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ABSTRACT

The profile hidden Markov model is a specific type of HMM that is
well suited for describing the common features of a set of related
sequences. It has been extensively used in computational biology,
where it is still one of the most popular tools. In this paper, we pro-
pose a new model called the profile context-sensitive HMM. Un-
like traditional profile-HMMs, the proposed model is capable of
describing complex long-range correlations between distant sym-
bols in a consensus sequence. We also introduce a general algo-
rithm that can be used for finding the optimal state-sequence of
an observed symbol sequence based on the given profile-csHMM.
The proposed model has an important application in RNA sequence
analysis, especially in modeling and analyzing RNA pseudoknots.

1. INTRODUCTION

The profile hidden Markov model (profile-HMM) [1, 2] is a spe-
cific type of HMM that is well suited for describing the key mo-
tives and common features of a set of symbol sequences that are
closely related to each other. Generally, these sequences can be
categorized into the same class according to certain criteria. For
example, they may represent different pronunciations of the same
word, or different protein-coding genes that give rise to proteins
with similar biological functions. A typical way of constructing a
profile-HMM begins with finding a multiple alignment of the given
sequences. Once the alignment is obtained, the profile-HMM is
constructed such that it effectively represents the consensus se-
quence of the alignment. The aligned sequences are also used
for training the HMM, where the probabilities can be obtained by
computing the frequencies of all emissions and transitions at each
state. This is usually followed by an EM-type parameter optimiza-
tion in order to maximize the overall observation probability of
the training sequences. The HMM obtained in this manner can be
used for searching similar regions in a database, or finding the best
alignment between a new sequence and the consensus sequence.

Due to the ease of model construction based on multiple align-
ments as well as its efficiency in capturing short-term dependen-
cies between adjacent symbols, the profile-HMM has been exten-
sively used in biological sequence analysis [2]. It has been espe-
cially popular in gene-identification, where the profile-HMM can
be used for describing the consensus sequence of certain genes
and finding similar regions in novel DNA sequences that have not
been annotated yet. In fact, this approach has been quite success-
ful, and many state-of-the-art protein-coding gene-finders are built
on profile-HMMs.
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Sequence 1   A  B  A  B  D
Sequence 2   A  B  A  B  -
Sequence 3   A  C  A  C  D
Sequence 4   A  C  -  C  D
Sequence 5   -  C  A  C  D

correlated  symbols

correlated  symbols

Sequence 1   A  A  G  U  C
Sequence 2   -  A  G  U  C
Sequence 3   A  C  G  G  C
Sequence 4   A  C  U  G  A
Sequence 5   -  C  U  G  A

correlated  symbols

Fig. 1. An example of a multiple alignment of symbol sequences.

One significant limitation of the profile-HMM is the fact that it
cannot effectively describe correlations between symbols that are
distant from each other. Therefore, any long-range correlations
that exist in the consensus sequence get completely lost when the
sequence is modeled using a profile-HMM. This problem can be
avoided if we represent the profile of the consensus sequence using
a context-sensitive HMM (csHMM) [3]. The csHMM has variable
probabilities that depend on the context, which greatly increase the
overall descriptive power of the HMM.

In this paper, we propose a new model called theprofile context-
sensitive HMM(profile-csHMM) that can be used for constructing
a probabilistic profile of related sequences with long-range corre-
lations. The proposed model is based on the concept of context-
sensitive HMMs [3, 4], and it is capable of describingany kind
of pairwise dependencies between distant symbols. We also intro-
duce an algorithm that can be used for finding the optimal state
sequence of an observed symbol sequence, based on a profile-
csHMM. To the best of our knowledge, this is the first model that
is capable of modeling and recognizing any kind ofRNA pseudo-
knots(RNA sequences with crossing correlations [2]).

2. THE PROFILE CONTEXT-SENSITIVE HMM
Let us consider the symbol sequences shown in Fig. 1. The con-
sensus sequence obtained from the alignment of these sequences
consists of five symbols, where the first symbol is aA (or a gap
denoted by ‘−’), the second symbol is eitherA or C, and so on.
One interesting property that can be noticed in Fig. 1 is that the
second and the fourth symbols (and also the third and the fifth
symbols) are strongly correlated. For example, anA in the sec-
ond position is always followed by aU in the fourth position, and
similarly, a C in the second position is followed by aG in the
fourth position. Such correlations are frequently observed in func-
tional RNAs, which typically have strong correlations between
bases (represented by symbolsA, C, G, U ) that arise from the so-
calledRNA secondary structure. In these RNA sequences, the re-
lated bases undergo co-variation1 [2] in such a manner that the

1The baseA forms a pair withU , andC forms a pair withG. So, if a
base (that forms a base-pair) is changed fromA to C, the corresponding
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Fig. 2. Basic building blocks of a profile-csHMM.

