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ABSTRACT

The problem of estimating a signal that is corrupted by addi-
tive noise has been of interest to many researchers for practical
as well as theoretical reasons. Many of the traditional denois-
ing methods have been using linear methods such as the Wiener
filtering. Recently, nonlinear methods, especially those based on
wavelets have become increasingly popular, due to a number of ad-
vantages over the linear methods. It has been shown that wavelet-
thresholding has near-optimal properties in the minimax sense,
and guarantees better rate of convergence, despite its simplicity.
Even though much work has been done in the field of wavelet-
thresholding, most of it was focused on statistical modeling of the
wavelet coefficients and the optimal choice of the thresholds. In
this paper, we propose a custom thresholding function which can
improve the denoised results significantly. Simulation results are
given to demonstrate the advantage of the new thresholding func-
tion.

1. INTRODUCTION

Estimating a signal that is corrupted by additive noise has been of
interest to many researchers for practical as well as theoretical rea-
sons. The problem is to recover the original signal from the noisy
data. We want the recovered signal to be as close as possible to
the original signal, retaining most of its important properties (e.g.
smoothness). Traditional denoising schemes are based on linear
methods, where the most common choice is the Wiener filtering.
Recently, nonlinear methods, especially those based on wavelets
have become increasingly popular.

One of the earliest papers in the field of wavelet-based denois-
ing may be that of Weaver, et. al. [1]. In this pioneering work,
they proposed a new method for filtering noise from MR (Mag-
netic Resonance) images based on the so-called hard-thresholding
scheme. They showed that by using wavelet-thresholding, the
noise could be significantly reduced without reducing the edge
sharpness [1]. While Weaver, et al. demonstrated the advantages
of the wavelet denoising scheme mainly based on experimental
results, Donoho and Johnstone proved several important theoret-
ical results on wavelet thresholding, or wavelet shrinkage [2, 3].
They showed that wavelet shrinkage has many excellent proper-
ties, such as near optimality in minimax sense, and a better rate
of convergence [2, 3]. DeVore and Lucier have also arrived at
the wavelet thresholding concept, starting from their independent
work on variational problems [4]. In particular, they were inter-
ested in finding an approximatioñf to a given functionf on a fi-
nite domainI that will balance the smoothness off̃ and the close-
ness to the original functionf . In order to find such̃f one tries to
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minimize
‖f − g‖2L2(I) + λ‖g‖Y (1)

over allg whereY is a space that measures the smoothness of the
approximationsg [4]. The function that minimizes (1) is taken to
be f̃ . The positive parameterλ balances the smoothness off̃ and
the closeness tof . If λ is small, the approximatioñf will become
closer tof , while if it is large, the resulting̃f will be smoother.
Interestingly enough, DeVore and Lucier showed that when we
consider the Besov spaceY = Bβ

τ (Lτ (I)), an approximate min-
imizer of (1) can be found by hard-thresholding the wavelet coef-
ficients1 [4]. In their later work, it is also shown that if we take
Y = B1

1(L1(I)), then the exact minimizer of (1) can be found
using the wavelet-shrinkage [5].

Besides wavelet-thresholding, many other approaches have been
suggested as well. For example, wavelet-based denoising using
Hidden Markov Trees [6], which was initially proposed by Crouse,
et. al. has been quite successful, and it gave rise to a number of
other HMT-based schemes. They tried to model the dependencies
among adjacent wavelet coefficients using the HMT, and used the
minimum mean-squared error (MMSE)-like estimators for sup-
pressing the noise.

Even though much work has been done in the field of wavelet-
thresholding, most of it was focused on the statistical modeling
of wavelet coefficients for a certain class of signals (e.g. natu-
ral images), and the optimal choice of the threshold values. In
this paper, we propose a new thresholding function that can take
the place of the traditional thresholding functions, such as soft-
thresholding and hard-thresholding. We will demonstrate that the
custom thresholding function outperforms the traditional ones, im-
proving the denoised results significantly. Simulation results are
given where appropriate, which show the advantage of the pro-
posed scheme.

