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ABSTRACT

For many decades, the problem of estimating a pdf based on mea-
surements has been of interest to many researchers. Even though
much work has been done in the area of pdf estimation, most of
it was focused on the continuous case. In this paper, we propose
a new model based approach for estimating a discrete probabil-
ity density function. This approach is based on multirate dsp the-
ory, and it has several advantages over the traditional histogram
method. It is shown that this method yields an unbiased pdf esti-
mate with small variance, which is guaranteed to have a smaller
estimation error than the histogram. Simulation results are given,
which show the merit of the proposed method.

1. INTRODUCTION

The problem of density estimation has been widely studied by
many researchers in mathematics as well as signal processing com-
munities. The goal is to obtain a good estimate of a pdff(v) of
a random variablev, given the observations. The most common
way to estimate density functions is the histogram method, though
many other methods have been proposed, each with its own advan-
tages. Although histograms may yield reasonable estimates of the
original pdf when there are enough observations, it is discontinu-
ous in nature, making it less preferable for estimating continuous
random variables. It has been shown that a model based approach
has several advantages compared to the histogram method, espe-
cially when the number of observations is limited [1], [2].

For example, the kernel based method assumes that the pdf
f(v) can be represented as

f(v) =
∑

k

ckφ(v − sk, σk) (1)

whereφ(v) is called the kernel function. It disperses the massck

around the center pointsk, whereσk decides the extent to which
it will disperse the mass. The kernel functionφ(v) can be any ap-
propriate positive function, such as a Gaussian, a spline, etc. The
preceding model tries to represent the unknown pdf with a linear
combination of shifted copies of the fixed functionφ(v). With the
shiftssk and the dispersion factorsσk typically fixed, the weight-
ing factorck is adjusted based on the measurements of the random
variablev, so that the resulting pdf estimatêf(v) approximates
the original pdff(v) satisfactorily. One advantage of this method
is the fact that the resulting pdf estimatêf(v) retains some of the
properties of the kernel function. For example, if we choose a
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Fig. 1. (a) Histogram as a special case of kernel based represen-
tation whenφ(v) is rectangular. (b) The pdf representation as a
linear combination of shifted versions of the kernelφ(v).

φ(v) with certain smoothness, the estimatef̂(v) will also enjoy
the same. Let us consider the histogram in Fig. 1(a). This can be
considered to be a special case of (1) whereφ(v) is chosen to be
a rectangular pulse,σk are fixed so that the width of the pulse is
∆, and the shifts are uniform satisfyingsk = k∆. In this case, the
massck will be taken to be proportional to the number of observa-
tions that fall in the domain of thekth pulseφ(v−k∆). Generally,
φ(v) can be chosen such that it is smooth so that we can obtain a
smooth pdf estimate. Figure 1(b) shows an example of such af(v)
with uniform shifts and fixedσk. Further discussions on model
based methods can be found in many references, e.g. [1], [2], [3].

Even though much work has been done in the area of pdf esti-
mation, most of it was focused on the continuous case. In a recent
paper, we proposed a new method for modeling and estimating
probability mass functions of discrete random variables [4]. This
method is based on multirate dsp models, which takes advantage
of well-known results in multirate dsp theory. In this paper, we
propose an improved model for discrete pdf estimation, which has
several advantages over the traditional histogram method as well
the one proposed in [4]. The analogy to the kernel model in (1)
will be stated where appropriate. Simulation results are presented
in the end that clearly show the advantage of the proposed method.

All notations are as in [5]. Thus↓ M and↑ M represent the
M -fold decimator and expander respectively. Therefore[X(z)]↓M

denotes thez-transform of the decimated versionx(Mn), and
similarly [X(z)]↑M = X(zM ) denotes thez-transform of the ex-
panded version.



2. MULTIRATE MODEL FOR DISCRETE PDFS

Let us consider a discrete probability density functionx(n) of
an integer random variablen. We assume that thisx(n) can be
represented as the output of an interpolation filterf(n) preceded
by an M -fold expander as in Fig. 2. The input signalc(k) is
the free parameter that is to be adjusted based on the measure-
ments, whileM andf(n) are fixed. If we let the subspaceV0 =
span of{f(n − Mk)} wherek is any integer, thenx(n) ∈ V0,
and can be written as

x(n) =
∑

k

c(k)f(n− kM) (2)

which is a linear combination off(n), f(n ± M), f(n ± 2M),
and so on. Notice the analogy to the continuous case in (1).

M F(z)c(k) x(n)
expander digital filter

Fig. 2. The basic pdf model.

