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Abstract. We propose a model based approach for esti-
mation of probability mass functions for discrete random
variables. The model is based on tools from multirate sig-
nal processing. Similar in principle to the kernel based
methods, the approach takes advantage of well-known re-
sults from multirate signal processing theory. Similarities
to and differences from wavelet based appoaches is also
indicated where appropriate. In the final form, the prob-
ability estimates are obtained by filtering the square root
of the histogram through a multirate system whose com-
ponents are biorthogonal partners of each other.1

I. INTRODUCTION

The problem of estimating the probability density func-
tion (pdf) of a continuous random variable v from mea-
surements has been of interest for many decades in the
mathematics as well as signal processing communities. The
most common method of using histograms and bar charts
is quite satisfactory under some conditions. It has however
been observed (e.g., see [1], [7]) that a model based ap-
proach has certain advantages especially when the number
and quality of measurements is limited. For example, the
“kernel” or model based method obtains an estimate of the
pdf f(v) by assuming that it has the form

f(v) =
∑

k

ckφ(v − sk) (1)

where φ(v) is a fixed function (e.g., a spline, truncated
Gaussian, etc). The preceding model seeks to represent the
unknown pdf with a linear combination of shifted versions
of the fixed function φ(v). With the shifts sk typically
fixed, one adjusts the coefficients ck based on the measure-

ments of the random variable v, so that the estimate f̂(v)
approximates the (unknown) pdf satisfactorily.

Figure 1(a) demonstrates the representation of f(v) for
the case where the shifts are uniform (vk = k∆). Multi-
modal distributions can be approximated by choosing φ(v)
to be a simple smooth function. With φ(v) chosen as a

smooth function, the estimate f̂(v) also enjoys the same
smoothness. Figure 1(b) shows the special case where φ(v)
is a discontinuous function (rectangular pulse) of duration
∆. In this case the estimate is similar to a histogram,
especially when ck is taken to be proportional to the num-
ber of measurements falling in the domain of the kth pulse
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φ(v − k∆). Further discussions on kernel based methods
can be found in many references, e.g., [1], [7], [8].

v

∆0

(a)

(b) f(v)

v

∆0

f(v)
c  φ(v)0 c  φ(v−∆)1

Figure 1. (a) The pdf estimate as a linear combination
of shifted versions of a kernel φ(v), and (b) special case
where φ(v) is the rectangular pulse as in histograms.

In this paper we consider model based estimation of pdf
with the difference that the random variable be restricted
to have uniformly spaced values (assumed to be integers
with proper scaling). Thus the pdf f(n) is a function of
integer argument n. We present models based on multirate
filters and filter banks and demonstrate their advanvtages.
The analogy to continuous models such as (1), and the rela-
tion to wavelet methods [3] for pdf estimation will become
clear in Sec. II as the theme evolves.

All notations are as in [4]. Thus ↓ M and ↑ M repre-
sent the M -fold decimator and expander respectively, and
[X(z)]↓M represents the z transform of the decimated ver-

sion x(Mn). Similarly [X(z)]↑M = X(zM ) (z-transform
of the expanded version).

II. MULTIRATE FILTER MODELS FOR PDF

Let f(n) be the pdf of an integer random variable n. We
assume that f(n) can be represented as the output of an
M -fold interpolation filter as shown in Fig. 2. Both M and
G(z) are assumed to be fixed. The input signal c(k) is the
free parameter to be adjusted based on measurements of
the random variable n. We have

f(n) =
∑

k

c(k)g(n − kM) (2)

which is a linear combination of g(n), g(n ± M), g(n ±
2M), etc. Notice the analogy to the continuous case (1).
Assuming that c(k) and g(n) are in �2, the pdf f(n) is
also in �2. It belongs to the subspace V0 ⊂ �2 spanned by
the shifted impulse responses

ηk(n)∆=g(n − kM).



