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ABSTRACT
It has been believed for decades, that proteins are responsible
for most of the genetically important functions in all cells. Due
to this reason, most of the research in molecular biology was
focused on identifying genes that encode proteins, and their
roles in the genetic network. Recent studies indicate that non-
coding RNAs play important roles in various processes. Such
ncRNA genes cannot be effectively identified using traditional
gene-finders that aim at protein-coding genes. Many ncRNAs
conserve their secondary structures as well as their primary
sequences, which have to be taken into account when looking
for ncRNA genes. In this paper, we propose a new method
based on context-sensitive HMMs, which can be used for pre-
dicting RNA secondary structure. It is demonstrated that the
proposed model can predict the secondary structure very ac-
curately, at a low computational cost.

1. INTRODUCTION

For many decades, it has been generally accepted that the ge-
netic information flows from DNA to RNA to protein. This has
been the central dogma of biology, and most of the research has
been focused on identifying genes that encode proteins. Proteins
have been believed to perform most of the important functions in
all cells, which range from structural and catalytic functions to
genetic regulations. In the meantime, RNAs have been mainly
viewed as an intermediary between DNAs and proteins, except
for several infrastructural RNAs, such as the tRNAs and rRNAs
that are used in the protein-coding machinery. Therefore, “genes”
were almost synonymously used for protein-coding regions, and
the vast majority in the genome that does not encode proteins has
been regarded as “junk” that is practically information-less.

Recently, startling observations have been made regarding non-
coding RNAs (ncRNAs) by numerous groups of biologists [1, 2,
3]. A number of evidences have been found, which show that the
importance of ncRNAs have been underestimated. In fact, recent
results indicate that ncRNAs that have evaded our eyes for a long
time, constitute the majority of the genomic programming in the
higher organisms [1]. It has been found that ncRNAs have im-
portant roles in various processes. They affect transcription and
the chromosome structure, take part in RNA processing and mod-
ification, regulate mRNA stability and translation, and also affect
protein stability and transport [2]. Until now, surprisingly many
functions of ncRNAs have been found, but there are still countless
ncRNAs whose functions are unknown. Moreover, although ac-
tive research has unveiled many ncRNAs that were not previously
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known to us, the ncRNAs that have been identified until now are
still considered to be the tip of an iceberg [4].

Given the huge amount of genomic data that is available these
days, it is nearly impossible to identify all these ncRNAs by exper-
imental means. During the last decade, computational sequence
analysis has become very popular, and it has expedited the pro-
cess of annotating protein-coding genes. A number of gene-finders
have been proposed that were based on a variety of approaches, in-
cluding hidden Markov models (HMM) [5, 6, 7], neural networks
[8], digital filters [9], and so forth. A number of methods, espe-
cially those based on HMMs, have been quite successful in iden-
tifying protein-coding regions. However, none of the traditional
methods can be directly applied to predicting ncRNA genes. Many
interesting RNAs conserve their secondary structures more than
they conserve their primary sequences [7, 10]. In most organisms,
ncRNA genes do not display strong sequence composition biases
[10], which is the reason why the traditional approaches that are
mainly based on base composition statistics simply fail. Therefore,
in order to predict ncRNA genes effectively, we have to consider
the primary sequence and the secondary structure of an RNA at the
same time.

Until now, several RNA gene-finders have been built using
stochastic context-free grammars (SCFGs) [11, 12]. In this paper,
we propose a new method that can be used for modeling and pre-
dicting RNA secondary structures. The proposed method is based
oncontext-sensitive HMMs[13] and it has certain advantages over
the SCFG-based one. It can provide an efficient framework for
building gene-finders that can search for ncRNA genes.

2. RNA SECONDARY STRUCTURE

RNA is a nucleic acid that consists of a sequence of nucleotides
A, C, G and U1. The nucleotide A forms a hydrogen bonded pair
with U, and C forms a pair with G, which are calledcomplemen-
tary base-pairs. RNA is generally a single-stranded molecule, and
it typically folds onto itself to form consecutive base-pairs that are
stacked onto each other, which is called astem. The structure that
results from these base-pairs is called theRNA secondary struc-
ture. An example of a simple RNA secondary structure is shown
in Fig. 1. This kind of structure is called astem-loopor ahairpin,
and it is frequently observed in various RNAs. As can be seen in
this example, there are pairwise interactions between bases that are
distant from each other. Most of the pairwise interactions in RNAs
occur in a nested fashion, where the interactions do not cross each
other.