If both the driving signalc(k) and the impulse responsef(n) of
the interpolation filter are iǹ2, the resulting pdfx(n) also belongs
to `2, henceV0 is a subspace of thè2 space1. Since this can be
viewed as one channel of aM -channel synthesis filter bank,V0 is
a proper subspace of`2. For example, If we choosef(n) to be a
lowpass filter, the resultingV0 will be a low frequency subspace.
We may choosef(n) such thatV0 includes the pdfs that are of our
interest. In fact, we can optimize the filterf(n) for a given class of
density functions, and some of the related issues are addressed in
[6]. We may also add one or more channels to the model, thereby
adding more fine scale components to the probability density func-
tion. In this paper, we restrict our attention to the single channel
model in Fig. 2, and explain how the estimation procedure works
starting from the measurements.

3. ESTIMATION OF THE PDF

3.1. Estimation Procedure

Let us consider again the pdf model in Fig. 2. Assuming that
the probability density functionx(n) can be represented by the
output of this model, how can we get the best estimate based on
the measurements? In order to answer this question, let us consider
a filterG(z) that satisfies

[G(z)F (z)]↓M = 1 (3)

ThisG(z) is called a biorthogonal partner ofF (z) with respect to
M [7]. One obvious example of such a filter isG(z) = 1/F (z).
In fact, anyG(z) that can be expressed in the form

G(z) =
H(z)

([H(z)F (z)]↓M )↑M

for someH(z) is a biorthogonal partner ofF (z), hence the part-
ner is not unique. It is also possible to have an FIR biorthogonal

1Strictly speaking,F (ejω) should be bounded for this.

partnerG(z) under mild conditions onF (z). A detailed study of
biorthogonal partners can be found in [7].

The importance of biorthogonal partners in estimating the prob-
ability density function arises as follows. Let us consider a signal
x(n) that can be represented as in Fig. 2. Therefore, we have

X(z) = C(zM )F (z)

From thisx(n), we can recover the underlying driving signalc(k)
by using a biorthogonal partnerG(z) as in Fig. 3.

x(n) c(k)
decimatorbiorthogonal

partner of F(z)

G(z) M

Fig. 3. Reconstruction of the driving signalc(k).

This is not hard to see, since the output of Fig. 3 has thez-
transform

[G(z)X(z)]↓M = [G(z)C(zM )F (z)]↓M

= C(z)[G(z)F (z)]↓M

= C(z) (From Eq. (3))

hencec(k) is recovered. Figure 3 shows thatc(k) can be written
as

c(k) =
∑

n

x(n)g(Mk − n) (4)

Notice that the signalx(n) is a probability density function of an
integer random variablen. Therefore the variablen in (4) should
be interpreted as a random variable that is distributed according to
x(n) (instead of as the traditional “time index”). From this point
of view,g(Mk−n) is also a random variable becausen is random,
and the right hand side of (4) can be viewed as the expectation of
the random variableg(Mk − n) with respect ton. Therefore (4)
can be rewritten as

c(k) = En[g(Mk − n)] (5)

This kind of interpretation of a signal as the expectation of a ran-
dom variable naturally appears in almost any non-parametric den-
sity estimation scheme [2], [8], [9]. In fact, this plays an important
role in the pdf estimation method being proposed in this paper,
since this allows us to relate the measurements to the pdf estimate.
Assume that we haveN measurements of the random variablen,
and denote them asni, 0 ≤ i ≤ N − 1. Given these measure-
ments, the expectation in (5) can be approximated by its sample
mean as follows:

ĉ(k) =
1

N

N−1∑
i=0

g(Mk − ni)

If we define the signalh(n) as the relative occurrence of the integer
valuen in the measurements{ni}, we can writêc(k) as

ĉ(k) =
∑

n

h(n)g(Mk − n) (6)

Sinceh(n) is nothing but the histogram obtained from the mea-
surements{ni}, this means that we can get an estimate of the driv-
ing signalc(k) by feeding the histogramh(n) to the decimation
filter g(n) and decimating the output byM , as shown in Fig. 4.



Now that we have the estimatêc(k), this can be used in the
original model Fig. 2 to obtain the estimatex̂(n) of the original
pdf. The entire picture is shown in Fig. 4. We may summarize
the estimation procedure as follows. Firstly, we assume that the
pdf x(n) of an integer random variablen comes from the model
in Fig. 2. Secondly, we make measurements{ni} of the random
variablen and construct the histogramh(n). Notice thath(n) is
a coarse representation of the original pdfx(n), and it need not
belong to the subspaceV0. Finally, the histogram obtained from
above is fed into the system that is shown in Fig. 4 to obtain the
estimatêx(n). This pdf estimate belongs toV0 as the original pdf.

c(k)^

M F(z) x(n)
pdf estimate

h(n)
histogram partner of F(z)

G(z) M ^

model part

Fig. 4. Estimation of the driving signalc(k) from the histogram
h(n), and subsequent estimation of the pdfx(n).

