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ABSTRACT

The problem of estimating a pdf from measurements has been
widely studied by many researchers. However, most of the work
was focused on estimating a probability density function of con-
tinuous random variables, especially in the absence of noise. In
this paper, we consider a model for representing discrete proba-
bility density functions based on multirate dsp models. Using this
model, we propose an efficient and stable scheme for pdf estima-
tion when the measurements are corrupted by independent addi-
tive noise. This approach makes use of well-known results from
multirate dsp theory, especially that of biorthogonal partners. Sim-
ulation results are given, which clearly show the advantage of the
proposed method.

1. INTRODUCTION

The problem of estimating a probability density function from
measurements has been widely studied by many researchers for
decades. In this problem, we are given a number of observations
X1, X2, . . . , XN , and the probability density functionf(x) that
gave rise to these samples has to be estimated from them. The
simplest approach is the histogram, and many other methods have
been proposed, each with its own advantages. Despite the sim-
plicity, the histogram approach yields a reasonable estimate of the
original pdf when there are enough number of samples. However,
it is discontinuous in nature, which makes it less attractive for es-
timating continuous density functions. It has been observed that
model based methods such as the kernel estimators [1] and the
wavelet estimators [2, 3] have certain advantages, especially when
the number of samples are limited.

For example, let us consider the “kernel” based method, which
assumes that the pdff(x) can be represented as

f(x) =
∑

k

ckφ(x− sk, σk) (1)

whereφ(x) is called the kernel function. It disperses the massck

around the center pointsk, whereσk decides the extent to which
it will disperse the mass. The kernel functionφ(x) can be any
appropriate positive function, such as a Gaussian, a spline, etc.
The preceding model tries to represent the unknown pdf with a
linear combination of shifted copies of the fixed functionφ(x).
With the shiftssk and the dispersion factorsσk typically fixed, the
weighting factorsck are adjusted based on the measurements of
the random variablex, so that the resulting pdf estimatêf(x) ap-
proximates the original pdff(x) satisfactorily. One advantage of
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Fig. 1. The pdf representation as a linear combination of shifted
versions of the kernelφ(x).

this method is the fact that the resulting pdf estimatef̂(x) retains
some of the properties of the kernel function. For example, if we
choose aφ(x) with certain smoothness, the estimatef̂(x) will also
enjoy the same property. An example of such af(x) with uniform
shifts and fixedσk is shown in Fig. 1. Further discussions on the
model based methods can be found in many references, e.g. [1],
[2], [3].

Now, let us consider the case when the observations are of the
form

Yi = Xi + Zi, i = 0, 1, . . . , N − 1

whereXi are the original samples andZi are i.i.d. noise that are
independent ofXi. If we denote the pdf ofXi andZi asf(x) and
k(z) respectively, then the density function ofYi is

g(y) =

∫
k(y − x)f(x)dx. (2)

Since the observed samples are distributed according to the pdf
g(y), estimating the original pdff(x) involves deconvolution of
the noise pdfk(z). However the inversion of this integral equa-
tion (2) is an ill-posed problem, and in general, there is no “good”
solution [4]. Many methods have been proposed for estimating a
continuous pdf in the presence of noise, and some of the interest-
ing results can be found in [4], [5].

Even though much work has been done in the area of density
estimation, most of the work was focused on the continuous case.
New methods for modeling and estimating probability mass func-
tions of discrete random variables have been recently proposed in
[6], [7], [8]. These models are based on multirate dsp concepts,
and they take advantage of well-known results from multirate sig-
nal processing theory. In this paper, we consider the discrete pdf
model proposed in [6], and develop a novel scheme for estimating
a discrete probability density function when the observations are
corrupted by additive noise.

All notations are as in [9]. Thus↓ M and↑ M represent the
M -fold decimator and expander respectively. Therefore[X(z)]↓M

denotes thez-transform of the decimated versionx(Mn), and



similarly [X(z)]↑M = X(zM ) denotes thez-transform of the ex-
panded version.

