
A Practical Approach for the Design of Nonuniform Lapped

Transforms

Byung-Jun Yoon, Student Member, IEEE, and Henrique S. Malvar, Fellow, IEEE

February 20, 2006

Manuscript SPL-02887-2005

Abstract

We propose a simple method for the design of lapped transforms with nonuniform frequency resolu-

tion and good time localization. The method is a generalization of an approach previously proposed

by Princen, where the nonuniform filter bank is obtained by joining uniform cosine-modulated filter

banks (CMFB) using a transition filter. We use several transition filters to obtain a near perfect-

reconstruction (PR) nonuniform lapped transform with significantly reduced overall distortion. The

main advantage of the proposed method is in reducing the length of the transition filters, which

leads to a reduction in processing delay that can be useful for applications such as real-time audio

coding.

Keywords: lapped transforms, filter banks, nonuniform filter banks, cosine-modulated filter banks,

MLT, ELT.
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1 Introduction

Lapped transforms such as the LOT (lapped orthogonal transform) and the MLT (modulated

lapped transform) have been widely used in various applications, such as image processing and

audio coding [1]. For example, the MLT is a special kind of cosine-modulated filter bank (CMFB)

that has been very popular in audio processing. It is well-known for its computational efficiency

and good frequency discrimination, and most modern audio coders such as the MPEG-2 Layer III

(MP3), Dolby AC-3, and MPEG-4 AAC are based on the MLT or similar constructions [2].

Even though the MLT has many advantages, there are cases where a different time-frequency

resolution may be more desirable. One such example is audio coding at low bit rates. When there

are high-frequency transients in the original signal, the poor time resolution of the basis functions

give rise to ringing artifacts. Those are especially noticeable when they precede the signal (the
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pre-echoes in audio coding [2]). In order to alleviate this problem, many modern audio coders

adopt a window switching strategy, which uses a shorter window when high-frequency transient

sounds are detected. An alternative approach is to use a nonuniform filter bank or a lapped

transform with a nonuniform subband decomposition, in which the higher-frequency subband have

a wider bandwidth. The corresponding shorter impulse responses reduce the pre-echo effect [4],

and removes need to look ahead in the signal buffer in order to determine the window switching

points, thus reducing processing delay. With a nonuniform filter bank using wider bandwidths

for high-frequency subbands, those subbands are always being processed with much shorter block

lengths, thus easily allowing for encoder adaptation to high-frequency transients. Furthermore,

with nonuniform filter banks low-frequency components are not subject to additional distortion

due to window switching.

Various methods have been proposed for designing nonuniform filter banks [4]–[11]. Many are

based on the subband merging approach [4]–[9], while others are based on a tree-structured design

[1], [3] or constructed from joining uniform filter banks by a transition filter [10]. In applications

such as real-time audio coding, we need transforms with a large number of subbands, nonuniform

(or variable) frequency resolution and low system delay. In this paper, we propose a new method for

designing a lapped transform with the aforementioned properties. The method is a generalization

of that proposed by Princen [10], with the main advantage of reducing system delay. In Section 2

we review briefly Princen’s approach and present our proposed generalization. Section 3 shows

design examples that demonstrate the advantages of the proposed approach.

2 Design of Nonuniform Lapped Transforms

In [10], Princen proposed an interesting approach for designing nonuniform filter banks (NUFB).

Two uniform sections obtained from CMFBs with different decimation ratios are joined, and one

of the filters in the edge subband is replaced by a transition filter. The transition filter is derived

from a complex (hence asymmetric) prototype, which is cosine-modulated in such a way to produce

a real-valued transition filter, whose passband is located between the two uniform sections. This

is illustrated in Fig. 1 (a). The prototype filter is optimized such that it minimizes the aliasing

between itself and the adjacent filters. Aliasing between other filters are assumed to be negligible

during this optimization procedure. This approach provides an effective way of designing NUFBs

with good frequency responses [10].

