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1 Introduction

The central dogma of molecular biology states that the genetic information flows from DNA to RNA

to protein. This dogma has exerted a substantial influence on our understanding of the genetic ac-

tivities in the cells. Under this influence, the prevailing assumption until the recent past was that

genes are basically repositories for protein coding information, and proteins are responsible for most

of the important biological functions in all cells. In the meanwhile, the importance of RNAs has re-

mained rather obscure, and the RNA was mainly viewed as a passive intermediary that bridges the

gap between DNA and protein. Except for classic examples such as tRNAs (transfer RNAs) and rRNAs
(ribosomal RNAs), functional noncoding RNAs were considered to be rare.

However, this view has experienced a dramatic change during the last decade, as systematic screen-

ing of various genomes identified myriads of noncoding RNAs (ncRNAs), which are RNA molecules

that function without being translated into proteins [11, 40]. It has been realized that many ncRNAs

play important roles in various biological processes. As RNAs can interact with other RNAs and DNAs

in a sequence-specific manner, they are especially useful in tasks that require highly specific nucleotide

recognition [11]. Good examples are the miRNAs (microRNAs) that regulate gene expression by tar-

geting mRNAs (messenger RNAs) [4, 20] , and the siRNAs (small interfering RNAs) that take part in

the RNAi (RNA interference) pathways for gene silencing [29, 30]. Recent developments show that

ncRNAs are extensively involved in many gene regulatory mechanisms [14, 17].

The roles of ncRNAs known to this day are truly diverse. These include transcription and trans-

lation control, chromosome replication, RNA processing and modification, and protein degradation

and translocation [40], just to name a few. These days, it is even claimed that ncRNAs dominate the

genomic output of the higher organisms such as mammals, and it is being suggested that the greater

portion of their genome (which does not encode proteins) is dedicated to the control and regulation

of cell development [27]. As more and more evidences pile up, greater attention is paid to ncRNAs,

which have been neglected for a long time. Researchers began to realize that the vast majority of the

genome that was regarded as “junk”, mainly because it was not well understood, may indeed hold
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the key for the best kept secrets in life, such as the mechanism of alternative splicing, the control of

epigenetic variations and so forth [27]. The complete range and extent of the role of ncRNAs are not so

obvious at this point, but it is certain that a comprehensive understanding of cellular processes is not

possible without understanding the functions of ncRNAs [47].

1.1 Finding ncRNAs

Although several systematic searches for ncRNAs in recent years have unveiled a large number of

novel ncRNAs, it is believed that there are still numerous ncRNAs that are waiting to be discovered [11,

27, 40]. Typical estimates of the number of ncRNAs in the human genome are in the order of tens of

thousands [27, 48], but the present genome annotation on ncRNAs is too incomplete to derive a more

accurate estimate. Given the vast amount of genomic data that is currently available, it is practically

impossible to identify all ncRNAs solely by experimental means. In order to expedite the annotation

process, we desperately need the help of computational methods that can be used for identifying novel

ncRNAs.

In this paper, we give a tutorial review of the various methods that can be used in the computational

identification and analysis of ncRNAs. Most of all, we focus on statistical models that can be utilized

for building probabilistic representations of RNA families. We review the main characteristics of these

models and show how they can be used to identify new ncRNA genes, which are portions of DNA

that give rise to ncRNA transcripts. The main emphasis of the discussion lies on methods for finding

new members (or homologues) of known ncRNA families, but we also briefly mention about recent

developments in techniques for finding novel ncRNAs at the end of the paper.

2 RNA Secondary Structure

Let us first consider the general characteristics of RNAs. The RNA is a nucleic acid that consists of

a string of nucleotides (or bases), A, C, G and U, where uracil (U) is chemically similar to thymine

(T) in the DNA. Different from DNAs, which exist in a double-stranded form, an RNA is generally

a single-stranded molecule. The nucleotides A/U and C/G in an RNA molecule can form hydrogen

bonded base-pairs, which are typically called complementary base-pairs1. If there exist complemen-

tary parts in a given RNA, these parts can form consecutive base-pairs, making the RNA fold onto

itself. This complementary base-pairing determines the three-dimensional structure of the RNA to a

considerable extent, and the two-dimensional structure resulting from the base-pairing is referred as

the RNA secondary structure.