2. MODEL FOR DISCRETE DENSITY FUNCTIONS

2.1. The PDF Model

Let us consider a discrete probability density function of discrete
random variables, which are restricted to have uniformly spaced
values (assumed to be integers, without loss of generality). Thus,
if we denote the pdf asx(n), it will be a function of an integer
random variablen. We assume that thisx(n) can be represented
as the output of an interpolation filterf(n) preceded by anM -
fold expander as proposed in [6]. This can be seen in Fig. 2. The
input signalc(k) is the free parameter that is to be adjusted based
on the measurements, whileM andf(n) are fixed. If we let the
subspaceV0 = span of{f(n−kM)} wherek is any integer, then
x(n) ∈ V0, and can be written as

x(n) =
∑

k

c(k)f(n− kM) (3)

which is a linear combination off(n), f(n ± M), f(n ± 2M),
and so on. Notice the analogy to the continuous case in (1).

M F(z)c(k) x(n)
expander digital filter

Fig. 2. The basic pdf model.

If both the driving signalc(k) and the impulse responsef(n) of
the interpolation filter are iǹ2, the resulting pdfx(n) also belongs
to `2, henceV0 is a subspace of thè2 space1. Since this can be
viewed as one channel of aM -channel synthesis filter bank,V0 is
a proper subspace of`2. For example, if we choosef(n) to be a
lowpass filter, the resultingV0 will be a low frequency subspace.
We may choosef(n) such thatV0 includes the pdfs that are of our
interest. In fact, we can optimize the filterf(n) for a given class of
density functions, and some of the related issues are addressed in
[8]. We may also add one or more channels to the model, thereby
adding more fine structure to the probability density functionx(n).
In this paper, we focus on the single channel model in Fig. 2,
and explain how the estimation procedure works starting from the
measurements.

2.2. Estimation of the PDF

Let us consider again the pdf model in Fig. 2. Assuming that
the probability density functionx(n) can be represented as the
output of this model, how can we get the best estimate based on
the measurements? In order to answer this question, let us consider
a filterG(z) that satisfies

[G(z)F (z)]↓M = 1 (4)

This G(z) is called a biorthogonal partner ofF (z) with respect
to M [10]. The importance of biorthogonal partners in estimating
the probability density function arises as follows. Let us consider

1Strictly speaking,F (ejω) should be bounded for this.
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Fig. 3. Reconstruction of the driving signalc(k).

a signalx(n) that can be represented as in Fig. 2. Therefore, we
have

X(z) = C(zM )F (z)

From thisx(n), we can recover the underlying driving signalc(k)
by using a biorthogonal partnerG(z) as in Fig. 3. This is not hard
to see, since the output of Fig. 3 has thez-transform

[G(z)X(z)]↓M = [G(z)C(zM )F (z)]↓M

= C(z)[G(z)F (z)]↓M

= C(z) (From Eq. (4))

hencec(k) is recovered. Figure 3 shows thatc(k) can be written
as

c(k) =
∑

n

x(n)g(Mk − n) (5)

Notice that the signalx(n) is a pdf of an integer random variablen.
Therefore the variablen in (5) should be interpreted as a random
variable that is distributed according tox(n) (instead of as the
traditional “time index”). From this point of view,g(Mk − n)
is also a random variable becausen is random, and the right hand
side of (5) can be viewed as the expectation of the random variable
g(Mk − n) with respect ton. Therefore (5) can be rewritten as

c(k) = En[g(Mk − n)] (6)

Now, assume that we haveN measurements of the random
variablen, and denote them asni, 0 ≤ i ≤ N − 1. Given these
measurements, the expectation in (6) can be approximated by its
sample mean as follows

ĉ(k) =
1

N

N−1∑
i=0

g(Mk − ni)

which allows us to relate the measurements to the pdf estimate. If
we define the signalh(n) as the relative occurrence of the integer
valuen in the measurements{ni}, we can writêc(k) as

ĉ(k) =
∑

n

h(n)g(Mk − n) (7)

This shows that we can get an estimate of the driving signalc(k)
by feeding the histogramh(n) to the decimation filterg(n) and
decimating the output byM , as shown in Fig. 4. Now that we
have the estimatêc(k), this can be used in the original model Fig.
2 to obtain the estimatêx(n) of the original pdf. The entire picture
is shown in Fig. 4. Note that̂x(n) ∈ V0, and the above estimation
procedure can be viewed as a projection of the histogramh(n)
onto the subspaceV0, where the original pdfx(n) belongs.