2. WAVELET THRESHOLDING

Let us consider a signalxi, which is corrupted by additive i.i.d.
Gaussian random noisezi ∼ N(0, σ2) as follows.

yi = xi + zi (i = 0, 1, . . . , N − 1) (2)

From this noisy signalyi, we want to find an approximatioñxi to
the originalxi, that minimizes the mean squared error

‖x− x̃‖2 4= 1

N

N−1∑
i=0

|xi − x̃i|2 (3)

1If we consider the Sobolev spaceY = W β(L2(I)), the approximate
minimizer of (1) is obtained from a linear algorithm [4]



wherex = [x0 · · ·xN−1]
T andx̃ = [x̃0 · · · x̃N−1]

T . LetW be
an orthogonal wavelet transformation. Then (2) can be written as

dj = cj + εj (4)

with d = Wy, c = Wx andε = Wz. SinceW is an orthog-
onal transform,εj are also i.i.d. Gaussian random variables with
εj ∼ N(0, σ2). Now, let T (·) be a wavelet thresholding func-
tion. Then the wavelet thresholding based denoising schemes can
be expressed as follows.

x̃ = W−1 (T (Wy)) (5)

We first take the wavelet transformation of the noisy signal and
pass it through the thresholding functionT (·). The output is then
inverse wavelet transformed to obtain the estimatex̃.

The most common choices forT (·) are the hard-thresholding
function and the soft-thresholding function (which is also known
as the wavelet shrinkage function). The hard-thresholding func-
tion chooses all wavelet coefficients that are greater than the given
thresholdλ and sets the others to zero.

fh(x) =

{
x if |x| ≥ λ
0 otherwise

(6)

The thresholdλ is chosen according to the signal energy and the
noise varianceσ2. If a wavelet coefficient is greater thanλ, we
assume that it is significant and attribute it to the original signal.
Otherwise, we consider it to be due to the additive noise and dis-
card the value. The soft-thresholding function has a somewhat
different rule from the hard-thresholding function. It shrinks the
wavelet coefficients byλ towards zero, which is the reason why it
is also called the wavelet shrinkage function.

fs(x) =

{
x− λ if x ≥ λ
0 if |x| < λ
x + λ if x ≤ −λ

(7)

These functions are illustrated in Fig. 1 forλ = 1.
Note that the hard-thresholding function is discontinuous at

|x| = λ. Due to this discontinuity at the threshold, the hard-
thresholding function is known to yield abrupt artifacts in the de-
noised signal, especially when the noise level is significant [7].
Moreover, Chang, et. al. [7] conclude from their simulation re-
sults, that the optimal soft-thresholding estimator yields a smaller
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Fig. 1. Top: Hard-thresholding function. Bottom: Soft-
thresholding function
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Fig. 2. Custom thresholding function for various values ofα.

estimation error than the optimal hard-thresholding estimator. For
this reason, soft-thresholding is generally preferred to hard- thresh-
olding. However, for some class of signals, we could see that hard-
thresholding results in superior estimates to that of soft- threshold-
ing (which will be shown later), despite some of its disadvantages.

3. THE CUSTOM THRESHOLDING FUNCTION

This motivates us to introduce a new thresholding function that
is continuous around the threshold, and which can be adapted to
the characteristics of the input signal. Based on extensive ex-
periments, we could see that soft-thresholding outperforms hard-
thresholding in general. However, there were also cases where
hard-thresholding yielded a much superior result, and in those cases
the quality of the estimate could be improved by using a custom
thresholding function which is similar to the hard-thresholding
function but with a smooth transition around the thresholdλ. Based
on these observations, we defined a new custom thresholding func-
tion as follows

fc(x) =


x− sgn(x)(1− α)λ if |x| ≥ λ
0 if |x| ≤ γ

αλ( |x|−γ
λ−γ

)2
{
(α− 3)( |x|−γ

λ−γ
) + 4− α

}
otherwise

(8)
where0 < γ < λ and0 ≤ α ≤ 1. This idea is similar to that of
thesemisoftor firm shrinkageproposed by Gao and Bruce [8], and
thenon-negative garrotethresholding function suggested by Gao
[9], in the sense that they are continuous atλ and can adapted to
the signal characteristics. In our definition offc(x), γ is the cut-off
value, below which the wavelet coefficients are set zero, andα is
the parameter that decides the shape of the thresholding function
fc(x). Fig. 2 depictsfc(x) for variousα’s, whenλ = 1 and
γ = λ/2. This function can be viewed as the linear combination
of the hard-thresholding function and the soft-tresholding function
α · fh(x) + (1 − α) · fs(x) that is made continuous around the
thresholdλ. Note that,

lim
α→0

fc(x) = fs(x) and lim
α→1,γ→λ

= fh(x)

which shows that the custom thresholding function can be adapted
to both the soft- and hard-thresholding function.

