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ABSTRACT CpG islands [6]. This makes them useful landmarks for identi-
fying protein-coding regions in the human genome. Moreover, ex-

It has been known that biological sequences such as the DNA se-7 " ts h h that methvlati f CoG islands bl
quence display different kinds of patterns depending on their bi- periments have shown that methylation of ©p% islands plays an

ological functions. This statistical difference can be exploited for important Fo'eg'” %ene silencing [7], genomic imprinting [8], car-
identifying the region of interest, such as the protein coding re- cinogenesis [9], etc.

gions or CpG islands, in a new biological sequence that has not Due_to the frequent occurrence (.)f CpG dedeOt'de.S as well
been annotated yet. A region of particular interest is the CpG as the high G+C content in such regions, several techniques have

island, which is a region in a DNA sequence that is rich in the been proposed for identifying CpG islands in a genomic sequence

dinucleotide CpG, since it is known that they can be used as geneeaCh with its own strength and weakness [3], [10], [11], [12]. In

markers. There have been several computational methods for ideng"s pgper, tvr\:'e conzldler the Markov chain mloder: elabc;ratccejdtln [t3]
tifying CpG islands, each with its own strength and weakness. In ased on his model, we propose a novel scheme lor detecting

this paper, we propose a novel scheme for detecting CpG isIandstG islands. The proposed method is based on a digital signal pro-

in a genomic sequence, which is based on a bank of IR IowpassCGSSi_ng tg(_:hnique that uses a bank of .”R lowpass f“t?rs- I_De;pite
filters. The proposed method is capable of identifying CpG islands tgeél_rr}ph%lty (;F. the 3roptosed mlethod, itis tca;_pablle of |tdent|fy|ng
efficiently at a low computational expense. Simulation results are pts Islands efhiciently at a very low computational cost.
included where appropriate to demonstrate the idea.

2. IDENTIFICATION OF CPG ISLANDS

1. INTRODUCTION The first large-scale computational analysis of CpG islands traces

back to the work of Gardiner-Garden and Frommer in 1987 [10].
They defined CpG islands as regions of at least 200 bp length, with
a G+C content higher than 50% and the observed CpG to expected
CpG ratio equal to or above 0.6. The exact definition of CpG is-

It has been known that biological sequences such as the DNA se
quence display different kinds of patterns depending on their bi-
ological functions. For example, it has been observed that the
protein-coding regions in a genomic sequence show a period-3 be ; i . .
havior [1]. On the other hand, non-coding regions display long- lands is somewhat a_lr_bltra_lry, since the c_:h0|ce (.)f the CUt.'Oﬁ param-
range correlations instead of short-term periodicities [2]. This sta- S1€'S can have a critical impact on which regions are included in
tistical difference can be exploited for identifying the region of the definition of the CpG islands. For example Takai and Jones re-
interest (e.g. protein-coding regions, CpG islands, etc.) in a new defined the CpG island as a region of DNA whose length is at least

biological sequence that has not been annotated yet. In fact, giverPO0PP With a G+C content equal to or above 55% and observed
the huge amount of genomic data that is available in the public do- CPC 0 expected CpG ratio above 0.65 [11]. Using this defini-
main these days, computational methods for analyzing biological ion: they could find regions that are more likely to be associated
sequences have become increasingly popular. Some of the interestVith the 5’ regions of genes while excluding most of the so-called
ing applications of computational methods in biological sequence AluTepeats [11]. , , ,
analysis can be found in [3], [4] and a tutorial overview can be In addition to these simple schemes,_there are other interesting
found in [5]. approaches_that make use of more sophiscated - hence, more pow-
A region that is of particular interest is the CpG island, which ©rful - techniques [3], [12], [13]. For example, the DNA sequence
is a region in a DNA sequence that is abundant in the dinucleotide @1 P& modeled using Markov chains. In [3], the CpG islands and
CpG. This dinucleotide is usually denoted as CpG in order to dis- (e remainder of the genomic sequence are modeled separately us-
tinguish it from the C-G base pair across the two strands in a DNA N9 two Mark_oy_cham_s with different statistics, i.e. different tran-
double helix. The CpG islands are of our interest for many biolog- Sition probabilities. Given a short DNA sequence, we compute the
ical reasons. For example, it has been shown that CpG islands cari9-Score of the sequence for each model and compare the scores
be used as gene markers, since they are located upstream of thf choose the more likely one. This allows us to decide whether
transcription start regions of many genes [6]. Analysis of human € region belongs to a CpG island or not.
genome shows that all housekeeping genes (which are genes that Let us consider a sequence of nucleotids) {A’ C,T,G}.
are expressed in all cells throughout the body, and produce pro-//& @ssume that(n) forms a 1st-order Markov chain where the
teins that are necessary for basic maintenance and cellular funcProbability of each symbat(n + 1) depends only on the current

tions) and 40% of the tissue-specific genes are associated witiSYMPOlz(n). Now, let us denote the transition probability from a
bases to a basey in a CpG island and in a non-CpG island region
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that the next symbol will be &' given that the current symbol is 05
an A inside a CpG island. Using these notations, the probability of
observing the sequeneén)z(n+1) ---z(n+ L — 1), assuming

that it belongs to a CpG island and that the previous symbol was g
z(n — 1) can be written as