Since the biorthogonal partner ofF (z) is not unique [10], the
quality of the estimatêx(n) may vary depending on the choice of
the partnerG(z). If we chooseG(z) to be the least squares partner
defined as

G(z) =
F̃ (z)

([F̃ (z)F (z)]↓M )↑M

(8)
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Fig. 4. Estimation of the driving signalc(k) from the histogram
h(n), and subsequent estimation of the pdfx(n).

the entire estimation procedure in Fig. 4 becomes simply the or-
thogonal projection ofh(n) ontoV0 [10]. It is shown in [6] that
in this case the estimatêx(n) is guaranteed to be closer to the true
pdf x(n), than the histogramh(n) is, in `2 sense. In other words,
we always have

‖h(n)− x(n)‖ ≥ ‖x̂(n)− x(n)‖. (9)

One problem in takingG(z) to be the least squares partner of
F (z) is thatG(z) may be an unstable filter. If we consider the
denominator ofG(z), which is

B(z) = ([F̃ (z)F (z)]↓M )↑M

we can see that it satisfiesB(z) = B̃(z) = B∗(1/z∗). Therefore
if B(z) has a zero atz0, then there exists another zero at1/z∗0 ,
hence it has zeros both inside and outside the unit circle. This can
be a problem since it means thatG(z) cannot be a causal stable
filter. However, it is possible to approximate such a filter by an
FIR filter by choosing the region of convergence properly, as long
as there are no poles on the unit circle. It is shown in [6] that
we may use an FIR truncation of the least squares partnerG(z),
and it was observed that this approach yields impressive estimation
results when compared to the traditional histogram approach.

3. ESTIMATION OF PDFS IN THE PRESENCE OF NOISE

Now, let us suppose that the original samples are corrupted by
noise. Our measurement{mi} can be expressed as

mi = ni + ei, i = 0, 1, . . . , N − 1

where{ni} is the original sample and{ei} is i.i.d. noise that is
independent of{ni}. Let x(n) be the probability density function
of ni and lete(n) be the pdf of the noiseei. Then the densityy(n)
of the observationmi can be written as

y(n) = x(n) ∗ e(n)

Since the pdfx(n) comes from the model in Fig. 2,y(n) can
be represented as the output of the following model in Fig. 5.

M F(z)c(k)
noise

y(n)E(z)

x(n)

D(z)

Fig. 5. The original pdf convolved with the noise pdf.

Therefore if we letD(z) = F (z)E(z), we can writeY (z) =
C(zM )D(z). Now, let us defineS(z) as the least squares partner
of the filterD(z), so that

S(z) =
D̃(z)

([D̃(z)D(z)]↓M )↑M

We can recover the driving signalc(k) by passingy(n) through
S(z) and decimating it byM as shown in Fig. 6.

y(n) c(k)S(z) M

partner of D(z)

Fig. 6. Reconstruction of the driving signal from the pdf in the
presence of noise.

To prove this, note that the output of Fig. 6 has thez-transform

[S(z)Y (z)]↓M = [S(z)C(zM )D(z)]↓M

= C(z)[S(z)D(z)]↓M

SinceS(z) is the LSBP ofD(z), they satisfy[S(z)D(z)]↓M = 1,
and the above expression reduces toC(z). Now that we know the
driving signalc(k), if we pass it through the system in Fig. 2, we
can get the original pdfx(n) back. AsS(z) has poles both inside
and outside the unit circle (unlessD(z) has order< M ), it cannot
be directly used. But we can use the FIR truncationSL(z) instead,
as explained in [6]. The whole estimation procedure is illustrated
in Fig. 7.
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Fig. 7. Estimation of the pdf in the presence of noise.