Watson-Crick complementarity is preserved. In a csHMM, ex-
plicit dependencies between distant symbols can be effectively de-
scribed using a pair of apairwise-emission stateand acontext-
sensitive state[4]. For example, in Fig. 1 we may represent the
second symbol by a pairwise-emission state, which will store the
emitted symbolA (or C) before making a transition to the next
state. Now, we represent the fourth symbol using a context-sensitive
state, which first accesses the memory once we enter the state. It
reads the symbol that was previously emitted at the corresponding
pairwise-emission state, and its emission probabilities are adjusted
such that the state emits the complementary symbolU (or G). In
this way, we can efficiently represent pairwise dependencies be-
tween symbols. On the contrary, symbols that are not explicitly
correlated with other symbols can be represented using single-
emission states.

2.1. Basic Building Blocks

Following the basic idea elaborated just before, it is quite straight-
forward to construct a profile-csHMM based on a given profile. As
in the original profile-HMM [1], we define three different kinds
of states, namely,match statesMi, insert statesIi, and delete
statesDi. Firstly, an emission at the match stateMi represents
the case when a symbol in the observed symbol sequence matches
the i-th symbol in the profile. Therefore, if the observationx =
x1x2 . . . xL exactly matches the profile, the underlying state se-
quence will be simplyy = M1M2 . . . ML. Secondly, the insert
stateIi handles insertions of additional symbols inx that do not
exist in the original profile. If the observationx is longer than the
profile of the consensus sequence, a number of symbols inx will
be represented by an insert stateIi. Finally, the delete statesDi

deal with gaps that exist inx. In some cases, the observationx
may be shorter than the original profile, which implies that there
are symbols in the profile that are missing inx. Such cases are
represented by delete statesDi which do not emit any symbols (as
they represent gaps).

As every symbol in the consensus sequence should be either
“matched” or “deleted”, the number ofMi and that ofDi is identi-
cal to the length of the consensus sequence. Therefore, we can use
a pair of(Mi, Di) as the basic building block of a profile-csHMM.
When a symbol in the profile is not correlated to another symbol,
the match stateMi is simply a single-emission state as displayed
in Fig. 2 (a). On the contrary, if thei-th symbol and thej-th sym-
bol in the consensus sequence are correlated to each other, we use
a pairwise-emission state forMi and a context-sensitive state for
Mj (i < j) as shown in Fig. 2 (b).

2.2. Building a Profile Context-Sensitive HMM

To obtain the overall model, the two building blocks shown in
Fig. 2 are interconnected with additional insert statesIi according
to the structure of the consensus sequence. Fig. 3 shows an exam-

base is also changed fromU to G so that the base-pair is maintained.
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Fig. 3. The profile-csHMM that represents the sequences in Fig. 1.

ple of a profile-csHMM that corresponds to the multiple alignment
in Fig. 1. As the second symbol and the fourth symbol in the con-
sensus sequence are correlated, a pairwise-emission state is used
for M2 and the corresponding context-sensitive state is used for
M4. Similarly, a pairwise-emission state is used forM3, where
the matching context-sensitive state is used forM5. The match
stateM1 and all insert statesI0, . . . , I5 are single-emission states.

Once we have obtained the profile-csHMM that reflects the
probabilistic profile of the consensus sequence, this model can be
used for aligning and scoring new sequences. Fig. 4 shows ex-
amples of several observation sequencesx along with the corre-
sponding state sequencesy that are obtained from aligningx to
the profile-csHMM at hand. Although it is more or less straight-
forward to align the symbol sequences in Fig. 4 to the model illus-
trated in Fig. 3, finding the best alignment between an observation
sequence and a profile-csHMM (which is equivalent to finding the
optimal state sequence) can become a daunting task as the length
of the sequence and the size of the model increases. Therefore, we
need a systematic way of finding the optimal state sequence of an
observationx based on the given profile-csHMM.