Fig. 1 shows two examples of RNA secondary structures. We can see that both RNAs display

characteristic secondary structures after folding. As indicated in Fig. 1 (a), the consecutive base-pairs

that are stacked onto each other after folding is called a stem, and the sequence of unpaired bases

bounded by base-pairs is called a loop. The secondary structure of the RNA in Fig. 1 (a) consists of

two stem-loops (or hairpins). In many cases, the base-pairings occur in a nested manner, where no

1Sometimes, the bases G and U can also form pairs.
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Figure 1: Two examples of RNAs with secondary structures. The primary sequence of each RNA is
shown along with its structure after folding. The dashed lines indicate interactions between bases. (a)
RNA with two stem-loops. (b) RNA with a pseudoknot.

interactions between bases cross each other. To be more precise, consider a base-pair between locations

i and j (i < j), and another base-pair between locations k and ` (k < `). We say that these two base-

pairs are nested if they satisfy i < k < ` < j or k < i < j < `. Secondary structures with crossing

interactions, where there exist base-pairs at (i, j) and (k, `) that satisfy i < k < j < ` or k < i < ` < j,

are called pseudoknots. One such example is shown in Fig. 1 (b). Although RNA pseudoknots are

observed less frequently than secondary structures with only nested base-pairs, there are still many

RNAs that are known to contain functionally important pseudoknots [42].

RNA secondary structures are known to play crucial roles in carrying out the functions of many

ncRNAs. An intriguing example can be observed in riboswitches, which are regulatory RNA elements

that have been recently found [26, 44]. Riboswitches are highly structured RNA domains that are found

in the noncoding regions of various mRNAs. They make structural changes upon binding specific

metabolites, thereby regulating the expression of the corresponding genes. Two common mechanisms

of riboswitches in bacteria are illustrated in Fig. 2. The first mechanism works by translation control as

shown in Fig. 2 (a). In the presence of the effector metabolite, the riboswitch changes its conformation

by binding it. This structural change sequesters the ribosome-binding site (RBS), which prevents the

ribosome from binding to the mRNA. The second mechanism is based on transcription control. In this

case, the riboswitch forms a terminator stem upon binding the metabolite. This causes a premature

termination of transcription, preventing the synthesis of the full-size mRNA. Riboswitches play pivotal

roles in regulating several metabolic pathways, and they are prevalent in bacteria [26, 44]. Recent

results show that similar metabolite-binding RNA domains are also present in eukaryotes (organisms
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Figure 2: Two common mechanisms of riboswitches in bacteria. (a) Translation control. In the
presence of the effector metabolite, the riboswitch changes its structure and sequesters the ribosome-
binding site (RBS). This inhibits the translation initiation, thereby down-regulating the gene. (b) Tran-
scription control. Upon binding the metabolite, the riboswitch forms a terminator stem, which pre-
vents the generation of the full-size mRNA.

with cell nucleus) such as plants and fungi, although their gene-control mechanisms may be different

from those in bacteria [41].

As we can see in this example, the structure of an RNA molecule is closely related to its function.

For this reason, predicting the secondary structure of an RNA molecule based on its primary sequence

has been of interest to many researchers. Since the RNA secondary structure is essentially governed

by the base-paring of nucleotides, many computational methods have been proposed for finding the

“optimal base-pairing” of an RNA in an efficient manner. Such algorithms are typically called RNA

folding algorithms [32, 37, 49, 54]. A good introduction to these algorithms can be found in [13].

3 Searching for Homologous RNAs

In biology, we say that two (or more) sequences are homologous if they are similar because of shared

ancestry [5, 9]. Similar to protein-coding genes, ncRNA sequences can also be grouped into families

of homologous sequences [18]. Sequences that belong to the same family often share a number of

common statistical characteristics, although the reverse is not necessarily true. Given a new sequence,

we can take advantage of these family-specific characteristics to determine whether it belongs to a

specific sequence family. Its membership in a certain family can often be used to infer the function of

the sequence.

