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ABSTRACT Moreover, although numerous new ncRNAs have been found in
laboratories, the ncRNAs that have been identified till now are still
considered to be only a small fraction of the existing ncRNAs [4].
One interesting characteristic of many ncRNAs is that they
onserve their secondary structures more than they conserve their

For a long time, proteins have been believed to perform most of
the important functions in all cells. However, recent results in ge-
nomics have revealed that many RNAs that do not encode proteinsC
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traditional models cannot be used for modeling RNA secondary
structures and detecting ncRNA genes.

We need more complex models with greater descriptive power
for this purpose. Until now, a number of methods have been pro-
posed by several groups of researchers [9, 10] that are based on
stochastic context-free grammars (SCFGs), a higher order relative
of HMMs. In this paper, we introduce the concept of context-
sensitive hidden Markov model that can effectively grasp pairwise
interactions between distant symbols. The proposed model pro-
vides an efficient framework for modeling RNA secondary struc-
tures, and it has several advantages over SCFGs as will be demon-
ﬁtrated later.

1. INTRODUCTION

It has been the central dogma of biology that genetic information
flows from DNA to RNA to protein. RNA has been mainly viewed
as a passive intermediary between DNA and protein, except for
several infrastructural RNAs such as the tRNA (transfer RNA) and
the rRNA (ribosomal RNA). Proteins have been believed to per-
form most of the crucial functions in all cells, and therefore, most
of the research has been naturally focused on identifying protein-
coding genes and their functions. The small portion of the genome
that encodes proteins has been regarded as the only important pa
in the entire genome, and the vast majority that does not convey
any information for encoding proteins has been thought to be use-
less remnants of genetic evolution.

2. TRANSFORMATIONAL GRAMMARS

According to the Chomsky hierarchy of transformational gram-
Smars [11], there are four classes of grammars as shown in Fig. 1.
These includeegular grammarscontext-free grammaygontext-
sensitive grammarandunrestricted grammarsn the order of de-
creasing restrictions in the production rules. With less restrictions
on the production rules, higher order grammars have more descrip-
tive power, and therefore they are capable of describing complex
interactions between symbols. On the other hand, although lower
order grammars such as the regular grammars are more restricted
and less powerful, they have advantages with respect to computa-
tional complexity, since they are easier to parse. According to the
Chomsky hierarchy of transformational grammars, HMMs can be
viewed as the stochastic version of regular grammars.
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(ncRNAs) have been found that take part in various important
processes in the cell machinery [1, 2, 3, 4]. For example, it has
been found that ncRNAs affect transcription and the chromosome
structure, participate in RNA processing and modification, regu-
late mRNA stability and translation, and also affect protein sta-
bility and transport [2]. In fact, the importance of ncRNAs has

been underestimated for a long time, and it was only very recent
that we realized that many crucial ncRNAs have evaded our de-
tection for several decades. During the last few years, surpris-
ingly many functions of ncRNAs have been discovered, but there
are still countless ncRNAs whose functions are not known to us.




resort to a more complex model such as the SCFG. Until now,
several SCFG-based methods have been introduced for computa-
tional analysis of RNA sequences [9, 10]. It has been shown that
the SCFG-based approach can identify ncRNAs with high accu-
racy [5, 13]. One major disadvantage of the SCFG-based methods
is their high computational complexity, which makes the predic-
context-free tion of large ncRNA genes in long DNA sequences infeasible.
Instead of using SCFGs, we can alternatively use the context-
sensitive HMM that is proposed in this paper. Unlike traditional
HMMs, context-sensitive HMMs are capable of modeling pairwise
interactions between symbols that are distant from each other. The

proposed model has the advantage that the states in the model di-

Fig. 1. The four classes of grammars in the Chomsky hierarchy of rectly correspond to the base locations in an RNA sequerice
transformational grammars. addition to this, since the proposed model is an extension of the
HMM, it can be easily incorporated into existing gene-finders that
are built on HMMs. Moreover, the context-sensitive HMM has ef-
ficient algorithms for finding the optimal state sequence étigm-
Smentproblem) [15] and computing the probability (tlseoring
problem) [16] of a given observation sequence. For sequences with
a single nested structure, the computational complexity of these al-
gorithms isO(L>M?), whereL denotes the length of the sequence
and M denotes the number of different states (or non-terminals in
SCFGs). This is smaller than the complext®(L®M?>) of the
alignment and scoring algorithms for general SCFGs [12].