Since the interpolation filter of Fig. 2 can be considered
as one channel of a filter bank, we need M such filters to
make up the whole space �2. Thus V0 is a proper subspace
of �2. If G(z) is a lowpass filter, we can regard V0 as a
lowpass subspace, and f(n) is smooth. We can add one
or more fine-scale compoments by adding more channels
in the model as demonstrated in Fig. 3 with an example.
In this paper we restrict attention to the single channel
model of Fig. 2, and explain how exactly the estimation
procedure works starting from measurements.
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Figure 2. Definition of the subspace to which the pdf
estimates are restricted.
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Figure 3. (a) Two channel model for the pdf f(n), and
(b) typical filter responses.

If we have a multichannel model with M branches and
expanders {mk} satisfying

M−1∑

k=0

1/mk = 1

then that would correspond, in principle, to a discrete time
version of the full wavelet methods developed by Donoho
et. al [3]. In this case the space allowed for f(n) is the
entire space �2. In this sense the model degenerates com-
pletely, but the value of the wavelet based method lies in
the fact that we can perform denoising in the subbands
and get cleaner estimates. A good review of these meth-
ods can be found in [6]. The wavelet method has several
desirable properties asymptotically as the number of scales
tends to infinity [7]. The method has also been applied for
the estimation of hidden Markov model (HMM) parame-
ters [2]. The model based approach (e.g., Figs. 2, 3) has
fewer channels and does not satisfy

∑
k 1/mk = 1. So V0

is a proper subspace of �2. As a result, the variance of the
estimate is smaller (as we shall demonstrate), compared to
methods that do not rely on a model.

III. ESTIMATION FROM MEASUREMENTS

Consider again the model shown in Fig. 2 where G(z) is
a digitial filter, possibly FIR, more generally IIR. Suppose

H(z) is a filter such that

[H(z)G(z)]↓M = 1 (3)

The filter H(z) is said to be a biorthogonal partner of
G(z) with respect to M [5]. Note that H(z) = 1/G(z)
is a valid partner for any M but partners are not unique.
It is shown in [5] that when G(z) is FIR it is possible to
find an FIR partner H(z) under mild conditions on G(z)
(namely, the M polyphase components of G(z) should not
share a common factor).

In this paper, the importance of biorthogonal partners
arises as follows: suppose a signal f(n) can be represented
as in Fig. 2 for some fixed G(z), by appropriate choice
of the driving signal c(k). Then we can recover c(k) from
f(n) by using the partner H(z) as in Fig. 4.
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Figure 4. Reconstruction of the driving signal c(k) from
f(n). Here H(z) is the biorthogonal partner of G(z).

To prove this note that the output of Fig. 4 has z-
transform

[H(z)F (z)]↓M = [H(z)C(zM )G(z)]↓M (from Fig. 2)

= C(z)[H(z)G(z)]↓M

Using (3) this reduces to C(z) indeed. The preceding figure
shows that c(k) can be expressed in terms of the pdf f(n)
as follows:

c(k) =
∑

n

f(n)h(Mk − n) (4)

In this expression, the quantity n which is traditionally the
“time index”, should actually be interpreted as the integer
random variable with pdf f(n). The quantity h(Mk −
n) is a random variable because n is random. The right
hand side of (4) is therefore the expectation of the random
variable h(Mk−n) with respect to the pdf f(n). That is,

c(k) = Ef [h(Mk − n)] (5)

The fact that expectations appear naturally in this man-
ner is the crux behind nearly all model based and wavelet
based pdf estimation methods [2,3,7]. Now assume that
we have measurements nj , 0 ≤ j ≤ N − 1 of the integer
random variable n. Then the expectation in (5) can be
approximated by its sample-mean:

ĉ(k) =
1
N

N−1∑

i=0

h(Mk − ni) =
∑

n

�(n)h(Mk − n) (6)

where �(n) is the relative number of occurences of the in-
teger value n in the measurements {nj}. In other words,

�(n) is the histogram obtained from the measurements.
Eq. (6) can be interpreted as a decimation filter operating
on the histogram �(n) as shown in Fig. 5. The quantity
ĉ(k) is the estimate of c(k) obtained from measurements.