However, as the transition filter is designed with the goal of near cancelation of frequency aliasing

from both sides, it generally needs to be much longer than the adjacent filters. That increases the

overall system delay. Another problem is that it assumes that the original CMFBs have large

stopband attenuation, hence non-negligible aliasing exists only between adjacent filters. Thus, the

method does not lead to satisfactory results when that assumption is not met, for example when we
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Figure 1: Joining two uniform CMFBs using transition filters: (a) Princen [10]; (b) proposed.

join two MLTs of order M and M/2. We can avoid these problems by using several transition filters,

whose lengths do not exceed those of the adjacent filters. For example, let us consider the case

when we want to join two CMFBs, where the filter bank in the low frequency region has a larger

decimation ratio than the filter bank in the high frequency region. This gives us better frequency

resolution for low-frequency signals and better time localization for high-frequency signals. As

shown in Fig. 1 (b), we assume that the filters in the original CMFBs do not have sharp cut-offs,

giving rise to aliasing between non-adjacent bands. This is the case when we use a CMFB with

relatively short filters such as the MLT. In such a situation, using a single optimized filter g1(n)

in the transition region is not enough, and using additional filters g0(n) and g2(n) on both sides

significantly reduces the overall distortion of the filter bank.

Another advantage of using several transition filters is that the two additional filters g0(n) and

g2(n) relieve the burden on the center filter g1(n), which makes it possible to use shorter transition

filters compared to the original design [10]. In particular, we can use transition filters that are

no longer than the longest of the two CMFB filters. Thus, there in no delay penalty in using

transitions filters, an important aspect for many practical applications.

The transition filters have to be optimized such that the resulting transform becomes as close

as possible to a PR system. For this purpose, we first define an error metric that can serve as an

indicator of how close the given transform is to a PR system. Consider a 2MK × M transform

matrix P with M subbands,

P =
[

PT
0 PT

1 · · · PT
2K−1

]T
, (1)

where Pj is a M ×M square matrix. We define

Ek =
2K−1−k∑

i=0

PiPT
i+k − δ(k)I, (2)
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where I is the M × M identify matrix. Now, the error metric can be defined as the sum of the

Frobenius norm1 of Ek

η =
2K−1∑
k=0

‖Ek‖2. (3)

Note that if η = 0, the lapped transform P is PR [1], [11]. Thus, we can design good near-

PR nonuniform lapped transforms by minimizing η, e.g. by using unconstrained minimization

techniques such as the quasi-Newton method [12].

In the proposed design, we choose the same decimation ratio for the subband that uses g0(n)

as the CMFB in the left-hand side. For g1(n) and g2(n), the decimation ratios are chosen to be

identical to that of the CMFB in the right-hand side. Then, the three transition filters are optimized

sequentially, through the following steps:

1. Combine the two uniform CMFB sections, using filters from the first uniform CMFB section

up to the frequency closest to the transition frequency, and filters from the second uniform

CMFB section afterwards.

2. Initialize the transition filters filters g0(n) to g2(n); g0(n) is set equal to the last filter of the

first section, and g1(n) and g2(n) are set equal to the first and second filters of the last section,

respectively.

3. Optimize g1(n) only, with g0(n) and g2(n) fixed.

4. Optimize g0(n) only, with g1(n) and g2(n) fixed.

5. Optimize g2(n) only, with g0(n) and g1(n) fixed.

6. If η < η0, terminate. Otherwise, go back to Step 3.

The optimization routine terminates once η < η0 is satisfied, indicating that the transform P

is close to PR. Because at each of Steps 3 to 5 the error metric η is a quadratic function of

the filter coefficients to be optimized, the minimum obtained in each of those steps is a global

one (under the constraint that the other two filters are fixed). Therefore, the whole sequential

optimization (also called coordinate descent) procedure is guaranteed to converge to at least a

local unconstrained minimum [12]. As it is usually the case with coordinate descent methods,

convergence is slow, typically taking dozens of iterations. By choosing η0 small enough, we can

obtain a good nonuniform lapped transform with nearly flat overall transfer function and negligible

aliasing components, whose magnitudes are comparable to the stopband attenuation of the filters

in the original CMFBs.
1The Frobenius norm of a matrix A is defined as ‖A‖2 =

P
i,j |aij |2 = trace(AAH).
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Figure 2: Graphical depiction of the structure of the transform matrix; each column represents one
filter. Regions with nonzero coefficients are shaded.

3 Design Examples

Let us first consider the case where we join two MLTs. This is especially interesting for applications

such as real-time audio coding, where CMFBs with long filters are not desired, because they increase

processing delay. In this example, we join an MLT matrix R1 of order M1 = 32 and a smaller MLT

matrix R2 of order M2 = M1/2 = 16, according to the design procedure described in Section 2.