In fact, many computational methods for biological sequence analysis make use of the above idea in

one way or another [9], especially those used for gene identification. Suppose we have a set of related

sequences that belong to the same family (e.g. tRNAs). Based on these sequences, we can extract the

common features of the sequence family, and use them to search the database in order to find new



sequences (novel tRNAs) that share these features. Such computational screening may identify new

members of a known sequence family, in a fast and efficient manner. This approach is typically called

homology search (or similarity search).

3.1 Sequence-Based Homology Search

Most of the search methods that have been used for finding homologous protein-coding genes have

been based on sequence similarity. Popular search algorithms such as BLAST (Basic Local Alignment

Search Tool) [1] and FASTA [33] use known members in a sequence family to look for high-scoring

local alignments in the target database. Another approach picks up common “patterns” or “motifs” in

a set of related sequences and searches the database for regions that match these patterns. One example

of such an approach is the PROSITE database [3], which has compiled biologically significant patterns

of protein families. A more general approach would be to build a probabilistic representation of an

entire sequence family and employ it in the search. One of the most popular models for constructing

such a representation is the profile-HMM (profile hidden Markov model) [9, 22], which is an HMM

with a linear structure that repetitively use a set of three states (match, insert, delete). As profile-

HMMs can effectively describe distinct symbol probabilities at different locations and easily deal with

additional insertions and deletions at any location, they have been widely used in several applications

such as protein-coding gene-identification [23] and sequence alignment [9].

3.2 Statistical Model for RNA Sequences

The sequence-based methods described in the previous section (BLAST, FASTA, PROSITE, profile-

HMM) are very useful for identifying homologous DNAs and proteins, but they often behave poorly

when applied to RNA homology search. The main reason is the following. Many functional ncRNAs

preserve their secondary structures more than they preserve their primary sequences [9]. Sometimes,

these base-paired structures are still preserved among related RNAs, even when their similarity in

the primary sequence level can be hardly recognized. Therefore, when evaluating the similarity be-

tween two RNA molecules, it is important to take both their primary sequences and their secondary

structures into consideration.

As observed by Eddy in [12], this combined scoring scheme is much more effective in comparing

(and also aligning) RNA sequences, and it can greatly enhance the discriminative power of an RNA

homology search. This can be clearly seen from the example illustrated in Fig. 3. In this example, we

have a query sequence that has a stem-loop structure. Let us perform ungapped pairwise alignments

between the query sequence and each of the RNAs shown in Fig. 3 (b) and Fig. 3 (c). Both RNA-1

and RNA-2 differ from the query sequence RNA-0 at four locations. As the four mismatches (or “base

substitutions”) in both alignments are identical, the primary sequence alignment score for RNA-1 and

RNA-0 will be exactly the same as the alignment score for RNA-2 and RNA-0. However, we can see in

Fig. 3 (b) and Fig. 3 (c) that RNA-1 preserves the secondary structure of the original query sequence,

while RNA-2 does not. Apparently, RNA-1 is a better match to the query RNA-0, and therefore we

should give it a higher score than RNA-2.
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Figure 3: Ungapped alignment between two RNA sequences. (a) An RNA with a stem-loop structure
is used as the query sequence. (b) A structurally homologous RNA that has also a stem-loop structure.
(c) A structurally non-homologous RNA that does not fold to a stem-loop structure.

As this example shows, when computing a similarity measure between RNAs, it is important to

consider their resemblance in the structural level as well as in the sequence level. Now, the question

is how to combine the contributions from the sequence similarity and the structural similarity in a

reasonable way. To answer this question, let us examine the effect of a conserved RNA secondary

structure on its primary sequence. RNA sequences often undergo compensatory mutations in order

to preserve their secondary structures. For a given base-pair in an RNA molecule, if the base in one

side is changed to another base, the base in the other side is also changed such that the base-pair is

still maintained. As a result, we can observe strong correlation between the two base positions in

homologous RNAs as illustrated in Fig. 4. From this point of view, we can understand base-pairing

in an RNA secondary structure in terms of pairwise correlations between distant bases in the primary

sequence of the RNA. This shows that in order to model RNAs with conserved secondary structures,

we need a statistical model which can describe such pairwise correlations. However, most statistical

models that have been used for analyzing DNAs and proteins (including profile-HMMs) do not have
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[Box-I] TRANSFORMATIONAL GRAMMARS