unrestricted

context-sensitive

* more complex
and powerful

® less restricted

drome language and the copy language. The palindrome languag
is a language that contains all strings that read the same forward
and backwards. For example, if we consider a palindrome lan-
guage that uses an alphabet of two letfersh} for terminal sym-
bols, it contains all symbol strings of the foum, bb, abba, aabbaa,
abaaba and so forth. The copy language includes all sequences
that consist of the concatenation of two identical sequences. For
example, it contains all symbol strings that have the farmbb,
abab, abbabb and so on. Figure 2 shows examples of symbol
strings that are included in these languages. The lines in the figure
indicate the pairwise interactions between symbols that are distant 3, CONTEXT-SENSITIVE HIDDEN MARKOV MODELS
from each other. This kind of longer range correlations cannot
be described using regular grammars. It is of course possible thatThe context-sensitive HMM can be viewed as an extension of the
a regular grammar generates palindromes as part of its languageyraditional HMM, where some of the states are equipped with aux-
However, a regular grammar is not capable of generatitigsuch  jliary memory. Symbols that are emitted at certain states are stored
palindromeshence it cannot effectively discriminate palindromes  in the memory, and the stored data serves as the context which af-
from non-palindromic sequences. In fact, in order to describe a fects the emission probabilities and the transition probabilities of
palindrome language, we have to use a higher-order grammar suclihe model. There are three different kinds of states, namely, the
as the context-free grammars. Context-free grammars are capablgingle-emission staté,,, the pairwise-emission stat®,, and the
of modeling nested dependencies between symbols, as shown iontext-sensitive stat€,,. The states?, andC,, always exist in
Fig. 2 (a). Although the copy language does not appear any morepairs. For example, consider the case when there are two pairwise-
complex than the palindrome language, we need context-sensitiveemission state®; and P, in the model. Then the HMM is re-
grammars to represent such a language. This is due to the crossinguired to have also two single-emission stafg¢sand C,. Each
interactions as shown in Fig. 2 (b), which cannot be modeled using pair (P, C,,) is associated with a separate memory element, such
context-free grammars. as a stack or a queue. The triplet/f, C,, and then-th memory
element is shown in Fig. 3.

As mentioned earlier, one important application of stochastic  The differences between the three classes of states are as fol-
context-free grammars (SCFGs) [12] is the RNA secondary struc-oys, The single-emission sta, is identical to the regular state
ture analysis. Many interesting ncCRNAs conserve the secondaryjn traditional HMMs. It emits a symbol according to the associ-
structure, which makes their primary sequences look like palin- ateq emission probabilities, as we enter the state. After emitting
dromes or concatenations of several palindromes. Since HMMs g sympol, it makes a transition to the next state, according to the
cannot be used for modeling palindromic sequences, we have t0specified transition probabilities. The pairwise-emission skate

b is almost identical to the single-emission statg except that the
(a) aa i symbol that is emitted &, is stored in the auxiliary memory ded-
’ _—— ‘ icated forP,, andC,,. The data stored in the memory affects the

emission probabilities and the transition probabilitie€fin the
future. After storing the emitted symbol in the memory, a tran-
sition is made to the next state by following the transition prob-
abilities that are associated wiff,. The context-sensitive state
C., is considerably different from the other states, in the sense that
its emission probabilities and the transition probabilities are not
fixed. In fact, these probabilities depend on toatex} or the data

(b)