The system in Fig. 7 takesh(n) as the input, which is a coarse
representation of the corrupted pdfy(n). It eliminates the effect
of the noise and yields an estimatex̂(n) of the original pdfx(n)
as the output. In order to ensure thatx̂(n) is a valid pdf, we may
drop the negative coefficients and then normalize the pdf estimate.

Experiment shows that this approach has a considerable ad-
vantage over the traditional inverse filtering method, which is as
follows. Since we know thath(n) is a representation ofy(n) =
x(n) ∗ e(n), we may passh(n) through the inverse filter1/E(z)
in order to get rid of the measurement noise, as shown in Fig. 8.
Generally, the noise pdfe(n) will be symmetric aroundn = 0, re-
sulting in a zero-mean random noise. Due to the symmetry,E(z)
will have zeros both inside and outside the unit circle. Therefore

x(n)
pdf estimate

h(n)
histogram inverse filter

1/E(z) ^

Fig. 8. Traditional way to estimate the pdf in the presence of noise
using the inverse filter1/E(z).
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Fig. 9. PDF estimation when noise is present. Top plot: the orig-
inal pdf, the pdf with noise and the histogram. Bottom plot: the
original pdf, the pdf with noise and the model based pdf estimate.

the corresponding inverse filter1/E(z) will have poles both in-
side and outside the unit circle resulting in an unstable filter. In
such cases, we may again use the FIR truncation method, as in [6].
But experiment shows that this tends to amplify the estimation er-
ror present in the histogram, making the pdf estimate very unreli-
able. The reason why this does not happen when we use the least
squares partnerS(z) as in the previous discussion, is because the
whole system works as an orthogonal projection operator, which
tends to suppress the error instead of amplifying it.

4. SIMULATION RESULTS

In order to demonstrate the ideas, we present the following simula-
tion results. We assumeM = 2 and useF (z) = (1+z)L/2L with
L = 6. Notice that this filter leads to the 5th order spline function
[12]. By choosing an appropriate driving signalc(k), we obtained
a sample pdfx(n) of length 37. In addition to this, a sample noise
pdf e(n) of length 5 is chosen2. Now we letD(z) = F (z)E(z),
and computeS(z), which is the least squares partner ofD(z).
We generated 500 random variablesni ∼ x(n) and the same
number of noise random variablesei ∼ e(n). Adding these ran-
dom variables respectively, we obtained 500 noisy observations
mi = ni + ei. The histogram was constructed from these obser-
vations, as can be seen in Fig. 9 (top). The figure clearly shows
that there is a large difference between the original pdf and the
histogram due to the noise. In addition to this, there exists also
a considerable amount of estimation error between the histogram
and the pdf with noise. In fact∑

n

|h(n)− y(n)|2 = 0.0068871

wherey(n) = x(n) ∗ e(n) is the pdf with noise. Now, let us
consider the model based pdf estimate. The histogram is fed into
the model in Fig. 7, and the output is normalized after removing
the negative coefficients, to get the final estimatex̂(n). The result
is shown in the bottom plot of Fig. 9. It can be noticed that the

2The noise pdfe(n) had the following coefficients :{0.0532, 0.2339,
0.3780, 0.2660, 0.0689}

noise is effectively removed, resulting in an excellent estimate of
the original pdf. The estimation error between the estimatex̂(n)
and the original pdfx(n) was∑

n

|x̂(n)− x(n)|2 = 0.0004767

Note that this error is much smaller than the initial estimation error
between the histogramh(n) and the corrupted pdfy(n). Conven-
tional inverse filtering of the histogram yielded a very oscillatory
output, a considerable portion of which was negative, and there-
fore we have not shown the result here.

5. CONCLUDING REMARKS

In this paper, we proposed a novel scheme for estimating a pdf of
a discrete random variable in the presence of measurement noise.
It was observed that the proposed scheme can practically get rid
of the effect of the noise, yielding a satisfactory estimate of the
original pdfx(n). An interesting extension of the proposed ideas
is the estimation of a probability density function when the noise is
dependent on the original samples. This is a topic for future work.
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