In computational linguistics, a transformational grammar is defined as a set of rules that can be
used to describe (or generate) a set of symbol sequences over a given alphabet [6]. A transfor-
mational grammar can be characterized by the following components: terminal symbols, nonter-
minal symbols, and production rules. Terminal symbols are observable symbols that appear in
the final symbol sequence, and nonterminal symbols are abstract symbols that are used to define
the production rules. A production rule is defined as α → β, where α and β are strings of ter-
minal and/or nonterminal symbols, and it describes how a given string can be transformed into
another string. We can generate various symbol sequences by applying these production rules
repetitively. Chomsky categorized transformational grammars into four classes [6]. These are the
regular grammars, context-free grammars, context-sensitive grammars and unrestricted gram-
mars, in the order of decreasing restrictions on the production rules. These four classes comprise
the so-called Chomsky hierarchy of transformational grammars. For further details on this topic,
refer to texts on formal language theory such as [19].

the descriptive power to deal with such complex base correlations.

RNA sequences with secondary structures can be viewed as a kind of biological palindromes.

Palindromes are symmetric sequences that read the same forwards and backwards, such as “I prefer

pi”, “step on no pets”, and so on. Similarly, the base-pairing in an RNA secondary structure gives rise

to symmetric (or reverse complementary, to be more precise) regions in its primary sequence that are

analogous to palindromes. According to the Chomsky hierarchy of transformational grammars [6]

(see Box-I for a brief introduction to transformational grammars), HMMs can be viewed as stochastic

regular grammars. Regular grammars are the simplest among the four classes in the hierarchy, and it

is known that they are inherently incapable of describing a palindromic language. It is of course possi-

ble that a regular grammar generates a palindrome as part of its language, but the point is that it is not

capable of generating only such palindromes. Therefore, regular grammars cannot effectively discrim-

inate palindromic sequences from non-palindromic ones, making them unsuitable for constructing

RNA profiles.

In order to represent complex correlations that are frequently observed in ncRNA sequences, we

need more complex models with larger descriptive power than the regular grammars. In the follow-

ing sections, we review two statistical models - stochastic context-free grammars and profile context-

sensitive HMMs - that are capable of describing such correlations. These models can be effectively

used for building representations of RNA sequence families and performing RNA homology search.

4 Stochastic Context-Free Grammars and Covariance Models

Regular grammars allow only left-emissions of symbols, generating sequences left-to-right. However,

context-free grammars (CFGs) incorporate additional production rules that allow pairwise-emissions,

where one symbol is emitted to the left and the other symbol is emitted to the right. Thanks to these

additional rules, CFGs become capable of describing sequences with nested correlations.

By using CFGs, we can easily write grammars that model RNA secondary structures. For example,
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the following grammar2 can generate a RNA stem-loop with any number of base-pairs and a variable

length loop. (The notation ’|’ means ’or’.)

S −→ aSu | uSa | cSg | gSc | aLu | uLa | cLg | gLc

L −→ aL | cL | gL | uL | a | c | g | u

The generation of a symbol string by a CFG can be conveniently expressed using a tree-structured

graph, called a parse-tree. An example of such a parse-tree is given in Fig. 5, which shows how

the RNA sequence “GGCAAAGCC” can be generated from the above grammar. It gives a graphical

representation of the process

S → gSc → ggScc → ggcLgcc → ggcaLgcc → ggcaaLgcc → ggcaaagcc,

which shows how the production rules are applied.

In fact, a large class of RNA secondary structures can be effectively modeled using CFGs, making

them an attractive choice for constructing probabilistic profiles of RNA families. For this reason, there

have been several attempts to use stochastic context-free grammars (SCFGs) in RNA sequence analy-

sis [10, 39]. For example, the covariance model (CMs) [10] is the SCFG-analogue of the profile-HMM,

which is suitable for modeling consensus RNA sequences from multiple sequence alignments. As a

profile-HMM is obtained by using a set of three states (match, insert, delete) for each position in the

multiple alignment and interconnecting them, a CM is obtained by constructing a tree-like directed-

graph of states by repetitively using the basic building blocks called CM nodes. Each node can be

