- and the right hand side of (4) can be viewed as the expectation of
tion. In this paper, we restrict our attention to the single channel the random variablg(Mk — n) with respect ton. Therefore (4)
model in Fig. 2, and explain how the estimation procedure works can be rewritten as

starting from the measurements.

3. ESTIMATION OF THE PDF

3.1. Estimation Procedure

c(k) = En[g(Mk —n)] ()

This kind of interpretation of a signal as the expectation of a ran-
dom variable naturally appears in almost any non-parametric den-
sity estimation scheme [2], [8], [9]. In fact, this plays an important
role in the pdf estimation method being proposed in this paper,

Let us consider again the pdf model in Fig. 2. Assuming that since this allows us to relate the measurements to the pdf estimate.
the probability density function:(n) can be represented by the Assume that we hav& measurements of the random variable

output of this model, how can we get the best estimate based onand denote them as;,0 < i« < N — 1. Given these measure-
the measurements? In order to answer this question, let us considements, the expectation in (5) can be approximated by its sample

afilter G(z) that satisfies
[G(2)F(2)]iar =1 @)

This G(z) is called a biorthogonal partner &f(z) with respect to
M [7]. One obvious example of such a filterG§z) = 1/F(z).
In fact, anyG(z) that can be expressed in the form

H(z)
([H(2)F(2)]1a1) 10

for someH (z) is a biorthogonal partner df (z), hence the part-

G(z) =

mean as follows:
1 N—-1
ék) = 5 > 9(Mk —ni)
i=0

If we define the signdl(n) as the relative occurrence of the integer
valuen in the measurements:; }, we can write¢(k) as

&(k) =Y h(n)g(Mk —n) (6)

Sinceh(n) is nothing but the histogram obtained from the mea-

ner is not unique. It is also possible to have an FIR biorthogonal surementgn; }, this means that we can get an estimate of the driv-

1strictly speakingF'(e7) should be bounded for this.

ing signalc(k) by feeding the histograrh(n) to the decimation
filter g(n) and decimating the output b/, as shown in Fig. 4.



Now that we have the estima&ék), this can be used in the
original model Fig. 2 to obtain the estimatén) of the original
pdf. The entire picture is shown in Fig. 4. We may summarize

In this case, the least squares parifi¢e) = F'(z), which can be
written asg(n) = f*(—n) in the time-domain. We can observe
that (9) is equivalent to imposing the orthonormality constraint on

the estimation procedure as follows. Firstly, we assume that thethe basis function§f(n — kM)} that span the subspavg. The

pdf z(n) of an integer random variable comes from the model

in Fig. 2. Secondly, we make measuremefis} of the random
variablen and construct the histograh{n). Notice thath(n) is

a coarse representation of the original pgf:), and it need not
belong to the subspadé,. Finally, the histogram obtained from
above is fed into the system that is shown in Fig. 4 to obtain the
estimatet(n). This pdf estimate belongs ¥ as the original pdf.

ek)
h(n) — G(2) [ IM }——{tM || F@) | &)
histogram  partner of F(z) pdf estimate
%/—/

model part

Fig. 4. Estimation of the driving signal(k) from the histogram
h(n), and subsequent estimation of the pd#h).

interpolation filterF'(z) that satisfies the orthonormality constraint
can be designed using one of many known techniques [5].
However, this approach suffers from one disadvantage, namely
the fact that the positivity of the output(n) may not be guaran-
teed. This is an important point, when using the estimation pro-
cess shown in Fig. 4, since the resulting estinigte) may not be
positive. Consider designing the filtéi(z) such that (9) is satis-
fied. Thenf(n) will necessarily have negative coefficients unless
it has order< M. Since the projectioti(n) consists of a linear
combination of shifted copies gf(n), it is very likely that(n)
will have some negative coefficients as well. In order to overcome
this problem, we may use the model in Fig. 2 to represent the
square-root:s(n) of the pdfz(n), rather than the pdf itself. This
square-root pdf model is elaborated in [4], which guarantees that
the pdf estimate is positive.

4. FIR TRUNCATION OF THE LSBP

Note that the above estimation procedure can be viewed as a proAlthough the square-root model guarantees a positive pdf estimate,

jection of the histogrank(n) onto the subspac¥®,, where the
original pdfz(n) belongs.

