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ABSTRACT

It has been known that biological sequences such as the DNA se-
quence display different kinds of patterns depending on their bi-
ological functions. This statistical difference can be exploited for
identifying the region of interest, such as the protein coding re-
gions or CpG islands, in a new biological sequence that has not
been annotated yet. A region of particular interest is the CpG
island, which is a region in a DNA sequence that is rich in the
dinucleotide CpG, since it is known that they can be used as gene
markers. There have been several computational methods for iden-
tifying CpG islands, each with its own strength and weakness. In
this paper, we propose a novel scheme for detecting CpG islands
in a genomic sequence, which is based on a bank of IIR lowpass
filters. The proposed method is capable of identifying CpG islands
efficiently at a low computational expense. Simulation results are
included where appropriate to demonstrate the idea.

1. INTRODUCTION

It has been known that biological sequences such as the DNA se-
quence display different kinds of patterns depending on their bi-
ological functions. For example, it has been observed that the
protein-coding regions in a genomic sequence show a period-3 be-
havior [1]. On the other hand, non-coding regions display long-
range correlations instead of short-term periodicities [2]. This sta-
tistical difference can be exploited for identifying the region of
interest (e.g. protein-coding regions, CpG islands, etc.) in a new
biological sequence that has not been annotated yet. In fact, given
the huge amount of genomic data that is available in the public do-
main these days, computational methods for analyzing biological
sequences have become increasingly popular. Some of the interest-
ing applications of computational methods in biological sequence
analysis can be found in [3], [4] and a tutorial overview can be
found in [5].

A region that is of particular interest is the CpG island, which
is a region in a DNA sequence that is abundant in the dinucleotide
CpG. This dinucleotide is usually denoted as CpG in order to dis-
tinguish it from the C-G base pair across the two strands in a DNA
double helix. The CpG islands are of our interest for many biolog-
ical reasons. For example, it has been shown that CpG islands can
be used as gene markers, since they are located upstream of the
transcription start regions of many genes [6]. Analysis of human
genome shows that all housekeeping genes (which are genes that
are expressed in all cells throughout the body, and produce pro-
teins that are necessary for basic maintenance and cellular func-
tions) and 40% of the tissue-specific genes are associated with
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CpG islands [6]. This makes them useful landmarks for identi-
fying protein-coding regions in the human genome. Moreover, ex-
periments have shown that methylation of CpG islands plays an
important role in gene silencing [7], genomic imprinting [8], car-
cinogenesis [9], etc.

Due to the frequent occurrence of CpG dinucleotides as well
as the high G+C content in such regions, several techniques have
been proposed for identifying CpG islands in a genomic sequence
each with its own strength and weakness [3], [10], [11], [12]. In
this paper, we consider the Markov chain model elaborated in [3].
Based on this model, we propose a novel scheme for detecting
CpG islands. The proposed method is based on a digital signal pro-
cessing technique that uses a bank of IIR lowpass filters. Despite
the simplicity of the proposed method, it is capable of identifying
CpG islands efficiently at a very low computational cost.

2. IDENTIFICATION OF CPG ISLANDS

The first large-scale computational analysis of CpG islands traces
back to the work of Gardiner-Garden and Frommer in 1987 [10].
They defined CpG islands as regions of at least 200 bp length, with
a G+C content higher than 50% and the observed CpG to expected
CpG ratio equal to or above 0.6. The exact definition of CpG is-
lands is somewhat arbitrary, since the choice of the cut-off param-
eters can have a critical impact on which regions are included in
the definition of the CpG islands. For example Takai and Jones re-
defined the CpG island as a region of DNA whose length is at least
500bp with a G+C content equal to or above 55% and observed
CpG to expected CpG ratio above 0.65 [11]. Using this defini-
tion, they could find regions that are more likely to be associated
with the 5’ regions of genes while excluding most of the so-called
Alu-repeats [11].

In addition to these simple schemes, there are other interesting
approaches that make use of more sophiscated - hence, more pow-
erful - techniques [3], [12], [13]. For example, the DNA sequence
can be modeled using Markov chains. In [3], the CpG islands and
the remainder of the genomic sequence are modeled separately us-
ing two Markov chains with different statistics, i.e. different tran-
sition probabilities. Given a short DNA sequence, we compute the
log-score of the sequence for each model and compare the scores
to choose the more likely one. This allows us to decide whether
the region belongs to a CpG island or not.