P(n|CpG) ot vt
_ P("L’ (n) . "L’(n + L _ 1)|$(n _ 1)’ CpG mode) 0 500 1000 1500 ZOOBOaseZLS(O:::atiOS:OO 3500 4000 4500 5000
L—-1
_ +
- H pz(n71+i)z(n+i) (1)
1=0

Similarly, the probability of observing this sequence assuming it
belongs to a non-CpG island region is

P(n|non-CpQ
= P(z(n)---z(n+ L —1)|z(n —1),non-CpG modél

05 . . . . . .
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L—-1
= H P (n—1+i)a(n+i) &) Fig. 1. (Top) CpG island prediction result using the Markov chain
=0 method. (Bottom) Magnified plot.

If P(n|CpG) is greater thaP(n|non-CpQ, we can conclude that
the DNA sequence(n)z(n + 1) ---z(n + L — 1) belongs to a 1 and Table 2, we can find one interesting fact about the transition
CpG island. Otherwise, it is more likely that the sequence does notprobabilities. In Table 1, we can see that the probability that a C
belong to a CpG island. Therefore, if we define will be followed by a G is very high inside the CpG islands, re-
sulting in many CpG dinucleotides. However, this is not the case
outside the CpG islands. Table 2 shows that it is rather unlikely
that a C will be followed by a G. This is a result of the methy-
o o ) ) lation process which mutates a C into a T with a relatively high
which is the log-likelihood ratio normalized by the length of the  chance whenever it finds a CpG dinucleotide [14]. As a conse-
sequences(n) > 0 implies that the given DNA sequence is more  quence, CpG dinucleotides appear much less frequently than they
likely to belong to a CpG-island, where&$n) < 0 |mp||e§ that are expected. However, this methylation process is suppressed in
the sequence probably belongs to a non-CpG island region. the CpG islands, hence we can find more CpG dinucleotides than
Despite the simplicity of this idea, it has been shown that g 4| [14].
this method works considerably well [3]. To see this, consider Figure 1 shows the prediction result of CpG islands based on
the following example. First, we took a DNA sequence of length s approach. Between the base locations 1 and 5000, there is
219447 from the human chromosome X (GenBank accession NUM-only one CpG island of length 332 between 3095 and 3426. At
ber L_4'4140) that_hgs been already ar_motated, and computed _th?nis location,S(n) > 0 which implies that it is very likely that
transition probabilities for the two regions. These are shown in g region overlaps with a CpG island. Outside this regidfm)
Table 1 and Table 2. Each row in the table contains the transition g mostly negative although there are some fluctuations. This plot
probabilities from a specific base to each of the four bases. For ex-ghows that the CpG/non-CpG regions can be reasonably discrim-
ample, the first row of Table 1 contains the probabilities that each jh5teq by looking at the sign o(n). However, if we look into
of the four bases will follow the base A inside CpG islands. There- ¢ plots more closely, we can find that there are a lot of fluc-
fore, every row in the tables adds up to unity. By comparing Table yations around zero, resulting in many unwanted zero-crossings.

The bottom plot in Figure 1 shows the magnified plot around the

_1 P(n|CpG)
S(n) = 7 log P(n|non-CpG" ®)

Phy A c G T CpG island. We can see that the region around base location 3000
A | 01598 0.2914 0.4247 0.1241 has positive values although it doesn’t belong to a CpG island.
C | 0.1299 0.3862 0.3093 0.1746 Moreover, there are several zero-crossings inside the CpG island.
G | 0.1425 0.3675 0.3675 0.1225 Apparently, this is not what we expect. In the next section, we pro-
T | 0.0758 0.3742 0.3687 0.1813 pose a new method that can relieve these problems and improve the

prediction results.
Table 1. Transition probabilities inside the CpG island region.

3. IDENTIFYING CPG ISLANDS USING A BANK OF IR

Psy A c G T LOWPASS FILTERS
A | 0.2499 0.2209 0.3526 0.1766
C | 0.2810 0.3352 0.0941 0.2897 When using the method elaborated in the previous section, it is
G | 0.2159 0.2586 0.3397 0.1858 not very obvious how to choose the window sizéor computing
T | 01283 0.2624 0.3594 0.2499 S(n). This is an important issue, since the choice of the window

N o ) _ size can have a significant effect on the detection results. Larger
Table 2. Transition probabilities in the non-CpG island region.  windows usually enhance the reliability of the result but degrade
the resolution of the output. On the contrary, smaller windows are



able to catch up with the changes of the statistical properties very
quickly, but.S(n) may fluctuate around zero more often, thereby
making the identification results less reliable.