1U is chemically similar to T in DNA.
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Fig. 1. The 3’ end of a histone mRNA. (a) Primary sequence be-
fore folding. The lines indicate interactions between base-pairs.
(b) Consensus secondary structure.

Such RNAs with nested pairwise interactions are in principle
similar to palindromes, which are sequences that read the same
forwards and backwards. The palindrome language, which con-
sists of all possible palindromes, is a classic example of languages
that cannot be represented using the so-calledregular grammarsin
the Chomsky hierarchy of transformational grammars [14]. Hid-
den Markov models can be viewed as stochastic regular gram-
mars, which indicates that HMMs cannot describe palindrome lan-
guages. It is of course possible that regular grammars - hence,
HMMs - generate palindromes as part of their language. However,
they are not capable of generatingonlysuch palindromes, thus not
able to effectively differentiate palindromic sequences from non-
palindromic ones. In order to describe such languages, we have
to use higher-order grammars such as thestochastic context-free
grammars(SCFGs) [7, 15].

Until now, several SCFG-based methods have been introduced
[11, 12] that can identify tRNAs with high accuracy. One major
disadvantage of the SCFG-based approaches is their high compu-
tational cost, which renders the prediction of large RNAs infeasi-
ble. Instead of using SCFGs, we can usecontext-sensitive HMMs
that have been recently introduced [13]. The context-sensitive
HMM is capable of modeling pairwise interactions between dis-
tant bases in RNAs. It has the advantage that the states in the model
directly correspond to the base locations in an RNA sequence.
Moreover, it can be easily incorporated into existing gene-finders
that are based on HMMs. In addition to this, context-sensitive
HMMs have efficient algorithms for finding the optimal alignment
[16] and computing the probability [17] of a given observation
sequence. The computational complexity of these algorithms is
O(L2M3) for sequences with a single nested structure, which is
smaller thanO(L3M3) of the algorithms for general SCFGs [15],
whereL is the length of the sequence andM is the number of
different states (non-terminals).

3. CONTEXT-SENSITIVE HIDDEN MARKOV MODELS

In this section, we briefly describe the concept of context-sensitive
HMMs. The context-sensitive HMM can be viewed as an exten-
sion of the traditional HMM, where some of the states are equipped
with auxiliary memory. Symbols that are emitted at certain states
are stored in the memory, and they serve as thecontextthat affects
the emission and transition probabilities of the model. There are
three different classes of states, which are thesingle-emission state

Sn, thepairwise-emission statePn and thecontext-sensitive state
Cn. Pn andCn always exist in pairs. For example, if there are two
pairwise-emission statesP1 andP2 in the model, then the model
should also have two context-sensitive statesC1 andC2. Each pair
(Pn, Cn) is associated with an auxiliary memory, such as a stack
or a queue. Figure 2 shows examples of the triplets ofPn, Cn and
then-th memory element.

The single-emission stateSn is identical to the states in tradi-
tional HMMs. As we enterSn, a symbol is emitted according to
its emission probabilities. After the emission, a transition is made
to the next state, following the specified transition probabilities.
The pairwise-emission statePn is similar to the single-emission
stateSn, except that the emitted symbol is stored in the associated
memory. The data stored in the memory affects the emission prob-
abilities and the transition probabilities ofCn, in the future. Once
the emitted symbol is stored, it makes a transition to the next state
according to the transition probabilities associated withPn. The
context-sensitive stateCn is quite different from the others, in the
sense that its emission probabilities and the transition probabilities
are not fixed. In fact, these probabilities are affected by thecon-
text, or the data stored in the associated memory element. This is
the reason whyCn is called a context-sensitive state. When we
enterCn, the associated memory is accessed and a symbolx is
retrieved. Once the symbol is retrieved, the emission probabilities
of Cn are adjusted according to the value ofx. For example, we
may adjust the probabilities such thatCn emits the same symbol
x with high probability (possibly, with probability one). Another
distinctive character of the context-sensitive stateCn is that the
transition to the stateCn is not always allowed. Let us consider
the case when some state attempts to make a transition toCn. Be-
fore making the transition, the auxiliary memory that is associated
with Cn is examined first. If the memory is empty, the transition is
not allowed, and it is forced to make a transition to another state.
This is done by setting the transition probability toCn to zero and
adjusting the remaining probabilities in a corresponding manner.
This restriction is necessary to maintain the same number ofPn