Let us consider a sequence of nucleotidesx(n) ∈ {A, C, T, G}.
We assume thatx(n) forms a 1st-order Markov chain where the
probability of each symbolx(n + 1) depends only on the current
symbolx(n). Now, let us denote the transition probability from a
baseβ to a baseγ in a CpG island and in a non-CpG island region
asp+

βγ andp−βγ respectively. For example,p+
AC is the probability



that the next symbol will be aC given that the current symbol is
anA inside a CpG island. Using these notations, the probability of
observing the sequencex(n)x(n+1) · · ·x(n+L− 1), assuming
that it belongs to a CpG island and that the previous symbol was
x(n − 1) can be written as

P (n|CpG)

= P (x(n) · · ·x(n + L − 1)|x(n − 1), CpG model)

=

L−1∏
i=0

p+
x(n−1+i)x(n+i) (1)

Similarly, the probability of observing this sequence assuming it
belongs to a non-CpG island region is

P (n|non-CpG)

= P (x(n) · · ·x(n + L − 1)|x(n − 1), non-CpG model)

=

L−1∏
i=0

p−x(n−1+i)x(n+i) (2)

If P (n|CpG) is greater thanP (n|non-CpG), we can conclude that
the DNA sequencex(n)x(n + 1) · · ·x(n + L − 1) belongs to a
CpG island. Otherwise, it is more likely that the sequence does not
belong to a CpG island. Therefore, if we define

S(n) =
1

L
log

P (n|CpG)

P (n|non-CpG)
. (3)

which is the log-likelihood ratio normalized by the length of the
sequence,S(n) > 0 implies that the given DNA sequence is more
likely to belong to a CpG-island, whereasS(n) < 0 implies that
the sequence probably belongs to a non-CpG island region.

Despite the simplicity of this idea, it has been shown that
this method works considerably well [3]. To see this, consider
the following example. First, we took a DNA sequence of length
219447 from the human chromosome X (GenBank accession num-
ber L44140) that has been already annotated, and computed the
transition probabilities for the two regions. These are shown in
Table 1 and Table 2. Each row in the table contains the transition
probabilities from a specific base to each of the four bases. For ex-
ample, the first row of Table 1 contains the probabilities that each
of the four bases will follow the base A inside CpG islands. There-
fore, every row in the tables adds up to unity. By comparing Table

p+
βγ A C G T
A 0.1598 0.2914 0.4247 0.1241
C 0.1299 0.3862 0.3093 0.1746
G 0.1425 0.3675 0.3675 0.1225
T 0.0758 0.3742 0.3687 0.1813

Table 1. Transition probabilities inside the CpG island region.

p−βγ A C G T
A 0.2499 0.2209 0.3526 0.1766
C 0.2810 0.3352 0.0941 0.2897
G 0.2159 0.2586 0.3397 0.1858
T 0.1283 0.2624 0.3594 0.2499

Table 2. Transition probabilities in the non-CpG island region.
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Fig. 1. (Top) CpG island prediction result using the Markov chain
method. (Bottom) Magnified plot.

1 and Table 2, we can find one interesting fact about the transition
probabilities. In Table 1, we can see that the probability that a C
will be followed by a G is very high inside the CpG islands, re-
sulting in many CpG dinucleotides. However, this is not the case
outside the CpG islands. Table 2 shows that it is rather unlikely
that a C will be followed by a G. This is a result of the methy-
lation process which mutates a C into a T with a relatively high
chance whenever it finds a CpG dinucleotide [14]. As a conse-
quence, CpG dinucleotides appear much less frequently than they
are expected. However, this methylation process is suppressed in
the CpG islands, hence we can find more CpG dinucleotides than
usual [14].

Figure 1 shows the prediction result of CpG islands based on
this approach. Between the base locations 1 and 5000, there is
only one CpG island of length 332 between 3095 and 3426. At
this location,S(n) > 0 which implies that it is very likely that
this region overlaps with a CpG island. Outside this region,S(n)
is mostly negative although there are some fluctuations. This plot
shows that the CpG/non-CpG regions can be reasonably discrim-
inated by looking at the sign ofS(n). However, if we look into
the plots more closely, we can find that there are a lot of fluc-
tuations around zero, resulting in many unwanted zero-crossings.
The bottom plot in Figure 1 shows the magnified plot around the
CpG island. We can see that the region around base location 3000
has positive values although it doesn’t belong to a CpG island.
Moreover, there are several zero-crossings inside the CpG island.
Apparently, this is not what we expect. In the next section, we pro-
pose a new method that can relieve these problems and improve the
prediction results.

3. IDENTIFYING CPG ISLANDS USING A BANK OF IIR
LOWPASS FILTERS

When using the method elaborated in the previous section, it is
not very obvious how to choose the window sizeL for computing
S(n). This is an important issue, since the choice of the window
size can have a significant effect on the detection results. Larger
windows usually enhance the reliability of the result but degrade
the resolution of the output. On the contrary, smaller windows are



able to catch up with the changes of the statistical properties very
quickly, butS(n) may fluctuate around zero more often, thereby
making the identification results less reliable.