When using the traditional profile-HMM, the optimal align-
ment between the observation and the HMM can be found using
a variant of the Viterbi algorithm [2]. However, the Viterbi al-
gorithm cannot be applied to profile context-sensitive HMMs, as
there are states with variable probabilities that are dependent on
the context. In [4], algorithms were proposed that can be used
with csHMMs for a restricted class of symbol correlations (se-
quences with nested correlations, where correlations do not cross
each other). In the following section, we introduce a general al-
gorithm that can be used for finding the optimal alignment of a
profile-csHMM withany kind of pairwise correlations.

3. FINDING THE OPTIMAL STATE SEQUENCE OF A
PROFILE-CSHMM

The basic philosophy that underlies various dynamic programming
algorithms that are used for finding the optimal state sequence is
as follows. Instead of enumerating all possible state sequences,
whose number grows exponentially with the length of the obser-
vation sequence, these algorithms try to find the optimal state se-
quence in a recursive manner. They first find the optimal align-
ment of short subsequences, and this information is used to find
the optimal alignment of longer subsequences. For example, the

1) x: A  C  A  C  D
   y: M1  M2  M3  M4  M5
2) x: A  B  A  D  B  D
   y: M1  M2  M3  I1  M4  M5
3) x: A  B  -  B  D
   y: M1  M2  D3  M4  M5

  A C U G A     M1 M2 M3 M4 M5
  A A G U U C   M1 M2 M3 M4 I4 M5
  - A G U C     D1 M2 M3 M4 M5

(a) (b)

(a) (b)

Fig. 4. (Left) Observation sequencex. (Right) State sequencey
obtained from aligningx to the profile-csHMM in Fig. 3.



Viterbi algorithm [5] finds the optimal state sequence by growing
the subsequence from left to right, and the CYK algorithm used
for parsing stochastic context-free grammars (SCFG) [2, 6] starts
from the inside of the observation sequence and proceeds to the
outward direction. Although these algorithms cannot be directly
used with profile-csHMMs, we can adopt a similar approach for
finding the optimal state sequence.

3.1. Notations
Let us first define the variables that are needed in the algorithm.
We denote the observed symbol sequence asx = x1x2 . . . xL,
whereL is the length of the sequence. The state sequence ofx
is denoted asy = y1y2 . . . yL, whereyi is the underlying state
of the symbolxi. At single-emission states and pairwise-emission
states, the emission probability of a symbolx at a statev is defined
ase(x|v). At context-sensitive states, the emission probability of
xc at the statev is e(xc|v, xp), wherexp is the symbol that was
previously emitted at the corresponding pairwise-emission state.
The transition probability from a statev tow is denoted byt(v, w).

Now, let us define the closed interval of the indexn (1 ≤
n ≤ L) asni = [n`

i , nr
i ] = {n| n`

i ≤ n ≤ nr
i }. For each

intervalni, we define the state-pairsi = (s`
i , sr

i ), wheres`
i is the

hidden stateyn`
i

at the indexn`
i andsr

i is the stateynr
i

atnr
i . The

setN = {n1,n2, . . . ,nI} is an ordered set of non-overlapping
closed intervalsni, whereI is the number of the intervals that
compriseN . We label each intervalni such that it satisfies

nr
i < n`

j for i < j. (1)

We also define the set of state-pairsS = {s1, s2, . . . , sI}. The set
N will be used for indexing subsequences ofx, where the subse-
quences corresponding to this set are defined as

x(N ) = xn`
1
. . . xnr

1
xn`

2
. . . xnr

2
· · ·xn`

I
. . . xnr

I
(2)

y(N ) = yn`
1
. . . ynr

1
yn`

2
. . . ynr

2
· · · yn`

I
. . . ynr

I
. (3)

Finally, let us denote the optimal log-probability of the subse-
quencex(N ), where the state at either end of each closed inter-
val ni is yn`

i
= s`

i andynr
i

= sr
i (i = 1, . . . , I), asα(N ,S).

It is assumed that explicit correlations between symbols inx(N )
are confined inside this subsequence. We also define the variables
λa(N ,S) andλb(N ,S) that will be used later for tracing back
the optimal state sequencey∗.

3.2. Algorithm

Now, the optimal alignment algorithm can be described as follows.