Using these transforms, we construct a 2M1×M1 transform matrix P as follows. The first M1/2−1

column vectors (k = 0, . . . ,M1/2 − 2) of P are obtained from the first M1/2 − 1 column vectors

of R1. The last M1/2 − 4 column vectors (k = M1/2 + 4, . . . ,M1 − 1) are obtained from the last

M2/2 − 2 column vectors of R2 and the same vectors shifted by M2. The transition filters are

located at M1/2−1 ≤ k ≤ M1/2+3. The transition filter g0(n) is located at k = M1/2−1 and has

length 2M1. The transition filter g1(n) is located at k = M1/2 and M1/2 + 1, where the vector at

k = M1/2+1 is a shifted version of g1(n) by M2. The length of g1(n) is set to 3M2 = 48. Similarly,

the filter g2(n) is located at k = M1/2 + 2 and k = M1/2 + 3. The structure of the transform

matrix is shown in Fig. 2.

Fig. 3 shows the magnitude response of some of the filters in the filter bank. Those in the far

left and far right correspond to the two original CMFBs for M1 = 32 and M2 = 16, respectively.

In the middle we show the responses of the three transition filters. We see that their stopband

performances are comparable, an advantage of using several transition filters. Fig. 4 shows the

overall transfer function and the magnitudes of the aliasing components (in the same scale as in

Fig. 3) of the nonuniform lapped transform that was obtained using the proposed method. The

corresponding plots for the use of a single transition filter g1(n) are shown in Fig. 5. We see that

the peak distortion of the overall transfer function and the magnitude of the aliasing components
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Figure 3: Magnitude response of selected filters of a 24-subband nonuniform lapped transform
based on joining MLTs using the proposed approach. Dotted lines: responses of two of the original
MLT filters; dashed and solid lines: responses of the transition filters.
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Figure 4: Proposed approach. Top: analysis-synthesis transfer function; bottom: aliasing compo-
nents.

have been reduced.

The characteristics of the two transforms are summarized in Table 1, which shows this improve-

ment quantitatively. The value η̄ = η/M2 is a measure that shows how close the transform P is to

a PR system. As mentioned earlier, η̄ = 0 implies that P is PR. The overall transfer function and

the aliasing terms can be computed from

T`(z) =
1
M

M−1∑
k=0

Hk(zW `
M )Fk(z), (4)

where Hk(z) and Fk(z) are respectively the analysis filter and the synthesis filter in the k-th band [3].

We define the maximum ripple size of the overall transfer function T0(z) as

δT = max
ω

∣∣∣T0(ejω)− 1
∣∣∣. (5)
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Figure 5: Princen’s approach. Top: analysis-synthesis transfer function; bottom: aliasing compo-
nents.

Table 1: Error metrics for several design choices.

η̄ δT Ealias γ (dB)
MLT (Princen) 2.84 E-5 5.60 E-2 1.31 E-3 28.51
MLT (proposed) 1.40 E-5 2.60 E-2 7.15 E-4 31.38
ELT (Princen) 3.49 E-7 4.73 E-4 2.22 E-5 46.50
ELT (proposed) 2.23 E-7 3.00 E-4 1.42 E-5 48.53
near PR (Princen) 7.18 E-8 1.12 E-3 4.56 E-6 53.38
near PR (proposed) 5.30 E-8 8.51 E-4 3.37 E-6 54.68

The energy of the aliasing components is defined as

Ealias =
M−1∑
`=1

(
1
π

∫ π

0
|T`(z)|2dω

)
. (6)

Finally, we define the signal-to-noise ratio (SNR) γ as the ratio between the input signal variance

σ2 and the reconstruction error variance, that is

γ = 10 log10

σ2

σ2
ε

, (7)

where we assume that the input signal is a white Gaussian noise. We see in Table 1 that the

proposed approach considerably reduces all three distortion metrics η̄, δT , and Ealias. For example,

for the MLT-based design, all metrics are reduced by about 50%.

