
GENE AND EXON PREDICTION USING ALLPASS-BASED FILTERS

P. P. Vaidyanathan and Byung-Jun Yoon
Dept. of Electrical Engineering, California Institute of Technology

Pasadena, CA 91125, USA
ppvnath@systems.caltech.edu bjyoon@caltech.edu

ABSTRACT

It is well-known that the protein-coding regions of DNA
sequences exhibit a period-3 behavior due to codon struc-
ture. These regions are often identified with the help of
techniques such as the windowed DFT. It has been demon-
strated in the past that identification of the period-3 re-
gions helps in predicting the gene locations, and in fact
allows the prediction of specific exons within the genes
of eucaryotic cells. In this paper we introduce a simple
and efficient scheme for identifying the period-3 regions
of DNA sequences based on antinotch IIR filters instead
of the DFT. These filters can be implemented very effi-
ciently using the one-multiplier Gray and Markel lattice
structure.1

1. INTRODUCTION

It is well-known that base sequences in the protein-coding
regions of DNA molecules exhibit a period-3 pattern be-
cause of the codon structure involved in the translation
of base sequences into amino acids [9], [10]. For eucary-
otes (cells with nucleus) this periodicity has mostly been
observed within the exons (coding subregions inside the
genes) and not within the introns (noncoding subregions
in the genes). There are theories explaining the reason for
such periodicity, but there are also exceptions to the phe-
nomenon. For example, certain rare genes in S. cerevisiae
(also called baker’s yeast) do not exhibit this periodicity
[9]. Furthermore for procaryotes (cells without a nucleus),
and some viral and mitochondrial base sequences, such pe-
riodicity has even been observed in noncoding regions [5].
For this and many other reasons, gene prediction is a very
complicated problem (see the review article by Fickett [3]).
Nevertheless, many researchers have regarded the period-3
property to be a good (preliminary) indicator of gene loca-
tion. Techniques which exploit this property for gene pre-
diction proceed by computing the discrete Fourier trans-
form (DFT), which is expected to exhibit a peak at the
frequency 2π/3 due to the periodicity. In fact this techique
has also been used to isolate exons within the genes of eu-
caryotic cells [2, 9]. The periodic behavior indicates strong
short-term correlation in the coding regions, in addition to
the long-range correlation or 1/f -like behavior exhibited
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by DNA sequences in general [5,7,11].
In this paper we provide an efficient mechanism for the

identification of regions exhibiting period-3 behavior. This
is based on digital IIR filtering. Specifically, the output
of an antinotch filter, with a sharp gain at the frequency
2π/3 provides this information as a function of base loca-
tion. This is more efficient than the computation of the
DFT based on overlapping windows. In a way it can be re-
garded as a recursive implementation of an FIR filter. The
antinotch filter can be implemented very efficiently with
the help of an allpass filter, which in turn can be realized
with a lattice structure having only two multipliers. One of
these multipliers controls the sharpness of the filter peak,
by controlling the pole radius. The antinotch frequency is
fixed at 2π/3 with the help of the other multiplier. There is
a compromise between the sharpness of the notch filter and
the base-domain resolution achievable, but the method ap-
pears to be promising. The performance of the scheme will
be demonsrated on gene sequences taken from C.elegans in
the public geneomic data base.
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Figure 1. The DNA double helix (linearized schematic).

2. BASE-PERIODICITY IN CODING REGIONS

An overview of some of the important aspects of the DNA
molecule from the signal processing view point can be
found in the article by Anastassiou [2]. Figure 1 demon-
strates a simple schematic for part of a DNA molecule [1],
with the double helix straightened out for simplicity. The
four bases or nucleotides attached to the sugar phosphate
backbone are denoted with the usual letters A, C, G, and
T (respectively, adenine, cytosine, guanine, or thymine).
Note that the base A always pairs with T , and C pairs with
G. The two strands of the DNA molecule are therefore com-
plementary to each other. The forward genome sequence
correspond to the upper strand of the DNA molecule, and
in the example shown this is ATTCATAGT. Note that
the ordering is from the so-called 5′ to the 3′ end (left to
right). The complementary sequence corresponds to the
bottom strand, again read from 5′ to 3′ (right to left).



This is ACTATGAAT in our example. DNA sequences
are always listed from the 5′ to the 3′ end because, they are
scanned in that direction when triplets of bases (codons)
are used to signal the generation of amino acids. Typically,
in any given region of the DNA molecule, at most one of the
two strands is active in protein synthesis (multiple coding
areas, where both strands are separately active, are rare).

genes

exons introns

DNA
sequence

Figure 2. A DNA sequence has genes and intergenic re-
gions. The genes of eucaryotes have exons (protein coding
regions) and introns.