Fig. 2. Examples of symbols strings in (a) the palindrome lan-
guage and (b) the copy language. The lines show the pairwise lin SCFGs, some of the non-terminals, which are the equivalent of

correlations between distant symbols. states in HMMs, may not emit any symbol. Thedestractnon-terminals
do not correspond to the base locations.
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Fig. 3. Examples of the triple,, C,, and then-th memory ele- &>

ment that is associated with these states. (a) When using a stack. —_

(b) When using a queue. Queue 1

stored in the associated memory element, which is the reason why __ B
C,, is called a context-sensitive state. When we e6iter it first Fig. 4. (a) An example of a context-sensitive HMM that generates

accesses the-th memory element and retrieves a symboDnce only palindromes. (b) An example that simulates a copy language.
the symbol is retrieved, the emission probabilitiesf are ad-

justed according to the value ef For example, we may adjust number of symbols, which are pushed onto the stack. At some
the emission probabilities af’, such that it emits the same sym-  point, it makes a transition to the context-sensitive stateOnce

bol 2 with high probability (possibly, with probability one). When  we enter the context-sensitive st&fe, the emission probabilities
modeling a RNA secondary structure, we may adjust the emissionand the transition probabilities @, are adjusted, such that the
probabilities so thaC,, generates the complementary basecof  state always emits the symbol on the top of the stack and makes
Another distinctive character of the context-sensitive sfatels self-transitions until the stack becomes empty. In this waly,

that the transition to the stag, is not always allowed. For exam-  emits the same symbols as were emittedfhybut in the reverse

ple, let us consider the case when some state attempts to make arder. If we denote the number of symbols that were emitted by
transition toC',. Before making the transition, the auxiliary mem- P, as N, the generated string will always be a palindrome of the
ory that is associated witf¥,, is examined first. If the memoryis  forma, - - ayzn - @1 O 21 - 2NTN 12N - - - 1. Similarly,
empty, the transition t@’, is not allowed, and it is forced to make  we can also simulate a copy language by replacing the stack by a
a transition to another state. This is done by setting the transitionqueue as illustrated in Fig. 4 (b). In this caég, emits the same
probability to C', to zero and adjusting the remaining probabili- symbols as those emitted B, but this time, in the same order
ties correspondingly, so that the probabilities add up to unity. This since the queue is a first-in-first-out (FIFO) system. Consequently,

restriction is necessary to maintain the same numbeP,0find the resulting string will always be a concatenation of two identical
C, in a state sequence. Let= s1s2...s. be afeasible state  sequences which is of the formy - - - zyz1 - - zN.
sequence of an observed symbol striag= 2122 ... L. Then As the emission probabilities and the transition probabilities

the number of occurrence @, in s is kept the same as the num- i the context-sensitive HMM are not fixed, and as they depend
ber of occurrence of, in s by the previous restriction. Thisisa  on the context of the system, algorithms that were used in tradi-
reasonable restriction for the following reason. In the first place, tional HMMs cannot be directly applied. Therefore, the Viterbi's
if there are more”,, states than there are, states, the emission  z|gorithm [14] for finding the most probable state sequence and
probabilities of the context-sensitive stdfe cannot be properly  the forward algorithm [14] for computing the probability of an ob-
determined. On the other hand, if there are mbyestates than  servation sequence cannot be used in this case. However, there
Ch states, the symbols that were emitted by surghjsstates do  exist efficient algorithms for finding the optimal alignment [15]
not affect the probabilities in the model at all, hence they may be and computing the probability of an observed symbol string [16]
simply replaced by single-emission states. for context-sensitive HMMs. These algorithms can be used for
By using the proposed context-sensitive HMM, we can easily models with a single nested structure, in which case they are faster
construct a simple model that generatedy palindromes. For than the algorithnfsfor general SCFGs [12].
example, we may use the structure shown in Fig. 4 (a). In this
model, then-th memory element that is associated with the pair 2y algorithm can be used for finding the optimal alignment and the
(P1,Ch) is a stack. Initially, the model begins at the pairwise- inside algorithm can be used for computing the probability of an observed
emission staté”; . It makes several self-transitions to generate a sequence (the scoring problem).
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Fig. 6. (a) A typical stem-loop. The dotted lines indicate the inter-
Fig. 5. The 3’ end of a histone mRNA. (a) Primary sequence be- actions between bases that form complementary base-pairs. (b) An
fore folding. The lines indicate interactions between base-pairs. example of a context-sensitive HMM that generates stem-loops.
(b) Consensus secondary structure.