3.2. The Choice ofG(z)

Let us assume thdf(z) and M are fixed. Since the biorthogonal
partner of a filterF'(z) is not unique, the quality of the estimate
Z(n) may vary depending on the choice of the part6ér). So,
the natural question that may arise is how to cha@ée) in order
to obtain the best pdf estimaign), based on the limited number

of measurements. To answer this question, let us consider the fol-

lowing. If we choose>(z) to be the least squares partnetriffz)
with respect taV/, which is defined as

_ F(2)
([F(2)F(2)]1m)1m

the projectionz(n) becomes an orthogonal projection kfn)
onto Vs [7]. With any other partne€(z), the projectionz(n) is
“oblique” rather than orthogonal. It is shown in [4] that this choice
of G(z) guarantees that the projected sighéh) is closer to the
original pdfz(n) than the histogram(n) is, in ¢2 sense. In other
words, we always have

[h(n) = z(n)|| = [|2(n) — z(n)]]. ®)

Now, suppose that we are going to choose the decimation fil-
ter G(z) to be the LSBP (least squares biorthogonal partner) of
F(z) with respect taV as in (7). If we consider the denominator

B(2) = ([F(2)F(2)],m) 10 of G(2), it satisfies

G(2) = @)

B(z) = B(z) = B*(1/2").

Therefore if B(z) has a zero ato, then there exists another zero
at1/zg. This can be a problem, since it means tGdt) cannot

it has several shortcomings. In order to get a satisfactory estimate,
the sign of the square-root of the histogram has to be adjusted,
before it is used in the estimation procedure [4]. The searching
process for the optimal signature sequence can be computationally
very expensive. Another disadvantage of this approach is the fact
that the estimation results are not easy to analyze analytically due
to the nonlinearity of the model. In this section, we consider a
linear model for representing pdfs, which ensures that the result-
ing estimate is always positive, and uses only stable and realizable
filters in the estimation procedure.
Let us consider again the model in Fig. 2. In order to ensure
that the pdf estimate is non-negative, all the coefficients of the fil-
ter f(n) should be non-negative. Now takéz) to be the least
squares partner df'(z) as in (7). We know from section 3.2 that
unlessF'(z) has afilter ordex M, G(z) has poles both inside and
outside the unit circle, which means th@(z) cannot be a causal
stable filter. However, it is possible to approximate such a filter by
an FIR filter by choosing the region of convergence properly, as
long as there are no poles on the unit circle [10].

Let us consider an IIR filte€(z), whose poles lie far from
the unit circle. Lep;,, be the pole with the largest modulus among
all poles inside the unit circle, and lgt.: be the pole with the
smallest modulus among all poles outside the unit circle. If we
choose the region of convergence to be the annular region in the
z-plane that satisfie®in| < |z| < |pout|, thenQ(z) becomes a
noncausal stable filter. Since all poles are far away from the unit
circle, the impulse respongén) decays very fast. This allows us
to approximate this IIR filter by truncating its impulse response as

follows.
qr(n) = {

This corresponds to multiplying(n) with a rectangular window,

if In] <L
otherwise

q(n)
0

have all the poles inside the unit circle, and therefore it cannot be @nd some other windows (e.g. Kaiser window, Hamming window,

a causal stable filter. One way to get around this problem is to
chooseF’(z) such that its magnitude square is Nyquig, i.e.

[F(2)F(2)] 10 =1 9)

etc.) can also be used. Note tHashould be large enough such
that most of the energy af(n) is confined injn| < L. Unless
there are poles very close to the unit circle, it is possible to approx-
imateg(n) with a reasonable length. For example, it is shown



in [10] that the cubic B-spline filter can be well approximated by a be written asi(n) = y(n)/N. Therefore the expectation a{n)

truncated FIR filter of length only five or seven. is
Returning to our original interest, let us consider agai), E{h(n)} = lg{y(n)} = z(n) (11)
the least squares partner Biz). Let B(z) be the denominator N
of G(z). If we choosef(n) such thatf(n) > 0 and B(z) = which shows that the histogram estimate is unbiased. Also from

[F(2)F(2)], 3121 has zeros sufficiently apart from the unit circle, /() = ¥(n)/N, we get the following variance df(n).

it is possible to approximat@(z) by an FIR filterG (=), by trun-

1 1
cating it using a window function. Using this FIR filtéf (z) in Var{h(n)} = 1z Var{y(n)} = Ga(){l —z(n)}  (12)
place ofG(z) in Fig. 4, we can use a similar estimation procedure
as elaborated in section 3.1. The variance of the histogram estimate, definel asVar{h(n)}

However, one more remark remains to be made regarding theis therefore
positivity of the pdf estimate. Since the interpolation filj&in)
is non-negative, it is possible to make the output signal also non- £l|h(n) ZVar{h = —{1 Z:p )} (13)
negative by taking a non- negatwe dnvmg sngn(ak) So, when
modeling the original pdf:(n > c(k)f(n — Mk), we can
make it a valid pdf by choosmg(k:) >0, and normalizinge(n)
so that it adds up to 1. But when feeding the histogfgm) into
the system shown in Fig. 4, there is no guarantee that the estimate
¢(k) will be non-negative fol/k. Correspondingly, the orthogonal ~ 5.2. Model Based Method
projectioni(n) may not satisfy the non-negativity condition. In
order to guarantee that the pdf estimate is non-negative, we simply,

From (13) we can see that the variance of the estimate decreases
as the number of observatiopgincreases, as expected.