Note that the above estimation procedure can be viewed as a pro-
jection of the histogramh(n) onto the subspaceV0, where the
original pdfx(n) belongs.

3.2. The Choice ofG(z)

Let us assume thatF (z) andM are fixed. Since the biorthogonal
partner of a filterF (z) is not unique, the quality of the estimate
x̂(n) may vary depending on the choice of the partnerG(z). So,
the natural question that may arise is how to chooseG(z) in order
to obtain the best pdf estimatêx(n), based on the limited number
of measurements. To answer this question, let us consider the fol-
lowing. If we chooseG(z) to be the least squares partner ofF (z)
with respect toM , which is defined as

G(z) =
F̃ (z)

([F̃ (z)F (z)]↓M )↑M

(7)

the projectionx̂(n) becomes an orthogonal projection ofh(n)
ontoV0 [7]. With any other partnerG(z), the projection̂x(n) is
“oblique” rather than orthogonal. It is shown in [4] that this choice
of G(z) guarantees that the projected signalx̂(n) is closer to the
original pdfx(n) than the histogramh(n) is, in `2 sense. In other
words, we always have

‖h(n)− x(n)‖ ≥ ‖x̂(n)− x(n)‖. (8)

Now, suppose that we are going to choose the decimation fil-
ter G(z) to be the LSBP (least squares biorthogonal partner) of
F (z) with respect toM as in (7). If we consider the denominator
B(z) = ([F̃ (z)F (z)]↓M )↑M of G(z), it satisfies

B(z) = B̃(z) = B∗(1/z∗).

Therefore ifB(z) has a zero atz0, then there exists another zero
at 1/z∗0 . This can be a problem, since it means thatG(z) cannot
have all the poles inside the unit circle, and therefore it cannot be
a causal stable filter. One way to get around this problem is to
chooseF (z) such that its magnitude square is Nyquist(M ), i.e.

[F̃ (z)F (z)]↓M = 1 (9)

In this case, the least squares partnerG(z) = F̃ (z), which can be
written asg(n) = f∗(−n) in the time-domain. We can observe
that (9) is equivalent to imposing the orthonormality constraint on
the basis functions{f(n− kM)} that span the subspaceV0. The
interpolation filterF (z) that satisfies the orthonormality constraint
can be designed using one of many known techniques [5].

However, this approach suffers from one disadvantage, namely
the fact that the positivity of the outputx(n) may not be guaran-
teed. This is an important point, when using the estimation pro-
cess shown in Fig. 4, since the resulting estimatex̂(n) may not be
positive. Consider designing the filterF (z) such that (9) is satis-
fied. Thenf(n) will necessarily have negative coefficients unless
it has order< M . Since the projection̂x(n) consists of a linear
combination of shifted copies off(n), it is very likely thatx̂(n)
will have some negative coefficients as well. In order to overcome
this problem, we may use the model in Fig. 2 to represent the
square-rootxs(n) of the pdfx(n), rather than the pdf itself. This
square-root pdf model is elaborated in [4], which guarantees that
the pdf estimate is positive.

4. FIR TRUNCATION OF THE LSBP

Although the square-root model guarantees a positive pdf estimate,
it has several shortcomings. In order to get a satisfactory estimate,
the sign of the square-root of the histogram has to be adjusted,
before it is used in the estimation procedure [4]. The searching
process for the optimal signature sequence can be computationally
very expensive. Another disadvantage of this approach is the fact
that the estimation results are not easy to analyze analytically due
to the nonlinearity of the model. In this section, we consider a
linear model for representing pdfs, which ensures that the result-
ing estimate is always positive, and uses only stable and realizable
filters in the estimation procedure.

Let us consider again the model in Fig. 2. In order to ensure
that the pdf estimate is non-negative, all the coefficients of the fil-
ter f(n) should be non-negative. Now takeG(z) to be the least
squares partner ofF (z) as in (7). We know from section 3.2 that
unlessF (z) has a filter order< M , G(z) has poles both inside and
outside the unit circle, which means thatG(z) cannot be a causal
stable filter. However, it is possible to approximate such a filter by
an FIR filter by choosing the region of convergence properly, as
long as there are no poles on the unit circle [10].