4. ADVANTAGES OF CUSTOM THESHOLDING

In this section, we demonstrate the advantages of the custom thresh-
olding function. In section 4.1, we show that the performance of
VisuShrink [2] can be significantly improved by replacing the soft-
thresholding function by the proposed function. Then, we compare
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Fig. 3. Top: Estimate obtained usingVisuShrink. Bottom: Esti-
mate when using the custom thresholding function.

the optimal bounds when using a universal threshold, for different
thresholding functions in section 4.2. Finally, in section 4.3, we
compare the optimal bounds for each thresholding schemes, when
the thresholds are chosen optimally at each scale.

4.1. Improvement on VisuShrink

In their landmark paper [2], Donoho and Johnstone proposed a
simple yet powerful wavelet-based denoising scheme calledVi-
suShrink. This method uses a single universal threshold for all
scales, and it is shown thatVisuShrinkyields estimates which are
near-optimal in minimax sense [2]. The resulting estimate is very
smooth with a pleasant visual appearance. However, it is known
thatVisuShrinktends to oversmooth the signal, thereby losing some
details (e.g. sharp edges) of the original signal which can result
in an increased estimation error. This is shown in Fig. 3 (Top).
The noisy signal is decomposed into 8 levels using the Daubechies
asymmetric wavelet with 8 vanishing moments [10]. The wavelet
coefficients at the coarsest scale are left intact, while the coeffi-
cients at all the other scales are thresholded via soft-thresholding
with the universal thresholdλ = σ

√
2 log N , whereσ2 is the

noise variance andN is the length of the signal. Although the
resulting estimate is smooth, we can see the discrepancy between
the estimate and the original signal.

This situation can be significantly improved by replacing the
soft-thresholding function by the custom thresholding function, as
shown in Fig. 3 (Bottom). We used the same threshold as before
with α = 1 andγ = λ/2. Note that the estimate follows the origi-
nal signal very closely, although it is not as smooth as when using
soft-thresholding. In order to evaluate the performance of differ-
ent thresholding functions, we repeated the experiment above, for
different input signals and various random seeds. The estimation
errors were computed using (3) and averaged over 10 runs. The
simulation results are summarized in Table. 1. It can be seen
that custom thresholding yields better estimates with considerably
smaller estimation error than the traditional thresholding schemes.

4.2. Optimal Universal Thresholding

Although we have seen in section 4.1 that custom thresholding
outperformed the others, the result might have been due to the

Mean Squared Error
Signal Soft Hard Custom
Blocks 4.0387 1.2375 0.8523
Bumps 3.4158 1.1655 0.8021
HeavySine 1.0483 0.3911 0.3538
Doppler 2.3867 0.4776 0.3836

Table 1. Estimation error for different thresholding functions (av-
eraged over 10 runs, SNR=7,σ = 1).

specific choice of the threshold, i.e.λ = σ
√

2 log N . There-
fore, it would be interesting to ask how the optimal performance
of custom thresholding would compare to that of soft- and hard-
thresholding, when using a single universal threshold. In order to
answer this question, we tried to find the optimal universal thresh-
old for each thresholding function, with the assumption that the
original signal was known. The optimal threshold was found us-
ing exhaustive search. For the custom thresholding function, we
also searched for the optimalα that resulted in the minimum es-
timation error. The simulation was repeated for 5 times with the
signal-to-noise-ratio set to SNR=7,σ = 1 andγ = λ/2. The
resulting estimation errors have been averaged, which are summa-
rized in Table 2.

Mean Squared Error
Signal Soft Hard Custom (opt.α)
Blocks 0.8536 0.9906 0.8516 (0.31)
Bumps 0.8348 0.8651 0.79610 (0.94)
HeavySine 0.3474 0.3278 0.2620 (0.94)
Doppler 0.5151 0.4371 0.3477 (0.97)

Table 2. Optimal performance of each thresholding function when
using a universal threshold (averaged over 5 runs, SNR=7,σ = 1).