3.2.1. Initialization

(i) For any single-emission statev, and for1 ≤ n ≤ L, we let
N = {[n, n]}, S = {(v, v)}

α
“
N ,S

”
= log e(xn|v)

λa

“
N ,S

”
= (∅, ∅), λb

“
N ,S

”
= (∅, ∅)

(ii) For any pair(v, w), wherev = Mi is a pairwise-emission
state andw = Mj is the corresponding context-sensitive state,
and for1 ≤ n < m ≤ L, we letN = {[n, n], [m, m]}, S =
{(v, v), (w, w)}

α
“
N ,S

”
= log e(xn|v) + log e(xm|w, xn)

λa

“
N ,S

”
= (∅, ∅), λb

“
N ,S

”
= (∅, ∅)

(iii) For v = Di (whereMi is a single-emission state), and for
1 ≤ n ≤ L, we letN = {[n, n− 1]}, S = {(v, v)}

α
“
N ,S

”
= 0

λa

“
N ,S

”
= (∅, ∅), λb

“
N ,S

”
= (∅, ∅)

(iv) For all (i, j) whereMi and Mj are paired states, and for
1 ≤ n < m ≤ L, we let N = {[n, n − 1], [m, m − 1]},
S = {(Di, Di), (Dj , Dj)}

α
“
N ,S

”
= 0

λa

“
N ,S

”
= (∅, ∅), λb

“
N ,S

”
= (∅, ∅)

3.2.2. Recursion

During the initialization process, we computed the log-probability
for all subsequences of length up to two. Now, these subsequences
can be recursively adjoined to obtain the probability of longer se-
quences by applying the following adjoining rules.

Rule 1 Consider the log-probabilitiesα(Na,Sa) andα(Nb,Sb)
of the two subsequencesx(Na) andx(Nb), where

Na = {na
1 , . . . ,na

Ia
}, Sa = {sa

1 , . . . , sa
Ia
}

Nb = {nb
1, . . . ,n

b
Ib
}, Sb = {sb

1, . . . , s
b
Ib
}.

These subsequencesx(Na) andx(Nb) can be adjoined only if
there is no overlapping interval betweenNa andNb. In this case,
we can apply the following adjoining rule

α(N ,S) = α(Na,Sa) + α(Nb,Sb)

λa(N ,S) = (Na,Sa), λb(N ,S) = (Nb,Sb).

TheN andS are unions of the smaller sets

N = Na ∪Nb = {n1, . . . ,nI},S = Sa ∪ Sb = {s1, . . . , sI}

whereI = Ia +Ib and the intervalsni are relabeled such that they
satisfy (1) andsi ∈ S correspondsni ∈ N .

Rule 2 Assume that there exist two intervalsni,ni+1 ∈ N
that satisfynr

i + 1 = n`
i+1, which implies that the two intervals

[n`
i , nr

i ] and[n`
i+1, nr

i+1] are adjacent to each other. For simplic-
ity, let us assume thati = I − 1. In this case, we can combine the
two intervalsnI−1 andnI to obtain a larger interval

n′
I−1 = [n`

I−1, nr
I ] = {n| n`

I−1 ≤ n ≤ nr
I}

where the corresponding state-pair iss′I−1 = (s`
I−1, sr

I). Now,
the log-probabilityα(N ′,S ′) for

N ′ = {n1, . . . ,nI−2,n
′
I−1}, S ′ = {s1, . . . , sI−2, s

′
I−1}

can be computed as follows

α(N ′,S ′) = max
nr

I−1

 
max

sr
I−1,s`

I

h
α(N ,S) + log t(sr

I−1, s
`
I)
i!

(n∗, s∗r , s∗` ) = arg max
(nr

I−1,sr
I−1,s`

I
)

h
α(N ,S) + log t(sr

I−1, s
`
I)
i

N ∗ =
n
n1, . . . ,nI−2, [n

`
I−1, n

∗], [n∗ + 1, nr
I ]
o

S∗ =
n
s1, . . . , sI−2, (s

`
I−1, s

∗
r), (s

∗
` , sr

I)
o

λa(N ′,S ′) = (N ∗,S∗), λb(N ′,S ′) = (∅, ∅)
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Fig. 5. Adjoining order of subsequences for finding the optimal
alignment of the profile-csHMM in Fig. 3.