Let us consider the model in Fig. 4 again. We can write the output

drop the negative values d@f(n) to obtain a positive estimate as _
follows. Z Z h(k —k)f(n =MD

N i if Z(n) >0

Zp(n) = { g(n) otﬁgrlv)vige Therefore, the expectatlcﬁ'u{z(n)} can be written as
Note that thisz,,(n) may not necessarily belong 1%. Neverthe- E{i(n)} = Z Z E{h(k)Yg(MI — k) f(n — MI)
less, this estimate gets even closer to the originahggdf), and it
can be easily shown that Z Z

= — k) f(n—MI) (14)

[h(n) = z(n)|| = [|2p(n) — z(n)|| (10)

which guarantees that the pdf estimatign) is always closer to
the true pdfr(n) than the histogram is.

We can see that the last expression in (14) is the output of Fig.
4 when the input signal ig(n). Therefore (14) simply reduces

to z(n). This proves that the model based method results in an
unbiased pdf estimate. It can be shown that the variance of the pdf

5. BIAS AND VARIANCE OF THE PDF ESTIMATES estimatet(n) is

Since the pdf estimates are based on random observations, the esti- £||Z(n) Z Var{z(n

mates themselves are random variables. Therefore, it is important

to understand their statistical properties. Two important properties

of a random estimate are the bias and the variance. The bias of — {Z Z (k+1M)g Zx } (15)

an estimate tells us how close it is to the real value “on the aver-

age”, and similarly, the variance indicates how much an estimate

is expected to deviate from the average value [11]. It is desirable Now, let us compare the variances of the two estimates. We can
to have an estimate that is unbiased and has a small variance aghow that the variance of the model based estimate is always smaller
the same time. In the following sections, we're going to focus on than that of the histogram. In order to see this, note #a is

the model in Fig. 2, analyzing its bias and variance, and finally the orthogonal projection df(n) onto)s. Therefore, we can write
compare them with those of the histogram method. h(n) = &(n) + e(n) wherez(n) € Vo ande(n) € V5. So, we

have
h(n) — x(n) = &(n) — x(n) + e(n)
Sincez(n) € Vo, we havez(n) — z(n) € Vo ande(n) € Vg,
Let us first consider the histogram method. Assume that we havehence it follows that
N observations of a random variabte where the underlying pdf )
is z(n). The probability that the th observation will bex; = n is [A(n) —z(n)|” =

5.1. Histogram Method

I12(n) = 2()]|* + lle(n)|*

P{n: = n} = z(n) Therefore if we subtract the variance of the model based estimate
’ (15) from that of the histogram estimate (13), we get
foralli =0,1,2,..., N — 1. Therefore if we leyy(n) be the num- _ 2 SN 2
ber of observations ifin; } that have the value, y(n) is a bino- ElIn(n) = z(m)lI7} — E[lZ(n) x(z)” }A )
mial random variable with meafi{y(n)} = Nx(n) and variance = &{[[h(n) —x)|I” — [[2(n) —x(n)[I"}
Var{y(n)} = Nz(n){1 — z(n)}. Notice that the histogram can =&{|le(n)||*} >0 (16)



0.08 and the variance of the model based estimate was

> " Var{i(n)} = 0.00091091 (18)

0.06 -

E 0.04+
These values are indeed very close to the theoritical values com-
] puted from (13) and (15), which are

50 E|lh(n)—z(n)||*> = 0.00191044, E||(n)—z(n)||> = 0.00091044

We can observe that the variance of the model based pdf estimate
is much smaller than that of the histogram, as expected.

0.08

0.06 - // \ — - Original PDF 7
J —— Model-Based

7. CONCLUDING REMARKS

é 0.04 7 \ —
002 o ’ N\ 1 In this paper, we proposed a new method for non-parametric esti-
P . mation of discrete probability density functions. It was shown that
R R R S S a—- the proposed method yields an unbiased estimate with small vari-

ance, and that it is guaranteed to have a smaller estimation error
than the histogram approach. One of the important issues in this
Fig. 5. PDF estimation result. Top plot: the original pdf and the approach is the optimization of the interpolation filjn), such
histogram. Bottom plot: the original pdf and the model based pdf that the subspack, includes the pdfs of interest. Another inter-
estimate. esting problem is the estimation of a pdf in the presence of noise.

] ) o These are topics for future research.
This shows that the model based pdf estimate in Fig. 4 has a

smaller variance than the histogram based estimate. The reduced
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