4. MODELING RNA SECONDARY STRUCTURES USING
CONTEXT-SENSITIVE HMMS ()

Now that we have introduced the basic concept of context-sensitive
HMMs, let us consider how they can be used in modeling RNA
secondary structures. RNA is a nucleic acid that consists of a se-
quence of nucleotides A, C, G and U, where U is chemically sim-
ilar to T in DNA. The nucleotide A forms a hydrogen bonded pair
with U, and C forms a pair with G, which are calledmplemen-
tary base-pairsor Watson-Crick base pairsRNA is generally a
single-stranded molecule, and it typically folds onto itself to form
consecutive base-pairs that are stacked onto each other, which is
called astem The structure that results from these base-pairs is
called theRNA secondary structuréin example of a simple RNA
secondary structure is shown in Fig. 5, which illustrates the con-
sensus secondary structure of the 3’ end of the histone mMRNA[17].
This kind of structure is called stem-loopor a hairpin, and it is O
frequently observed in various RNAs. As can be seen in this exam- (b)
ple, there are pairwise interactions between bases that are distant @
from each other. Most of the pairwise interactions in RNAs occur
in a nested fashion, where the interactions do not cross each other.
However, some RNAs have also non-nested base pairs, which are
calledpseudoknots

Context-sensitive HMMs are capable of modeling various kinds
of RNA secondary structures. Given a consensus secondary struc-
ture, designing a model that generates sequences with the specified
structure is relatively easy. For example, a typical stem-loop, or
hairpin structure, that is illustrated in Fig. 6 (a) can be represented
using the model in Fig. 6 (b). In this model, the pairwise-emission
state P, and the context-sensitive statg§ are associated with a
stack, and they generate the stem part of the structure. The single-
emission state; is used for generating the loop, since the bases
in the loop do not form pairs. We can also model a bulge, which
is defined as non-paired bases inside a stem, by adding additional
states to the model. More complex structures with multiple stem-
loops can be represented using multiple state géts C,,) with
separate stacks. Figure 7 (a) shows the typical secondary structure )
of atRNA (transfer RNA). The tRNA is a short RNA molecule that  Fig- 7. (&) A typical tRNA cloverleaf structure. (b) An example
usually consists of 7493 nucleotides. It transfers a specific amino  ©f & context-sensitive HMM that can generate the cloverleaf struc-
acid to a growing polypeptide chain during ttranslationproce- ture.
dure of mRNA into protein [18]. The tRNAs have a highly con-
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Fig. 8. (a) An example of a pseudoknot. (b) A context-sensitive

HMM that can generate the pseudoknot.

served secondary structure with three stem-loops, which is called
the cloverleaf structure due to its shape. As shown in Fig. 7, the

cloverleaf structure can be modeled using four pair&ff, C., ),

where a separate stack is dedicated to each pair. Note the similarity
between the original consensus RNA structure and the constructed
context-sensitive HMM. As every state in the HMM corresponds

to one or more base locations in the RNA sequence, the design pro{10]
cedure of context-sensitive HMMs is very intuitive. Figure 8 (a) il-
lustrates an example of a pseudoknot structure. Note that there are
several pairwise interactions that cross each other. As mentione
earlier, crossing interactions cannot be generated by SCFGs. Ho
ever, as we can see in Fig. 8 (b), context-sensitive HMMs are ca-
pable of representing such dependencies, hence they can also H2l
used for modeling pseudoknots. This example clearly shows that
the context-sensitive HMMs have greater descriptive power than

the stochastic context-free grammars.

5. CONCLUDING REMARKS

Ga1]

(13]

14
In this paper, we have introduced the concept of context-sensitive[ ]
HMM. The context-sensitive HMM can be viewed as an extension
of the traditional HMM, where some of the states are equipped [15]
with auxiliary memory elements. Symbols that are emitted at cer-
tain states are stored in the memory, and they serve as the context
of the system which affects the probabilities of the model. In this
way, we can represent longer range interactions between symbolils]
that are distant from each other, which is not possible for tradi-
tional HMMs. The proposed model has an important application
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