viewed as a “super-state” that consists of one or more states, where the number of states depends on

the type of the node. A typical CM has the following kinds of nodes: S (start of a new tree), P (pairwise-

emission), L (left-emission), R (right-emission), B (bifurcation), E (end node). Each of these nodes can

deal with a match, a deletion, and additional insertions at the given location using a combination of

match, insert, and delete states.
2Note that the bases A, C, G, U - which are terminal symbols in this case - are written in lower case letters to differentiate

them from other nonterminal symbols.
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Constructing a CM based on a multiple alignment is rather straightforward. We first predict the

consensus secondary structure by finding the base-pairs through identifying the covarying columns

in the alignment. Once the consensus structure is found, we build the corresponding consensus RNA

structure tree, which looks similar to a parse-tree of the consensus RNA sequence. Then we replace

each node in the constructed tree by one of the CM nodes (S, P, L, R, B, E) to obtain the final model.

An example of such a CM is shown in Fig. 6 (a), where the model is constructed from the consensus

RNA structure illustrated in Fig. 1 (a). As we can see in the magnified figure on the right, each CM node

consists of several states. For example, the P-node consists of six states - MP (match-pair), ML (match-

left), MR (match-right), D (delete), IL (insert-left), IR (insert-right) - and the L-node consists of three

states. The box in Fig. 6 (b) shows an example of an RNA sequence folded to its consensus secondary

structure. This RNA sequence can be aligned to the given CM, resulting in a parse-tree shown on

the right of Fig. 6 (b). Similarly, we can align every sequence in the multiple alignment to the CM



and count the emission and transition events at each CM state to estimate the emission and transition

probabilities. We can simply use the relative frequencies, or use these frequencies as the initial seed and

run an EM (expectation-maximization) algorithm called the inside-outside algorithm [24] to optimize

the model parameters. Further details on CMs can be found in [9].

CMs obtained in this manner can be used for finding homologous RNAs in a database. When

CMs were first proposed, they were applied to the prediction of tRNA genes [10] and achieved an

impressive 99.8% overall sensitivity3 at a relatively low false positive rate of < 0.002 per Mb (megabase;

1 million nucleotides) [25]. For finding the best alignment between the CM and an RNA sequence, they

used a variant of the Cocke-Younger-Kasami (CYK) algorithm [19, 24] which is the SCFG-analogue

of the Viterbi algorithm. One major problem of a CM-based search is the slow scanning speed due

to the high computational complexity of the CYK algorithm. The time-complexity of a general CYK

algorithm is O(L3M3), where M is the number states and L is the length of the target sequence. For

more restricted SCFGs such as CMs, the complexity decreases to O(L3M) [9], but it is still much slower

than the Viterbi algorithm. For this reason, it is sometimes advantageous to use a hybrid approach to

speed up the search. A later version of the tRNA-prediction algorithm called the TRNASCAN-SE [25]

combines other prediction algorithms with the CM-based approach, where the simpler algorithms are

used as pre-filters. This hybrid method has a comparable sensitivity (99.5%) and a much lower false

positive rate (< 0.00007), while running nearly 1,500 times faster than the original program that is fully

based on a CM [25].

There exists also a BLAST-like search tool that uses only a single RNA sequence and its secondary

structure to look for homologues [21]. It is shown to outperform programs that use only the primary

sequence information, but its computational cost is too high to be used in practice, unless a clustered

computing environment is available.

5 Profile Context-Sensitive HMMs

Although the SCFG-based models can be used for modeling various RNAs, their descriptive power is

limited to nested correlations, hence they are not capable of dealing with RNA pseudoknots. As we

can see from the example shown in Fig. 1 (b), RNA pseudoknots have crossing dependencies between

bases, and in order to model such dependencies we have to resort to more complex models such as the

context-sensitive grammars (CSGs). However, parsing a general CSG is an NP-complete problem [16],

hence computationally intractable. For this reason, several different subclasses of CSGs have been

proposed [28, 34], which have the descriptive power of modeling most RNA pseudoknots and com-

putationally tractable at the same time. The grammar proposed by Rivas and Eddy [34] incorporates

several symbol rearranging rules to obtain crossing interactions in the final symbol sequence, and the

method proposed by Matsui et al. [28] uses tree adjoining grammars (TAGs) for modeling pseudoknots.