Figure 2 shows various regions of interest in a DNA se-
quence, which can be divided into genes and intergenic
spaces. The genes are responsible for protein synthesis.
Even though all the cells in an organism have identical
genes, only a selected subset is active in any particular fam-
ily of cells. A gene, which for our purposes is a sequence
made up from the four bases, can be divided into two sub-
regions called the exons and introns. (Procaryotes, which
are cells without a nucleus, do not have introns). Only the
exons are involved in protein-coding. The bases in the exon
region can be imagined to be divided into groups of three
adjacent bases. Each triplet is called a codon. Evidently
there are 64 possible codons. Scanning the gene from left
to right, a codon sequence can be defined by concatena-
tion of the codons in all the exons. Each codon (except
the so-called stop codon) instructs the cell machinery to
sythesize an amino acid. The codon sequence therefore
uniquely identifies an amino acid sequence which defines
a protein. Since there are 64 possible codons but only 20
amino acids, the mapping from codons to amino acids is
many-to-one. The introns do not participate in the pro-
tein synthesis because they are removed in the process of
forming the RNA molecules which carry the genetic code
to the protein machinery outside the nucleus.

It has been observed more than two decades ago that
the base sequence in the coding regions (exons) have a
strong period-3 component (an observation perhaps at-
tributable to Trifonov and Sussman [10]). Some authors
have claimed that this is due to nonuniform codon usage:
even though there are several codons which could code a
given amino acid, they are not used with uniform proba-
bility, and this creates a codon bias. There is an excess
of guanine (G) in position 1, leading to strong period 3
oscillation [4]. The work by Tiwari, et al. [1997] seems
to indicate that this explanation is not complete. Indeed,
these authors “synthesize genes” by starting from proteins
and mapping aminoacids back to codons. In this reverse
mapping process, they assign “uniform probability” to the
different codons that might lead to a given amino acid. The
resulting pseudo gene, by construction, is free from introns
(like cDNA [1]), and it has been found that the period 3
property is still in tact! Tiwari, et al. also observe that

some genes do not exhibit period 3 at all in S. cerevisiae
(e.g., genes of the mating type locus).

3. SPECTRUM OF BASE SEQUENCES

Many researchers have regarded the period-3 property to
be a good (preliminary) indicator of gene location, in fact
exon location. To perform gene prediction based on this,
one defines indicator sequences for the four bases and com-
putes the DFTs of short segments of these. Given a DNA
sequence, the indicator sequence for the base A is a binary
sequence of the form xA(n) = 000110111000101010 . . .
where 1 indicates the presence of an A and 0 indicates its
absence. The indicator sequences for the other bases are
defined similarly. It is clear that the sequence 111111 . . .
is obtained by adding the four indicator sequences. The
DFT of a length-N block of xA(n) is defined as

XA[k] =
N−1∑

n=0

xA(n)e−j2πkn/N , 0 ≤ k ≤ N − 1,

where we have assigned number 0 to the beginning of the
block. The DFTs XT [k], XC [k], and XG[k] are defined
similarly. The period-3 property of a DNA sequence im-
plies that the DFT coefficients corresponding to k = N/3
are large. Thus if we take N to be a multiple of 3 and plot

S[k] ∆= |XA[k]|2 + |XT [k]|2 + |XC [k]|2 + |XG[k]|2 (1)

then we should see a peak at the sample value k = N/3
as demonstrated in many papers (e.g., [9]). While this is
generally true, the strength of the peak depends markedly
on the gene. It is sometimes very pronounced, sometimes
quite weak.

Notice that a calculation of the DFT at the single point
k = N/3 is sufficient. The window can then be slided by
one or more bases and S[N/3] recalculated. Thus, we get a
picture of how S[N/3] evolves along the length of the DNA
sequence. It is necessary that the window length N be
sufficiently large (typical window sizes are a few hundreds,
eg., 351, to a few thousands) so that the periodicity effect
dominates the background 1/f spectrum which makes its
strong presence in DNA sequences [7], [11]. However a
long window implies longer computation time, and also
compromises the base-domain resolution in predicting the
exon location.

4. THE IIR ANTINOTCH DNA-FILTER

Let H(z) be a digital filter with magnitude response

|H(ejω)| as demonstrated in Fig. 3. The response has a
sharp peak at ω = 2π/3. If the indicator sequence xA(n)
is passed through such a filter, then in coding regions we
expect the output to be large because of the period-3 prop-
erty described in Sec. 2. Such a filter can therefore be used
to predict the coding regions. The duration for which the
impulse response h(n) is significant is analogous to the win-
dow length N in the DFT computation of Sec. 3, and de-
termines the tradeoff between base-domain resolution and
amplification factor for the period-3 property.



π

ω

2π/30

H(e   )
jω

Figure 3. An antinotch filter.