andCn in a state sequence. Lets = s1s2 . . . sL be a feasible state
sequence of an observed symbol stringx = x1x2 . . . xL. Then the
number of occurrence ofPn in s is kept the same as the number
of occurrence ofCn in s by the previous restriction. This is rea-
sonable, since if there are moreCn states than there arePn states,
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Fig. 2. Examples of the triplets ofPn, Cn, and the associated
memory element. (a) When using a stack. (b) When using a queue.
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Fig. 3. An example of a context-sensitive HMM that generates
only palindromes.

the emission probabilities of the context-sensitive stateCn cannot
be properly determined. On the other hand, if there are morePn

states thanCn states, the symbols that were emitted by surplus
Pn states do not affect the probabilities at all, hence they may be
simply replaced by single-emission states.

Based on the described context-sensitive HMM, we can easily
construct a simple model that generates only palindromes. For ex-
ample, we may use the structure shown in Fig. 3. In this model,
the auxiliary memory that is associated with the pair(P1, C1) is
a stack. Initially, the model begins at the pairwise-emission state
P1. It makes several self-transitions to generate a number of sym-
bols, which are pushed onto the stack. At some point, it moves to
the context-sensitive stateC1. Once we enter the context-sensitive
stateC1, the emission probabilities and the transition probabilities
of C1 are adjusted, such that the state always emits the symbol
on the top of the stack and makes self-transitions until the stack
becomes empty. In this way,C1 emits the same symbols as were
emitted byP1, but in the reverse order. If we denote the num-
ber of symbols that were emitted byP1 asN , the generated string
will always be a palindrome of the formx1 · · · xNxN · · · x1 or
x1 · · · xNxN+1xN · · · x1.

Since the probabilities in the context-sensitive HMM change
according to the context of the system, those algorithms that were
used in traditional HMMs, such as the Viterbi’s algorithm for find-
ing the optimal state sequence and the forward algorithm for com-
puting the probability of an observation sequence, cannot be used.
However, there exist efficient algorithms for finding the optimal
alignment [16] and computing the probability of observed symbol
strings [17] for context-sensitive HMMs. These algorithms can be
used for models with a single nested structure, in which case they
are faster than the algorithms2 for general SCFGs [15].

4. PREDICTING RNA SECONDARY STRUCTURE

Context-sensitive HMMs can effectively describe the pairwise in-
teractions between bases that are remote from each other, while
taking the dependencies between adjacent bases into account. This
makes the context-sensitive HMM ideal for modeling RNA se-
quences with conserved secondary structures. In order to demon-
strate this, let us construct a model for predicting the secondary
structure of a short RNA with a conserved hairpin structure. One

2CYK algorithm can be used for finding the optimal alignment and the
inside algorithm can be used for computing the probability of an observed
sequence (the scoring problem).

interesting RNA family that conserves such a structure is the hi-
stone mRNA. Typically, metazoan mRNAs end in the so-called
poly(A) tail. However, the replication-dependent histone mRNA
is an exception, which terminates with a conserved 26-nucleotide
that contains a 16-nucleotide stem-loop [18]. Note that this region
is not translated into a protein. The 3’ end of the histone mRNA
plays a critical role for binding to the stem-loop binding protein
(SLBP), and it is known to affect the nucleocytoplasmic transport
of the mRNA and the cytoplasmic regulation [18]. The consensus
secondary structure of the 3’ end of histone mRNAs is depicted in
Fig. 1 (b).