Both models can deal with large classes of correlations that include most of the known pseudoknots,

3Two metrics called sensitivity (SN) and specificity (SP) are frequently used to evaluate the performance of a gene finder.
They are defined as SN = TP/(TP+FN) and SP = TP/(TP+FP), where TP is the number of true-positives, FN is the number
of false-negatives, and FP is the number of false-positives.
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but neither model can represent all of them.

Instead of using CSGs, we can use context-sensitive HMMs (csHMMs) that have been recently

proposed [50, 51] (see Box-II). The csHMMs are extensions of traditional HMMs that are capable of

modeling any kind of pairwise correlations between distant symbols (including crossing correlations).

Profile context-sensitive HMMs (profile-csHMMs) [53], which are specifically structured csHMMs

with a repetitive structure, can be especially useful in modeling RNA profiles. The basic structure of

a profile-csHMM is quite similar to that of a profile-HMM. It repetitively uses a set of match, insert,

and delete states to model each position in the multiple alignment. However, unlike profile-HMMs,

there can be three different kinds of match states depending on the type of correlation at the base

position that is being modeled. If the base position is not involved in base-pairing, we use a single-

emission state for the match state at the given position. For two positions that form a base-pair, we use

a pairwise-emission state in the front and the corresponding context-sensitive state in the rear position,

to model the correlation between these positions. Note that additional bases that are inserted to the

alignment do not have an explicit correlation with others, hence single-emission states are used for

insert states. Delete states are non-emitting states as in the traditional profile-HMMs. Fig. 7 shows a

simple example that demonstrates how a profile-csHMM can be constructed from an RNA multiple

sequence alignment. We can see in Fig. 7 (a) that the first position is not correlated to any other position,

hence the match state M1 uses a single-emission state. The second position and the fourth positions

are correlated, so we use a pairwise-emission state at M2 and the corresponding context-sensitive state

at M4. Similarly, a pairwise-emission state is used at M3 with the corresponding context-sensitive state
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sequence of longer subsequences can be found by extending and adjoining those of shorter subse-
quences.

at M5. Once the model has been obtained, we can estimate its model parameters in a similar way as

we estimate the parameters of a CM.

As we can see from the example illustrated in Fig. 7, the profile-csHMM provides a simple and in-

tuitive method for constructing an RNA profile from a multiple sequence alignment. Moreover, it can

represent any kind of pairwise dependencies between distant symbols, hence capable of dealing with

all kinds of RNA pseudoknots. However, in order to use profile-csHMMs in practical applications,

we need an efficient algorithm for finding the best alignment between the model and an observation

sequence in a systematic way.4 In fact, we can use the sequential component adjoining (SCA) algo-

rithm [53], which can be viewed as a generalization of the Viterbi algorithm and the CYK algorithm.

The basic philosophy underlying the SCA algorithm is similar to that of other dynamic programming

algorithms; it first finds the optimal alignment for short subsequences, and uses this information to

find the optimal alignment of longer subsequences. By iterating this process, we can ultimately find

the global optimal alignment. Nevertheless, there are two main differences between the SCA algorithm

and other algorithms such as the Viterbi algorithm and the CYK algorithm. In the first place, instead

of using a fixed number of indices to designate the intermediate subsequences, the SCA algorithm

uses a set of variable number of closed intervals to signify a subsequence. This significantly increases

the number of ways in which the intermediate subsequences can be defined and extended. In the

second place, the SCA algorithm extends and adjoins the optimal alignments of shorter subsequences

according to a model-specific order. Note that in the Viterbi algorithm, the optimal subsequences

were extended from left to right, and in the CYK algorithm they were extended from the inside to

the outward direction. However, in the SCA algorithm, we define this extension/adjoining order in a

4This is equivalent to finding the optimal state sequence.