Let us consider again the log-likelihood ratign) in (3). If
we definey(n) as the log-likelihood ratio of a single transition,
that is,

p+ )
z(n—1)x(n
y(n) = log | =22 ) @)
pz(nfl)z(n)
then S(n) can be rewritten as
1 L—-1
Stn) = 7Y yln+i)
=0
= y(n) * have(n). ©)
Here,hqve(n) is a simple averaging filter that is defined as
L _L+1<n<o0
— L = =~
have(n) = { 0 otherwise ©)

Note thath...(n) can be viewed as a simple lowpass filter. In-
stead of using a single filter that is rectangular in shape, we may
use a bank of\/ filters, where each filter is a lowpass filter with

a different bandwidth. By looking at the outputs altogether, we
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Fig. 3. Contour plot of the output$(n). The red band in the
middle clearly indicates the existence of a CpG island.

3095 and 3426 (colored in orange and red). This is more promi-
nentin Fig. 4, which is a two-level contour plot of the same output
Sk(n). The level curves are located $f(n) = 0, and the shaded
area indicates wher8y(n) is positive. From Fig. 4, we can see

may be able to make a better decision on the locations of the CpGthat asay, increases, there are less fluctuations around zero. For

islands. This idea is shown in Fig. 2.
One way to construct such a filter bank is to use a one-pole

filter
1—

1—apz—1 @)

in the k-th channel, such thét< ap < a1 < --- < ap—1 < 1.

This corresponds thy, (n) = (1—ax)agpu(n) in the time-domain.
Choosing the filteh () in this way results in weighted averaging
of y(n), where the more recent inputs are given larger weights than
the past ones. Also note thaf i (n) = 1, serving as a proper
weighting function.

In order to demonstrate the idea, consider the following sim-
ulation. We chosex, (k = 0,1,...,40) from 0.95 to 0.99 by
increasing its value by 0.001, ard (z) was chosen as (7). We
computedy(n) defined as (4) from the same input sequence (the
human chromosome X) that we used for the averaging method in
section 2. Then we filtereg(n) using the filtersi (n) to obtain

Sk(n) = y(n) * hi(n) ®

for all k. We combined these outputs altogether to obtain the con-
tour plot shown in Fig. 3. The contour plot in Fig. 3 clearly shows

Hi(z) = Ok

the band which corresponds to the CpG island located between

H()(Z)

> So()

y(n)

H1(Z)

S

Hy(2) —— Sy, (n)

Fig. 2. A bank of M lowpass filters with different bandwidths.

example, fora, = 0.99 there is only one small region inside the
shaded band whergy(n) goes below zero. On the contrary, for
ax = 0.95 there are more than 10 regions inside the band where
Sk(n) is negative. One more interesting thing to note in Fig. 4
is the fact that the shaded region slightly bends to the right,as
increases. This shows that the response time of the fil{én)

is longer for largerv. If «y is large, the past samples are given
more weights than when we use a smaber. Effectively, this
means that more samplesgfn) are taken into account in com-
putingSk (n). This allows us to obtain a smoother output with less
fluctuation, but at the same time, the filter is slower in catching
up with the changes in the input statistics. So, there is a trade-off
between the responsiveness of the filter and the stability of the out-
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Fig. 4. Two level contour plot of the outputS,(n). The level
curve is located at zero, separating the positive and the negative
regions.



put. This is indeed a very similar problem to that of choosing the Change Point
window sizeL when using the averaging method in section 2, and

this is the reason why we have to look at the outputs altogether Region 1 Region 2
instead of depending on a single output.

Moving

/ window

4. PREDICTION OF THE CHANGE POINTS

Now that we are given a number of outputs corresponding to dif-
ferentay, how can we predict the start and end points of the CpG
islands more accurately? In order to answer this question, let us
first consider the following. Assume that we have two distinct re-
gions - a CpG island and a non-CpG island region - each of which Fig. 6. An exponentially decaying window located around the
can be modeled using a first-order Markov chain with different change point.