We represent this consensus structure using a simple context-
sensitive HMM as shown in Fig. 4. In this model,S1 corresponds
to the 5’ flanking region andS3 corresponds to the 3’ flanking re-
gion. The pair(P1, C1) generates the stem part of the secondary
structure andS2 generates the loop. After constructing this model,
we computed the model parameters based on a number of RNA
sequences whose secondary structures were already known. We
used the 65 seed alignments in the Rfam database [19] that con-
sist of hand-curated alignments of known members of the RNA
family. Given these alignments, each RNA sequence can be read-
ily aligned to the context-sensitive HMM in Fig. 4. Now that we
know the state sequence of each RNA in the training set, we can
count the number of emission and transition events at respective
states. The observed counts can be used to estimate the emission
probabilities as well as the transition probabilities of the model.
In order to make the prediction performance of the model more
robust against small errors in the sequences, we may addpseudo-
countsto the observed counts. Essentially, this corresponds to us-
ing mean posterior estimation by incorporating a prior from the
Dirichlet distributions [7].

Once we have trained the context-sensitive HMM, we used
the same model for predicting the secondary structure of other
RNA sequences. For testing purpose, we first collected 500 se-
quences from the Rfam database of histone 3’ UTR stem-loop, and
removed sequences that had ambiguous bases. We also removed
sequences that were included in the training set. The final test set
contained 461 RNA sequences. For each sequence in the training
set, we used the dynamic programming algorithm in [16] to find
the optimal state sequence. The predicted optimal alignment is
compared with the true alignment of the test sequence to evaluate
the performance of the model. In order to assess the prediction
accuracy, we first counted the number of true-positives (TP), the
number of false-positives (FP) and the number of false-negatives
(FN). True-positives are defined as the base-pairs that are correctly
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Fig. 4. Context-sensitive HMM that models the 3’ end of histone3
mRNA. This model can generate sequences that fold onto them-
selves to form a stemp-loop.
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Fig. 5. Example of a typical false-positive (shown in dotted line).

predicted. False-positives are the predicted base-pairs that do not
form pairs in the trusted alignment. Finally, false-negatives are
the base-pairs in the trusted alignment that could not be predicted.
From these values, the sensitivity (SN) and the positive predictive
value (PPV) of them system were computed as follows

SN =
TP

TP+ FN
, PPV=

TP
TP+ FP

.

Considering the simplicity of the model that we have used, the
prediction accuracy was surprisingly high. The sensitivity and the
specificity of the constructed prediction system were

SN = 0.9912, PPV= 0.9599.

It can be seen from above, that the number of false-negatives were
negligible, resulting in a sensitivity that is close to unity. Most
of the false-positives occurred inside the loop, where the predic-
tor formed an additional base-pair between U and A as shown in
Fig. 5. The dotted line that connects the base U and A in the loop
indicates the incorrect base-pair. This kind of errors can be eas-
ily prevented by imposing a restriction on the loop size, such that
it has at least four nucleotides. This improves the specificity to
PPV = 0.9934. The model in Fig. 4 can be improved further, if
we also account for bulges in the stem by introducing more states.
We may also build a gene-finder based on a similar model, that can
search for unknown histone 3’ stem-loops in DNA sequences that
have not been annotated yet.

5. CONCLUDING REMARKS

The context-sensitive HMM is an efficient tool that can reflect pair-
wise interactions between distant symbols effectively. As demon-
strated in section 4, they are suitable for modeling and predicting
RNAs that conserve secondary structures as well as primary se-
quences. By building a good model that closely represents the
consensus structure of the RNA family that is of our interest, we
can predict the secondary structure of an unannotated RNA se-
quence with high accuracy. The context-sensitive HMM has ef-
ficient algorithms for finding the optimal alignment and scoring
observed symbol strings, which make it possible to build prac-
tical systems based on the model. Context-sensitive HMMs can
also be used for modeling pseudoknots, where the pairwise inter-
actions between bases are allowed to cross each other. Pseudo-
knots are found in many interesting RNAs, and identifying these
pseudoknots is important in several applications, such as the three-
dimensional structure prediction. One interesting problem would
be how to modify the alignment and scoring algorithms in [16, 17]
to account for such pseudoknots.
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