Representable Representable Computational
Model correlations sequences complexity

Linear Nested Crossing
Profile-HMM O X X coding-genes, proteins O(LM2)

Covariance Model O O X RNAs (no pseudoknots) O(L3M)
Profile-csHMM O O O RNAs (including pseudoknots) variable

Table 1: Comparison between statistical models.

model-dependent manner such that all the correlations in the profile-csHMM are taken care of. Fig. 8

illustrates one possible way of obtaining the final optimal state sequence of a given observation se-

quence, based on the profile-csHMM shown in Fig. 7 (b). The overall computational complexity of

the SCA algorithm depends on the specific correlation structure of the profile-csHMM. For sequen-

tial(linear) correlations (as in traditional HMMs), the complexity will be the same as that of the Viterbi

algorithm, and for nested correlations (as in SCFGs), it will be identical to the complexity of the CYK

algorithm. Table 1 compares the profile-csHMM with other statistical models that have been discussed

so far.

The profile-csHMM is a relatively recent development that can provide an effective framework

for constructing profiles for RNA families (including RNA pseudoknots) and building computational

RNA analysis tools [53]. It opens up a lot of interesting theoretical issues as well as many possible

applications in RNA analysis, including the prediction and alignment of RNA pseudoknots.

6 Beyond Homology Search: Identifying Novel ncRNAs

RNA homology search based on CMs or profile-csHMMs can be highly useful for predicting homol-

ogous ncRNA genes in genome sequences. However, these models are family-specific and they can

be used only for searching homologues of known RNAs. Building a general purpose gene finder for

predicting novel ncRNA genes is a much more challenging task.

Until now, various signal processing techniques have been applied to the prediction of protein-

coding genes, which include DFT [2, 43], digital filters [45, 46], hidden Markov models (HMMs) [22]

and many others. Among them, HMM-based methods have been especially successful. State-of-the-art

gene finders (primarily based on HMMs) boast high prediction ratios that are far above 90%, achiev-

ing nearly perfect prediction results in simple organisms such as bacteria and yeast. However, these

methods are not suitable for predicting ncRNA genes due to the following reasons. First of all, many

ncRNAs lack the various statistical cues that have been used for identifying protein-coding genes.

Unlike coding genes, their primary sequences do not display strong composition bias with strength

comparable to the codon bias5 in protein-coding genes [12]. They do not have open reading frames

(ORFs)6 that were effectively used in coding-gene finders [31]. Moreover, many ncRNAs are consider-

5A codon is a tri-nucleotide unit that codes for a single amino acid. Nonuniform usage of codons can give rise to a strong
period-3 property in a DNA sequence.

6An ORF is any sequence of DNA that can potentially encode a protein. It starts with a start codon and ends with a stop
codon [5]. Usually, the existence of a long ORF is a reasonable indication of the presence of a protein-coding gene.



[Box-II] CONTEXT-SENSITIVE HMM

The context-sensitive HMM (csHMM) can be viewed as an extension of the traditional HMM,
where some states have variable emission and transition probabilities that depend on the “con-
text” [50]. Such context-dependency can be quite effective in modeling certain types of corre-
lations, and similar extensions have been previously proposed for different applications. (For
example, see [15] for a related model that was used in image compression.) The csHMM has three
different classes of hidden states, namely, single-emission states Sn, pairwise-emission states
Pn, and context-sensitive states Cn. Single-emission states Sn are identical to the regular states
in traditional HMMs. Pairwise-emission states Pn are similar to single-emission states except that
the symbols emitted at Pn are stored in the associated auxiliary memory Zn, which can be a stack
or a queue. Context-sensitive states Cn are fundamentally different from the others, in the sense
that their probabilities are not fixed, but depend on the context. When we enter Cn, it first accesses
the memory Zn and retrieves a symbol x. (Note that this symbol was previously emitted at the
corresponding pairwise-emission state Pn.) Once the symbol is retrieved, the emission probabili-
ties of Cn are adjusted according to the value of x. For example, we can adjust the probabilities so
that Cn emits the same symbol x with high probability (possibly, with probability one). The tran-
sition probabilities at Cn are also variable and they depend on whether the memory Zn is empty
or not. This context-sensitive property increases the descriptive power of the HMM significantly,
and the csHMMs are capable of modeling various pairwise symbol correlations including crossing
correlations.