statistics. Now, using a rectangular window of lendthlet us

compute the weighted sum of the log-likelihood rajia:) inside where the sign ofZ[S(n)] depends ofL, &, E]y(n)|region 1 and

the window. Since we are using a rectangular window in this case, Ely(n)|region 2. As we shift the window further, the overlap with
ally(n) are weighted equally as in (). Initially, let us assume that the first region will decrease, and finally the whole window will be
this window is inside the first region and doesn’t overlap with the located inside the second region. Since the sigiEEg8(n)] in
second region at all. Then the expectatiorb¢fi) can be simply o501 region is different, at some point we can observe the change

written as of sign of E[S(n)]. Let us denote thé (0 < k < L) that satisfies

base location

1] L=t E[S(n)] = 0 ask™. If we solve fork™, we get
ElSm] = 7 Elyn+i) -y an
i=0 — EQ — E1
= (L Elym) where E; = El[y(n)|regioni]. In fact, this is the point where
= Elyn). ) we can first recognize the change between regions in the given

sequence. Thereforé,” can be viewed as the delay of the de-
Therefore, the expectation 6f(n) inside the CpG-islands willbe  tection algorithm, and it can be computed once we kdowand
E[S(n)|CpG = E[y(n)|Cpg > 0, and E[S(n)|non-CpG = E->. Since we know the statistics of the respective Markov chains
E[y(n)|non-CpG < 0 outside the CpG-islands. Now, consider used for modeling the CpG/non-CpG island region, we can com-
gradually shifting the window to the right one-by-one. At some pute ET = E[S(n)|CpG andE~ = E[S(n)|non-CpG that are
point, it will cross the change point between those two regions, needed for computing the delay. We have
and the window will have an overlap with both regions as shown

+
in Fig. 5. If we letk be the length of the part of the window that Et = Z pE log Py (12)
overlaps with the second region, the expectatiory @f) can be il n
written as pyeia.c.a.T} K
L1 and
1 . P
BSm) = > Blyn+i)] B = 3> pleg( ). (13)
i=0 B,7€{A,C,G,T} Poy
-1 ((L — k) - E[y(n)|region 1 Using the transition probabilities in Table 1 and Table 2, we get
L Et = 0.0427 and E~ = —0.0412. Therefore, when entering a
+k - E[y(n)|region 3) CpG island from a non-CpG island region, we expect a delay of
L—-k . k . k*—£—2504 (14)
= TE[y(n)|reg|on 1+ EE[y(n)\reglon 2(10) T E+_E- 7
_ whereL = 51. Similarly, when we leave a CpG island and enter a
Change Point non-CpG island region, the expected delay is
EL
Region 1 Region 2 = ——— _ =25.96.
gi gion . k 5= — B+ 25.96 (15)
Moving . .
/ window As we are using a rectangular window, we expect the delay to be
aroundL/2, which is indeed the case.
. Now let us consider using an exponential window defined as

- . (7). This window is shown in Fig. 6. Again, we want to find the
base location that satisfiesZ[S(n)] = 0. In this caseE[S(n)] can be written as

L—-1
L—1—1 .
Fig. 5. A rectangular window of lengti. located around the E[S(n)] = Z (1-a)a Ely(n +1)]
change point. i=—00

= o"Ei+(1-a"Es. (16)



If we solve for thek* that makes=[S(n)] = 0, we get
. Ey
k™ =log,, (7E2 — El) .

Based on the transition probabilities in Table 1 and Table 2, we
get the plot of the dela}* as a function ofx as shown in Fig.

7

7. Now that we have computed the expected delays corresponding

to different values ofy, let us compare these with the actual zero-

crossing points. We generated a random sequence of A, C, G and

T based on the transition probabilities in Table 1 and Table 2. We
computedSy (n) for 0.95 < ax < 0.99 and computed the zero-
crossing points. Figure 8 shows the level curves§¢n) = 0

with the theoretical curve obtained from (17). It can be seen that

the theoretical curves are very close to the actual curves. There-

fore, in order to predict the changing point of the two regions more
accurately, we may first find the level curves fn) = 0 and find

the theoretical curve of the zero-crossing points that matches the

actual curve best. From this, we can make up for the delay and
predict the actual change point more precisely.

5. CONCLUDING REMARKS
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Fig. 8. Actual level curves forS(n) = 0 against the theoreti-
cal curve (thick line with diamonds) computed from the transition
probabilities. (Top) Region changes from a non-CpG island region
to a CpG island. (Bottom) Region changes from a CpG-island to a

In this paper, we proposed a novel scheme for predicting CpG is- non-CpG island region.

lands, which is based on a bank of IIR filters. It was shown that
this method can locate the CpG islands efficiently at a low compu-
tational cost. The purpose of the paper was in proposing an idea
that may improve the prediction results and therefore we haven't
compared the performance with the existing systems. In order to
compare this method with other existing algorithms, we may have [4]
to fine-tune the idea by incorporating the knowledge about typical
lengths of CpG islands, etc. We may also use lowpass filters with [5]
better passband/stopband details to improve the prediction results.
These are possible directions for future research.
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