Let us consider again the log-likelihood ratioS(n) in (3). If
we definey(n) as the log-likelihood ratio of a single transition,
that is,

y(n) = log

(
p+

x(n−1)x(n)

p−x(n−1)x(n)

)
, (4)

then S(n) can be rewritten as

S(n) =
1

L

L−1∑
i=0

y(n + i)

= y(n) ∗ have(n). (5)

Here,have(n) is a simple averaging filter that is defined as

have(n) =

{
1
L

−L + 1 ≤ n ≤ 0
0 otherwise.

(6)

Note thathave(n) can be viewed as a simple lowpass filter. In-
stead of using a single filter that is rectangular in shape, we may
use a bank ofM filters, where each filter is a lowpass filter with
a different bandwidth. By looking at the outputs altogether, we
may be able to make a better decision on the locations of the CpG
islands. This idea is shown in Fig. 2.

One way to construct such a filter bank is to use a one-pole
filter

Hk(z) =
1 − αk

1 − αkz−1
(7)

in thek-th channel, such that0 < α0 < α1 < · · · < αM−1 < 1.
This corresponds tohk(n) = (1−αk)αn

ku(n) in the time-domain.
Choosing the filterhk(n) in this way results in weighted averaging
of y(n), where the more recent inputs are given larger weights than
the past ones. Also note that

∑
n

hk(n) = 1, serving as a proper
weighting function.

In order to demonstrate the idea, consider the following sim-
ulation. We choseαk (k = 0, 1, . . . , 40) from 0.95 to 0.99 by
increasing its value by 0.001, andHk(z) was chosen as (7). We
computedy(n) defined as (4) from the same input sequence (the
human chromosome X) that we used for the averaging method in
section 2. Then we filteredy(n) using the filtershk(n) to obtain

Sk(n) = y(n) ∗ hk(n) (8)

for all k. We combined these outputs altogether to obtain the con-
tour plot shown in Fig. 3. The contour plot in Fig. 3 clearly shows
the band which corresponds to the CpG island located between

H0(z)

H1(z)

HM-1(z)

y(n) S0(n)

S1(n)

SM-1(n)

…

Fig. 2. A bank ofM lowpass filters with different bandwidths.
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Fig. 3. Contour plot of the outputsSk(n). The red band in the
middle clearly indicates the existence of a CpG island.

3095 and 3426 (colored in orange and red). This is more promi-
nent in Fig. 4, which is a two-level contour plot of the same output
Sk(n). The level curves are located atSk(n) = 0, and the shaded
area indicates whereSk(n) is positive. From Fig. 4, we can see
that asαk increases, there are less fluctuations around zero. For
example, forαk = 0.99 there is only one small region inside the
shaded band whereSk(n) goes below zero. On the contrary, for
αk = 0.95 there are more than 10 regions inside the band where
Sk(n) is negative. One more interesting thing to note in Fig. 4
is the fact that the shaded region slightly bends to the right asαk

increases. This shows that the response time of the filterhk(n)
is longer for largerαk. If αk is large, the past samples are given
more weights than when we use a smallerαk. Effectively, this
means that more samples ofy(n) are taken into account in com-
putingSk(n). This allows us to obtain a smoother output with less
fluctuation, but at the same time, the filter is slower in catching
up with the changes in the input statistics. So, there is a trade-off
between the responsiveness of the filter and the stability of the out-
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Fig. 4. Two level contour plot of the outputsSk(n). The level
curve is located at zero, separating the positive and the negative
regions.



put. This is indeed a very similar problem to that of choosing the
window sizeL when using the averaging method in section 2, and
this is the reason why we have to look at the outputs altogether
instead of depending on a single output.

4. PREDICTION OF THE CHANGE POINTS

Now that we are given a number of outputs corresponding to dif-
ferentαk, how can we predict the start and end points of the CpG
islands more accurately? In order to answer this question, let us
first consider the following. Assume that we have two distinct re-
gions - a CpG island and a non-CpG island region - each of which
can be modeled using a first-order Markov chain with different
statistics. Now, using a rectangular window of lengthL, let us
compute the weighted sum of the log-likelihood ratioy(n) inside
the window. Since we are using a rectangular window in this case,
all y(n) are weighted equally as in (5). Initially, let us assume that
this window is inside the first region and doesn’t overlap with the
second region at all. Then the expectation ofS(n) can be simply
written as

E[S(n)] =
1

L

L−1∑
i=0

E[y(n + i)]