For i < I−1, we can similarly combine the two adjacent intervals
ni andni+1 to obtain the optimal log-probabilityα(N ′,S ′) of the
updated setsN ′ andS ′. �

Given the two rules above, the immediate question is how we
should apply these rules to obtain the probability of the optimal
state sequence. In fact, how the components are adjoined and in
which order the adjoining rules are applied have a crucial impact
on the overall complexity of the algorithm. This can be easily seen
from the second adjoining rule. When applying this rule, the com-
putational cost is of the orderO(M2L), whereM is the number
of states in the model. Every time the number of “junctions” be-
tweenN1 andN2 increase, the computational cost for adjoining
them will be increased by and order ofM2L. For this reason, it
is important to apply these rules in an efficient manner to mini-
mize the computational cost. The rule of thumb is to adjoin the
components in a way that can take care of all kinds of correlations
in the given model, while keeping the number of closed intervals
in anyN used in the adjoining process as small as possible. For
example, if there is no explicit dependencies between symbols as
in a traditional HMM, we can simply use a single closed interval
N = {[n`, nr]} with n` = 0 fixed, and attach other one-symbol
subsequences to its right end2. Similarly, when only nested cor-
relations are considered, the adjoining rules can be applied using
only one closed intervalN = {[n`, nr]} with variablen` andnr.
Fig. 5 showsanexample in which orderα(N ,S) can be computed
to find the optimal alignment.

3.2.3. Termination

We repeat the recursion until we getα(N ,S), whereN = {[1, L]}
andS = {(s`

1, s
r
1)} for all s`

1, sr
1. Now, the log-probability of the

optimal state-sequencey∗ can be computed from

log P (x,y∗) = max
s`
1,sr

1

h
α(N ,S) + log t(start, s`

1)

+ log t(sr
1, end)

i
(s∗` , s∗r) = arg max

(s`
1,sr

1)

h
α(N ,S) + log t(start, s`

1)

+ log t(sr
1, end)

i
λ∗ =

“
[1, L], (s∗` , s∗r)

”
2In this case, the algorithm becomes identical to the Viterbi algorithm.

3.2.4. Trace-Back

Now that we have computed the maximum probabilityP (x,y∗),
we can trace-back the algorithm to find the optimal state sequence
y∗ that gave rise to this probability. For notational convenience, let
us defineλt = (N ,S). The trace-back procedure can be described
as follows.

STEP 1 Let yi = 0 (i = 1, 2, . . . , L).

STEP 2 Pushλ∗ onto the stackT .

STEP 3 Pop λt = (N ,S) from T . If λt = (∅, ∅), goto
STEP 6. Otherwise, proceed to STEP 4.

STEP 4 If λa(λt) 6= (∅, ∅) pushλa(λt) ontoT . Otherwise,
yn`

i
= s`

i , for allni = [n`
i , nr

i ] ∈ N and the corresponding

si = [s`
i , sr

i ] ∈ S. (Note that whenλa(λt) = (∅, ∅), we
haven`

i = nr
i ands`

i = sr
i .)

STEP 5 If λb(λt) 6= (∅, ∅) pushλb(λt) ontoT .

STEP 6 If T is empty, proceed to STEP 7. Otherwise, goto
STEP 3.

STEP 7 Let y∗ = y1y2 . . . yL and terminate.

At the end of the trace-back procedure, we can obtain the optimal
state sequencey∗ that maximizes the probability of observingx
based on the model at hand.

4. CONCLUDING REMARKS

As shown in this paper, the proposed profile-csHMM has a greater
descriptive power than many existing models including the profile-
HMM and the SCFG. The profile-csHMM is capable of modeling
anykind of pairwise-dependencies between symbols, by intercon-
necting the basic building blocks in Fig. 2 according to the struc-
ture of the consensus sequence. We also proposed a general algo-
rithm for finding the optimal state sequence of a profile-csHMM.
Widely used optimal alignment algorithms such as the Viterbi al-
gorithm [5] for HMMs and the CYK algorithm [2, 6] for SCFGs
can be viewed as special cases of the algorithm proposed in this
paper. To the best of our knowledge, the profile-csHMM is the
first model that can be used for constructing a probabilistic pro-
file of any kind of pseudoknots, hence it can serve as an effective
framework for computational RNA sequence analysis.
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