The figure also shows how the estimate ĉ(k) is used in the

model of Fig. 2 to obtain the pdf estimate f̂(n).
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Figure 5. Estimation of c(k) from the histogram �(n),
and subsequent estimation of the pdf f(n).

Here then is the summary of how pdf estimation is done.
We assume that the pdf f(n) of the integer random vari-
able satisfies the model of Fig. 2, i.e., belongs to the space
V0 (space of signals of the form (2)). We make measure-
ments nj of the random variable n, and compute the his-

togram �(n), which represents an estimate of f(n), but
does not in general belong to the space V0. We pass �(n)
through the system shown in Fig. 5 to obtain the refined

estimate f̂(n) which does belong to V0. We can therefore
regard the process as a projection of the histogram onto
the space V0 where f(n) belongs.

Orthogonal projections. Given the histogram �(n) ∈
�2, suppose we wish to find the signal f̂(n) ∈ V0 clos-
est to �(n) in the least square sense, i.e., in the sense of
minimizing

‖�(n) − f̂(n)‖2∆=
∑

n

|�(n) − f̂(n)|2

The result f̂(n) is nothing but the orthogonal projection
of �(n) onto V0. It can be shown [5] that if the filter H(z)
in Fig. 5 is such that

H(ejω) =
G∗(ejω)

[|G(ejω)|2]↓M↑M
(7)

then f̂(n) is indeed the orthogonal projection of �(n) onto
V0. Since H(z) defined as above also happens to be a
biorthogonal partner of G(z) [5], it is said to be the least
squares partner. With any other arbitrary partner H(z),
the projection f̂(n) is “oblique” rather than orthogonal.

The advantage of the orthogonal projection f̂(n) is that
it is guaranteed to be closer to the original pdf f(n) than
the histogram �(n) is. That is,

‖�(n) − f(n)‖ ≥ ‖f̂(n) − f(n)‖ (8)

To see this observe that since f̂(n) is the orthogonal pro-

jection of �(n) onto V0, we can write �(n) = f̂(n) + e(n)
where e(n) is in the orthogonal complement V c

0 of V0. Thus

�(n) − f(n) = f̂(n) − f(n) + e(n)

Since f̂(n) − f(n) ∈ V0 and e(n) ∈ V c
0 it follows that

‖�(n) − f(n)‖2 = ‖f̂(n) − f(n)‖2 + ‖e(n)‖2

proving (8). If the model filter G(z) is chosen such that
its magnitude square is Nyquist(M ), that is,

[
|G(ejω)|2

]

↓M
= 1 (9)

then we have H(ejω) = G∗(ejω), i.e., h(n) = g∗(−n).
This is the most convenient choice in practice. The con-
dition (9) is equivalent to the statement that the basis
{g(n − kM)} spanning V0 is orthonormal. The filter

G(ejω) satisfying the orthonormality constraint (9) can
be designed using one of many possible methods [4].

IV. THE SQUARE ROOT MODEL

The pdf model shown in Fig. 2 suffers from one disad-
vantage. Namely, for arbitrary input c(k), the positivity
condition f(n) ≥ 0 may not be satisfied. This is impor-
tant in the estimation process where Fig. 5 is used. There

is no assurance that f̂(n) will remain nonnegative. In fact

if we design the filter G(ejω) such that Eq. (9) holds,
then g(n) has some nonnegative coefficients and so does
h(n) = g∗(−n) (unless G(z) has order ≤ M ). The esti-

mate f̂(n) is most likely to have some negative coefficients
because of this.