Let us consider an IIR filterQ(z), whose poles lie far from
the unit circle. Letpin be the pole with the largest modulus among
all poles inside the unit circle, and letpout be the pole with the
smallest modulus among all poles outside the unit circle. If we
choose the region of convergence to be the annular region in the
z-plane that satisfies|pin| < |z| < |pout|, thenQ(z) becomes a
noncausal stable filter. Since all poles are far away from the unit
circle, the impulse responseq(n) decays very fast. This allows us
to approximate this IIR filter by truncating its impulse response as
follows.

qL(n) =

{
q(n) if |n| ≤ L
0 otherwise

This corresponds to multiplyingq(n) with a rectangular window,
and some other windows (e.g. Kaiser window, Hamming window,
etc.) can also be used. Note thatL should be large enough such
that most of the energy ofq(n) is confined in|n| ≤ L. Unless
there are poles very close to the unit circle, it is possible to approx-
imateq(n) with a reasonable lengthL. For example, it is shown



in [10] that the cubic B-spline filter can be well approximated by a
truncated FIR filter of length only five or seven.

Returning to our original interest, let us consider againG(z),
the least squares partner ofF (z). Let B(z) be the denominator
of G(z). If we choosef(n) such thatf(n) ≥ 0 andB(z) =

[F̃ (z)F (z)]↓M↑M has zeros sufficiently apart from the unit circle,
it is possible to approximateG(z) by an FIR filterGL(z), by trun-
cating it using a window function. Using this FIR filterGL(z) in
place ofG(z) in Fig. 4, we can use a similar estimation procedure
as elaborated in section 3.1.

However, one more remark remains to be made regarding the
positivity of the pdf estimate. Since the interpolation filterf(n)
is non-negative, it is possible to make the output signal also non-
negative by taking a non-negative driving signalc(k). So, when
modeling the original pdfx(n) =

∑
k

c(k)f(n−Mk), we can
make it a valid pdf by choosingc(k) ≥ 0, and normalizingx(n)
so that it adds up to 1. But when feeding the histogramh(n) into
the system shown in Fig. 4, there is no guarantee that the estimate
ĉ(k) will be non-negative for∀k. Correspondingly, the orthogonal
projectionx̂(n) may not satisfy the non-negativity condition. In
order to guarantee that the pdf estimate is non-negative, we simply
drop the negative values of̂x(n) to obtain a positive estimate as
follows.

x̂p(n) =

{
x̂(n) if x̂(n) ≥ 0
0 otherwise

Note that thiŝxp(n) may not necessarily belong toV0. Neverthe-
less, this estimate gets even closer to the original pdfx(n), and it
can be easily shown that

‖h(n)− x(n)‖ ≥ ‖x̂p(n)− x(n)‖ (10)

which guarantees that the pdf estimatex̂p(n) is always closer to
the true pdfx(n) than the histogram is.

5. BIAS AND VARIANCE OF THE PDF ESTIMATES

Since the pdf estimates are based on random observations, the esti-
mates themselves are random variables. Therefore, it is important
to understand their statistical properties. Two important properties
of a random estimate are the bias and the variance. The bias of
an estimate tells us how close it is to the real value “on the aver-
age”, and similarly, the variance indicates how much an estimate
is expected to deviate from the average value [11]. It is desirable
to have an estimate that is unbiased and has a small variance at
the same time. In the following sections, we’re going to focus on
the model in Fig. 2, analyzing its bias and variance, and finally
compare them with those of the histogram method.

5.1. Histogram Method

Let us first consider the histogram method. Assume that we have
N observations of a random variablen, where the underlying pdf
is x(n). The probability that thei th observation will beni = n is

P{ni = n} = x(n)

for all i = 0, 1, 2, ..., N − 1. Therefore if we lety(n) be the num-
ber of observations in{ni} that have the valuen, y(n) is a bino-
mial random variable with meanE{y(n)} = Nx(n) and variance
Var{y(n)} = Nx(n){1 − x(n)}. Notice that the histogram can

be written ash(n) = y(n)/N . Therefore the expectation ofh(n)
is

E{h(n)} =
1

N
E{y(n)} = x(n) (11)

which shows that the histogram estimate is unbiased. Also from
h(n) = y(n)/N , we get the following variance ofh(n).

Var{h(n)} =
1

N2
Var{y(n)} =

1

N
x(n){1− x(n)} (12)

The variance of the histogram estimate, defined as
∑

n
Var{h(n)}

is therefore

E‖h(n)−x(n)‖2 =
∑

n

Var{h(n)} =
1

N
{1−

∑
n

x2(n)} (13)

From (13) we can see that the variance of the estimate decreases
as the number of observationsN increases, as expected.