=
1

L
(L · E[y(n)])

= E[y(n)]. (9)

Therefore, the expectation ofS(n) inside the CpG-islands will be
E[S(n)|CpG] = E[y(n)|CpG] > 0, andE[S(n)|non-CpG] =
E[y(n)|non-CpG] < 0 outside the CpG-islands. Now, consider
gradually shifting the window to the right one-by-one. At some
point, it will cross the change point between those two regions,
and the window will have an overlap with both regions as shown
in Fig. 5. If we letk be the length of the part of the window that
overlaps with the second region, the expectation ofS(n) can be
written as

E[S(n)] =
1

L

L−1∑
i=0

E[y(n + i)]

=
1

L

(
(L − k) · E[y(n)|region 1]

+k · E[y(n)|region 2]
)

=
L − k

L
E[y(n)|region 1] +

k

L
E[y(n)|region 2](10)
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Fig. 5. A rectangular window of lengthL located around the
change point.
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Fig. 6. An exponentially decaying window located around the
change point.

where the sign ofE[S(n)] depends onL, k, E[y(n)|region 1] and
E[y(n)|region 2]. As we shift the window further, the overlap with
the first region will decrease, and finally the whole window will be
located inside the second region. Since the sign ofE[S(n)] in
each region is different, at some point we can observe the change
of sign ofE[S(n)]. Let us denote thek (0 < k < L) that satisfies
E[S(n)] = 0 ask∗. If we solve fork∗, we get

k∗ =
E2L

E2 − E1
(11)

whereEi = E[y(n)|regioni]. In fact, this is the point where
we can first recognize the change between regions in the given
sequence. Therefore,k∗ can be viewed as the delay of the de-
tection algorithm, and it can be computed once we knowE1 and
E2. Since we know the statistics of the respective Markov chains
used for modeling the CpG/non-CpG island region, we can com-
puteE+ = E[S(n)|CpG] andE− = E[S(n)|non-CpG] that are
needed for computing the delay. We have

E+ =
∑

β,γ∈{A,C,G,T}

p+
βγ log

(
p+

βγ

p−βγ

)
(12)

and

E− =
∑

β,γ∈{A,C,G,T}

p−βγ log

(
p+

βγ

p−βγ

)
. (13)

Using the transition probabilities in Table 1 and Table 2, we get
E+ = 0.0427 andE− = −0.0412. Therefore, when entering a
CpG island from a non-CpG island region, we expect a delay of

k∗ =
E+L

E+ − E− = 25.04 (14)

whereL = 51. Similarly, when we leave a CpG island and enter a
non-CpG island region, the expected delay is

k∗ =
E−L

E− − E+
= 25.96. (15)

As we are using a rectangular window, we expect the delay to be
aroundL/2, which is indeed the case.

Now let us consider using an exponential window defined as
(7). This window is shown in Fig. 6. Again, we want to find thek
that satisfiesE[S(n)] = 0. In this case,E[S(n)] can be written as

E[S(n)] =

L−1∑
i=−∞

(1 − α)αL−1−iE[y(n + i)]

= αkE1 + (1 − αk)E2. (16)



If we solve for thek∗ that makesE[S(n)] = 0, we get

k∗ = logα

(
E2

E2 − E1

)
. (17)

Based on the transition probabilities in Table 1 and Table 2, we
get the plot of the delayk∗ as a function ofα as shown in Fig.
7. Now that we have computed the expected delays corresponding
to different values ofα, let us compare these with the actual zero-
crossing points. We generated a random sequence of A, C, G and
T based on the transition probabilities in Table 1 and Table 2. We
computedSk(n) for 0.95 < αk < 0.99 and computed the zero-
crossing points. Figure 8 shows the level curves forS(n) = 0
with the theoretical curve obtained from (17). It can be seen that
the theoretical curves are very close to the actual curves. There-
fore, in order to predict the changing point of the two regions more
accurately, we may first find the level curves forS(n) = 0 and find
the theoretical curve of the zero-crossing points that matches the
actual curve best. From this, we can make up for the delay and
predict the actual change point more precisely.

5. CONCLUDING REMARKS

In this paper, we proposed a novel scheme for predicting CpG is-
lands, which is based on a bank of IIR filters. It was shown that
this method can locate the CpG islands efficiently at a low compu-
tational cost. The purpose of the paper was in proposing an idea
that may improve the prediction results and therefore we haven’t
compared the performance with the existing systems. In order to
compare this method with other existing algorithms, we may have
to fine-tune the idea by incorporating the knowledge about typical
lengths of CpG islands, etc. We may also use lowpass filters with
better passband/stopband details to improve the prediction results.
These are possible directions for future research.
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