A simple way to overcome this is to use the model out-
put to represent a square root fs(n) of the pdf f(n) rather
than the pdf itself (Fig. 6(a)). We can still use Fig. 5 for
the estimation of the pdf with slight procedural modifica-
tions as follows. First compute the histogram �(n) from
measurements as before, and take the square root signal√

�(n) as the input signal in Fig. 5. This is shown in

Fig. 6(b). The final output, indicated as f̂s(n) is squared

to get the pdf estimate f̂(n) = [f̂s(n)]2 which is there-
fore guaranteed nonnegative, and can be scaled to satisfy∑

n f̂(n) = 1. Note that the intermediate signal ĉs(k) in
the figure does not have the significance of an expectation,
as did c(k) (see Eq. (5)). However the method yields a
very good (and nonnegative!) pdf estimate as we shall see.
The value of the method in Sec. III is that it gives rise to
the square root method logically.
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Figure 6. (a) The square root model, and (b) estimation
of probability density using the square root method.

As in Sec. III the filter G(z) can be designed to satisfy the

orthonormal basis constraint (9) and H(ejω) taken as the

least squares biorthogonal partner H(ejω) = G∗(ejω). In

this case f̂s(n) is the orthogonal projection of
√

�(n) onto
V0 and we still have

‖
√

�(n) − fs(n)‖ ≥ ‖f̂s(n) − fs(n)‖



That is, as in Sec. III the projection can only bring the

result closer to fs(n) =
√

f(n). One final crucial remark

is in order. When we compute the square root
√

�(n) we
have the freedom to choose different signs for different n.

Thus
√

�(n) = s(n)
∣∣∣
√

�(n)
∣∣∣ where s(n) is a signature

sequence (sequence of 1 and −1). We found experimen-

tally, that the quality of the estimate f̂2
s (n) depends on

the choice of s(n). In the examples to follow, this has been
chosen optimally by brute force search. More elegant ways
to optimize s(n) will be addressed in the future.

V. EXAMPLES AND CONCLUSIONS

To demonstrate the ideas we assume M = 2 and take
G(z) in Fig. 6(a) to be an FIR filter of order 13 such that
the orthonormality condition (9) is satisfied. For this, we
designed G(z) as a spectral factor of a maximally flat half-
band filter (Sec. 11.5.4 in [4] with K = L = 7). Notice
that this G(z) generates one of Daubechies’ maximally reg-
ular orthonormal wavelets. The least squares biorthogonal
partner is H(ejω) = G∗(ejω). By choosing the driving
signal c(k) appropriately, a signal fs(n) of length 18 was

generated, and the test pdf f(n) = f2
s (n) obtained. The

histogram �(n) was generated using 100 measurements of
the random variable drawn from the pdf f(n).

Figure 7 (top) shows plots of the histogram and the pdf
f(n). Clearly the match is not very good. Next, we used

the structure of Fig. 6(b) to generate f̂s(n). The quantity

f̂(n) = f2
s (n), normalized for unit sum, is the model-based

pdf estimate. Figure 7 (bottom) shows plots of the f̂(n)
and the pdf f(n) showing that the agreement is excellent.
The squared estimation errors are

∑

n

|f(n) − �(n)|2 = 0.0082,
∑

n

|f(n) − f̂(n)|2 = 0.00078

Thus the error in the model based estimate is nearly 10
times smaller. Computation of the variance of the his-
togram estimate σ2

h(n) = var[�(n)] and the variance of

the model based estimate σ2
m(n) = var[f̂(n)] (based on

100 experiments) showed that σ2
m(n) is much smaller for

most n. In our experiment the total variances were

∑

n

σ2
h(n) = 0.0082,

∑

n

σ2
m(n) = 0.0038.

The reduced variance is due to the fact that f̂s(n) is re-
stricted to a proper subspace V0 ∈ �2.

It is possible to modify the model based method to take
care of measurement noise though this was not emphasized
in this paper. As a concluding remark, notice that a prac-
tical challenge here is to identify the right subspace V0
(i.e., the filter coefficients g(n)) that will be well suited for
the class of pdf functions f(n) of interest. This requires
some apriori information on the source of f(n). The op-
timization of the model filter G(z) or filters Gk(z) in a
multichannel model, based on apriori information on the
class of f(n) of interest, is a topic for future work.
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Figure 7. Top plot: the orginal pdf, and its estimate based
on a histogram of measurements. Bottom plot: original
pdf, and its estimate based on the multirate model.
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