The proposed method can also be used for joining CMFBs with longer filters. For example, let

us consider joining two ELTs (extended lapped transforms [1]) with M1 = 32, M2 = M1/2 = 16

and K = 4 to construct a 2M1K ×M1 transform matrix P. The length of the filters in the CMFB

in the low-frequency region is 2M1K = 256, and the length of the filters in the CMFB in the
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high-frequency region is 2M2K = 128. As in the first example, the transition filters g0(n), g1(n)

and g2(n) are located in M/2 − 1 ≤ k ≤ M/2 + 3. The length of the transition filter g0(n) is

2M1K = 256, and the length of g1(n) and g2(n) is 2M1K − M2 = 240. The properties of the

resulting transforms are summarized in Table 1. We see that using higher order CMFBs and longer

transition filters improve the overall performance of the transform significantly, as expected. We

note also that when the original CMFBs have better stopband characteristics, the improvement

of our proposed approach (using several transition filters) over Princen’s approach (using a single

transition filter) is reduced. In other words, for a given number of subbands, the longer the filters

of the original CMFB sections, the less the need for using more than one transision filter.

It is also possible to use near-PR CMFBs for designing nonuniform lapped transforms, instead of

PR transforms such as MLTs and ELTs. Such a design may have advantages in terms of an increased

stopband attenuation, and thus better frequency separation and reduced overall distortion, at the

expense of a small increase in the maximum distortion level. We designed two CMFBs using the

procedure proposed in [13], [14], with the same number of subbands and identical filter lengths as

the ELTs that were previously used. Simulation results are summarized in Table 1, which confirms

that NUFBs designed from near-PR CMFBs have better stopband and aliasing characteristics, at

the expense of a small increase in the ripple of the overall transfer function. Because that penalty

is small, near-PR-based designs may be preferable in many practical applications.

4 Computational Cost

We see from the design examples that the use of multiple transition filters leads to improved

performance when compared to using a single one [10]. That was naturally to be expected, because

there are more degrees of freedom in optimizing multiple filters. This improvement comes at a small

cost, though: increased computational complexity. For example, let us consider the case when two

MLTs were joined to obtain the nonuniform transform. The transition filters must be applied to

the input signal frame in a direct form, that is, they cannot be obtained from the fast transforms

that are used to compute the MLT subbands [1]. However, this computational overhead becomes

less significant as the number of subbands M1 and M2 get larger. Consider the parameters in the

first example: M1 = 32, M2 = 16. For each input frame, the longer MLT can be computed via the

FFT with 160 multiplications and 288 additions [1], and the shorter MLT with 72 multiplications

and 120 additions, for a total of 232 multiplications and 408 additions. The transition filters take

a total of 112 multiplications and 112 additions. Thus, the transition filters lead to a 35% increase

in computational cost. This overhead increases if ELTs are used, as that requires longer transition

filters. For applications such as audio coding, where M1 = 2, 048 is typical, the computational

overhead of the MLT-based design is reduced to about 25%. Considering that computing the filter

bank takes usually a small fraction of the total computational load in such applications, the 25%
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overhead on the filter bank computation would typically be acceptable.

5 Concluding Remarks

We have proposed an effective approach for designing nonuniform lapped transforms. The proposed

approach can be used to construct lapped transforms with large number of bands, nonuniform fre-

quency resolution, and good time localization of the high-frequency basis functions. The proposed

approach is an extension of Princen [10], using several transition filters to join uniform CMFBs with

different decimation ratios. As showns in the examples, this method reduces the distortion and the

aliasing components in the original design significantly, by up to 50%. It has the advantages that

it can be effectively used with CMFBs with relatively short filters (such as the MLT), and that

the overall system delay is identical to that of the longest delay of the original CMFBs that are

joined together. These advantages make the proposed design approach especially useful in practical

applications such as audio coding, as long as the small increase computational complexity can be

tolerated – which is usually the case.
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Figure and table captions

Fig. 1. Joining two uniform CMFBs using transition filters: (a) Princen [10]; (b) proposed.

Fig. 2. Graphical depiction of the structure of the transform matrix; each column represents one

filter. Regions with nonzero coefficients are shaded.

Fig. 3. Magnitude response of selected filters of a 24-subband nonuniform lapped transform based

on joining MLTs using the proposed approach. Dotted lines: responses of two of the original MLT

filters; dashed and solid lines: responses of the transition filters.

Fig. 4. Proposed approach. Top: analysis-synthesis transfer function; bottom: aliasing components.

Fig. 5. Princen’s approach. Top: analysis-synthesis transfer function; bottom: aliasing components.

Table. 1 Error metrics for several design choices.