5.2. Model Based Method

Let us consider the model in Fig. 4 again. We can write the output
as

x̂(n) =
∑

l

∑
k

h(k)g(Ml − k)f(n−Ml)

Therefore, the expectationE{x̂(n)} can be written as

E{x̂(n)} =
∑

l

∑
k

E{h(k)}g(Ml − k)f(n−Ml)

=
∑

l

∑
k

x(k)g(Ml − k)f(n−Ml) (14)

We can see that the last expression in (14) is the output of Fig.
4 when the input signal isx(n). Therefore (14) simply reduces
to x(n). This proves that the model based method results in an
unbiased pdf estimate. It can be shown that the variance of the pdf
estimatêx(n) is

E‖x̂(n)− x(n)‖2 =
∑

n

Var{x̂(n)}

=
1

N

{∑
k

∑
l

x(k + lM)g(−k)f(k)−
∑

n

x2(n)

}
(15)

Now, let us compare the variances of the two estimates. We can
show that the variance of the model based estimate is always smaller
than that of the histogram. In order to see this, note thatx̂(n) is
the orthogonal projection ofh(n) ontoV0. Therefore, we can write
h(n) = x̂(n) + e(n) wherex̂(n) ∈ V0 ande(n) ∈ Vc

0 . So, we
have

h(n)− x(n) = x̂(n)− x(n) + e(n)

Sincex(n) ∈ V0, we havex̂(n) − x(n) ∈ V0 ande(n) ∈ Vc
0 ,

hence it follows that

‖h(n)− x(n)‖2 = ‖x̂(n)− x(n)‖2 + ‖e(n)‖2

Therefore if we subtract the variance of the model based estimate
(15) from that of the histogram estimate (13), we get

E{‖h(n)− x(n)‖2} − E{‖x̂(n)− x(n)‖2}
= E{‖h(n)− x(n)‖2 − ‖x̂(n)− x(n)‖2}
= E{‖e(n)‖2} ≥ 0 (16)
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Fig. 5. PDF estimation result. Top plot: the original pdf and the
histogram. Bottom plot: the original pdf and the model based pdf
estimate.

This shows that the model based pdf estimate in Fig. 4 has a
smaller variance than the histogram based estimate. The reduced
variance is due to the fact that the pdf estimatex̂(n) is restricted
to V0, which is a proper subspace of`2.

6. SIMULATION RESULTS

In order to demonstrate the ideas in section 4 and section 5, we
present an example as follows. We assumeM = 2 and useF (z) =
(1 + z)L/2L with L = 6. Notice that this filter leads to the 5th
order spline function [12].G(z) is chosen to be the least squares
partner ofF (z), truncated by a rectangular window of length 39.
By choosing an appropriate driving signalc(k), we obtained a
sample pdfx(n) of length 37. We generated 500 random variables
according tox(n), and the histogramh(n) was obtained from the
observations. Then the histogram was fed into the system in Fig. 4
to get the orthogonal projection of the histogram. Finally, negative
values in the output of Fig. 4 were dropped, and the result was
normalized to get the pdf estimatêx(n). Fig. 5 shows the simula-
tion results. The histogram shown in Fig. 5(top) is quite different
from the original pdf, whereas the model based estimate is consid-
erably close to the true pdf, as can be seen in Fig. 5(bottom). The
estimation error was∑

n

|h(n)− x(n)|2 = 0.00151128

for the histogram, and∑
n

|x̂(n)− x(n)|2 = 0.00017605

for the model based estimate, which is only about 12% of the er-
ror of the histogram. In order to compute the variance of the pdf
estimates, we repeated the same estimation procedure as above for
100 times, where 500 random variables were generated in each ex-
periment. The variance, or equivalently the mean square error, of
the histogram estimate was∑

n

Var{h(n)} = 0.00191544 (17)

and the variance of the model based estimate was∑
n

Var{x̂(n)} = 0.00091091 (18)

These values are indeed very close to the theoritical values com-
puted from (13) and (15), which are

E‖h(n)−x(n)‖2 = 0.00191044, E‖x̂(n)−x(n)‖2 = 0.00091044

We can observe that the variance of the model based pdf estimate
is much smaller than that of the histogram, as expected.

7. CONCLUDING REMARKS

In this paper, we proposed a new method for non-parametric esti-
mation of discrete probability density functions. It was shown that
the proposed method yields an unbiased estimate with small vari-
ance, and that it is guaranteed to have a smaller estimation error
than the histogram approach. One of the important issues in this
approach is the optimization of the interpolation filterf(n), such
that the subspaceV0 includes the pdfs of interest. Another inter-
esting problem is the estimation of a pdf in the presence of noise.
These are topics for future research.
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