FIR filters with such responses would require long impulse
responses, implying more computations. IIR filters require
much shorter orders and can be very efficient here. Such
filters can be built from second order allpass filters. A sec-

ond order real coefficient allpass filter with poles at Re±jθ

has transfer function

A(z) =
R2 − 2R cos θz−1 + z−2

1 − 2R cos θz−1 + R2z−2
(2)

where R2 < 1 for stability. Notice that the numerator is
the mirror image of the denominator so that the zeros are

at the reciprocal locations 1/Re±jθ. With D(z) denoting

the denominator, A(ejω) = e−2jωD∗(ejω)/D(ejω) which

proves the allpass property |A(ejω)| = 1. Next consider a
filter of the form

G(z) =
1 + A(z)

2
(3)

This can be simplified to the form

G(z) = K
( 1 − 2 cos φz−1 + z−2

1 − 2R cos θz−1 + R2z−2

)

where K = (1 + R2)/2 and cos φ = 2R cos θ/(1 + R2).
This shows that the zeros of G(z) are on the unit circle
at the angle φ. As the poles move closer to the unit circle
(i.e., for R → 1), then φ ≈ θ and the filter G(z) has poles
and zeros close together. Their effect therefore cancels for
frequencies sufficiently away from φ, and the magnitude
response of G(z) is as demonstrated in Fig. 5: it approx-
imates unity everywhere except in the neighbourhood of
the notch frequency φ. Such a filter is called a notch filter.
We now show that if we define a new filter as the difference

H(z) =
1 − A(z)

2
(4)

then the response |H(ejω)| has the antinotch property. For
this observe that the filters G(z) and H(z) can together
be expressed as

[
G(z)
H(z)

]
=

1
2

[
1 1
1 −1

] [
1

A(z)

]
(5)

Using the fact that the 2×2 matrix is unitary (upto scale)

and that |A(ejω)| = 1, it follows immediately that

|G(ejω)|2 + |H(ejω)|2 = 1. (6)

That is, the filters G(z) and H(z) are power complemen-
tary. Since G(z) has the notch behavior, the antinotch
property of H(z) follows from this.
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Figure 4. Poles and zeros of the notch filter G(z) and the
allpass filter A(z)
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Figure 5. Notch filter responses for two values of R.
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Figure 6. Antinotch filter responses for two values of R.

Figure 5 shows examples of the notch response |G(ejω)| for
two pole radii R, and notch frequency 2π/3. The power

complementary antinotch response |H(ejω)| is shown in
Fig. 6. We can make the response arbitrarily sharp by
making R close to unity. However, the effects of roundoff



noise will eventually become noticeable if R is too close
to unity, and moreover the significant part of the impulse
response h(n) will become very long, compromising the
base-domain resolution in the prediction of gene locations.

The allpass filter A(z) can be implemented with either
the direct form structure or the cascaded lattice structure
[6], [12]. The lattice structure with one-multiplier sections
[12] is especially attractive [8], and Fig. 7 shows the im-
plementation of H(z) using this lattice. The multipliers

in this structure are R2 and − cos φ. Since the antinotch

frequency is φ = 2π/3 we have − cos φ = 2−1. So the

only significant multiplier is R2, and controls the antinotch
quality without affecting the frequency φ (Fig. 6). Thus

we can adaptively and readily adjust R2 depending on the
base-domain resolution desired.
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Figure 7. Lattice structure for implementing the antinotch
filter H(z) = V (z)/X(z).

5. EXAMPLES AND CONCLUSIONS

With the indicator sequence xA(n) taken as input, let
yA(n) denote the output of the antinotch filter H(z). With
similar notation for the other bases, define

Y [n] = |yA(n)|2 + |yT (n)|2 + |yC(n)|2 + |yG(n)|2

Note that n should be interpreted as base location. Y [n]
is analogous to the traditional DNA spectrum S[k] evalu-
ated at k = N/3. A plot of S[N/3] as a function of base
location is shown in Fig. 8 (top) for the gene F56F11.4
in C-elegans (base number 7021 — 15080 in chromosome
III; accession number AF099922). This gene has five exons,
and the last four of them show clear peaks in the plot. The
peak due to the first exon is unfortunately not dominant.
The quantity Y [n] computed for the same gene (pole ra-
dius R = 0.992) is also shown in the figure (bottom). The
first exon is also visible now, in the sense that it domi-
nates spurious peaks. Thus the allpass-antinotch appears
to work very well, and furthermore offers some advantages
in implemenation. A more detailed study for several genes
from different organisms will be reported in future.
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Figure 8. Top plot: the DFT based spectrum S[N/3] for
gene F56F11.4 in the C-elegans chromosome III. Bottom
plot: the antinotch filter output for the same gene.