From Table 2, we can see that if the universal threshold is cho-
sen optimally, the quality of the estimate can be significantly im-
proved. When we compare this result with that in Table 1, it can be
seen thatVisuShrinkyields a much larger estimation error, which is
due to its tendency to oversmooth the given signal. This result also
shows that the optimal performance of soft-thresholding is supe-
rior to that of hard-thresholding for many kinds of signals. How-
ever, when we compare the estimation errors for the “Doppler”
signal, we can see that hard-thresholding is much better than soft-
thresholding, which motivates us to use a new thresholding scheme
that can be adapted to the signal characteristics. As expected, cus-
tom thresholding yielded the best estimates for all signals, withα
chosen appropriately for each signal.

4.3. Optimal Scale Adaptive Thresholding

The denoised results can be further improved, if the thresholds
at each scale are chosen optimally. State-of-the-art wavelet-based
denoising algorithms such asSureShrink[11] andBayesShrink[7]
are based on this approach, where the threshold levels are cho-
sen in a subband-adaptive manner. How much would the quality
of the estimates be improved if we use custom thresholding in-
stead of the traditional thresholding methods? To compare the
optimal performance of each thresholding function, we searched
for the optimal threshold at each subband level, based on the as-
sumption that we know the original signal. For hard-thresholding
and soft-thresholding, they are respectively what Chang, et. al.



Mean Squared Error
Signal Soft Hard Custom (opt.α)
Blocks 0.7707 0.9141 0.7668 (0.24)
Bumps 0.7167 0.8070 0.6966 (0.78)
HeavySine 0.1402 0.1594 0.1376 (0.60)
Doppler 0.3941 0.3205 0.2893 (0.94)

Table 3. Optimal performance of each thresholding function when
the threshold at each subband level is chosen adaptively (averaged
over 5 runs, SNR=7,σ = 1).

called theOracleThreshandOracleShrink, in [7]. The signal-to-
noise ratio was again set to SNR=7 whereσ = 1, andγ was set
to γ = λ/2. The experiment was repeated 5 times with different
random seeds. The resulting estimation errors are shown in Table
3. Clearly, the average estimation error could be further minimized
by choosing the threshold at each scale optimally. Notice that the
custom thresholding function resulted in the best estimates also in
this case.

5. ADAPTING TO SIGNAL CHARACTERISTICS

The simulation results in the previous section show that by using
custom thresholding, we can improve the quality of the estimates
considerably. However, in order to obtain the best results possi-
ble, the parameterα has to be chosen appropriately. For example,
for piecewise constant signals such asBlocksthat have many dis-
continuities, small value ofα in the range of 0.1∼0.3 yielded the
smallest estimation error. On the other hand, for continuous sig-
nals with a large frequency variation such asDoppler, relatively
large values ofα (0.85∼0.95) resulted in the best performance.
This shows that for different class of signals, the value ofα has to
be chosen differently. One way to make a good choice ofα is to
optimize it for a class of signals, which are in some sense similar
to each other. For example, when we are interested in denoising
noisy images, we may optimizeα for cartoons (which mainly con-
sist of edges), or natural images of trees and leaves, etc. Theα
optimized for a set of images that belong to the same class, can
be used for denoising another image that can be categorized in the
same class. In order to demonstrate the idea, we optimized alpha
for two different class of signals. The first set consisted of signals
close toBlocks, and the second set consisted of signals which were
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Fig. 4. Average estimation error corresponding to different values
of α for two classes of signals. Top:Blocks. Bottom:Doppler.

similar toDoppler. There were four signals in each set, and for ev-
ery signal we ran the simulation for 15 different random seeds. For
any signal in a given set, the estimation error corresponding to the
value ofα showed similar tendency to those of the others in the
same set. The estimation errors have been averaged for each class
of signals which can be seen in Fig. 4. Based on this result, we can
see thatα = 0.18 andα = 0.84 will result in the best estimate for
denoisingBlocksandDoppler-like signals, respectively.

6. CONCLUDING REMARKS

In this paper, we proposed a new thresholding scheme that can
considerably improve the performance of the well-known wavelet-
based denoising algorithms. The custom thresholding function
can be adapted to the characteristics of the given signal, result-
ing in a smaller estimation error. It was shown that the custom
thresholding proposed in this paper outperforms the traditional soft
and hard-thresholding schemes. Topics for future research include
algorithms for selecting optimal thresholds andα based on the
characteristics of the observed signal, and application of custom-
thresholding to many of the existing algorithms.
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