A

A C

AU

GC

UA5’ 3’

S1

P1 C1

Start End
Stack 1

P1 P1 P1 S1 S1 S1 C1 C1 C1

A C U A A C A G U

stem-loop csHMM underlying state sequence

observed symbol sequence

SRG SCFG

SCSG

csHMM

(a)

(b)
context-sensitive
grammars

regular grammars

context-free
grammars

Figure 9: (a) An example of a simple csHMM that models a stem-loop. (b) The Venn-diagram
shows the location of the csHMM in the Chomsky hierarchy.

The example in Fig. 9 (a) shows a simple csHMM that can model stem-loops. The single-emission
state S1 generates the loop part, where the bases are not correlated to others. The states P1 and
C1 together generate the stem part. Firstly, the bases generated by P1 are pushed onto the stack.
Secondly, when we enter C1, it pops the base on the top of the stack and the emission probabilities
of C1 are adjusted such that it emits the complementary base. The transition probabilities of C1

are set so that it makes self-transitions until the stack becomes empty. In this way, we can always
generate sequences with stem-loops. The Venn-diagram in Fig. 9 (b) shows where the csHMM is
located in the Chomsky hierarchy. As we can see, the csHMM fully includes stochastic regular
grammars (SRGs), and it is a proper subset of stochastic context-sensitive grammars (SCSGs).
The csHMM has a significant overlap with stochastic context-free grammars (SCFGs), but neither
of them fully contains the other. However, csHMMs are capable of modeling various crossing
dependencies, which cannot be done using SCFGs. An in-depth introduction to csHMMs can be
found in [52].



ably shorter than coding-genes, where a typical ncRNA has less than a few hundred nucleotides [18].

(An extreme example is the miRNA which has only about 21-25 nucleotides, in general [38].) This

makes it difficult to judge whether the statistical property inside the ncRNA genes is different from

that of the rest in a statistically meaningful manner.

Although traditional protein-coding gene finders cannot be directly used for identifying novel

ncRNA genes, we can utilize the native characteristics of RNAs for building ncRNA gene finders.

For example, as many ncRNAs have well-conserved secondary structures, we can exploit this prop-

erty for finding ncRNA genes. However, an RNA sequence can have a large number of thermody-

namically plausible secondary structures that have no biological significance [13]. In fact, it has been

realized that the existence of a plausible secondary structure is not a sufficient evidence for detecting

ncRNAs [35]. What is more important is whether the given secondary structure is preserved across dif-

ferent species, which can serve as a compelling evidence of its biological significance. For this reason,

most ncRNA gene-prediction algorithms take advantage of multiple sequence data for finding novel

ncRNAs [7, 8, 36, 47].

A common strategy of many general purpose ncRNA gene finders - such as QRNA [35], ddbRNA [8],

MSARI [7], and RNAz [47] - can be summarized as follows [31]. They first look for regions in genome

sequences that are conserved across different species, and form a multiple sequence alignment between

these regions. Based on the alignment, they investigate whether there exists a common secondary

structure that is preserved in all sequences. This information is used to decide whether these regions

correspond to a functional ncRNA or not. Some of these algorithms have been used for screening the

genomes of several organisms, and the detection results indicate that the aforementioned strategy is

indeed quite effective. For example, RNAz - which is the current state-of-the-art algorithm for pre-

dicting novel ncRNAs - achieves an average sensitivity of 84.17% at 96.42% specificity, and 75.27%

sensitivity at 98.93% specificity [47]. Recently, RNAz has been used to perform a comparative screen-

ing of several vertebrate genomes, and it predicted more than 30,000 putative ncRNA genes in the

human genome [48]. Among them, almost a thousand ncRNA genes were conserved in all four verte-

brate genomes included in the screening, which strongly suggests that these ncRNAs are biologically

functional.

Despite the initial success of these ncRNA gene finders, there is yet a large room for improvement.

In fact, the average prediction ratios of the existing algorithms are not as high as one might hope, and

they still do not work well for certain classes of RNAs.7 However, the performance of ncRNA gene

finders has been improving at a fast pace, and it is clear that computational gene finders will play

important roles in unveiling more and more novel ncRNAs in the future.

7 Conclusions

Unlike protein-coding genes, ncRNA genes have remained unnoticed until relatively recently. Com-

pared to the annotation of protein-coding genes, which is nearly complete in many genomes that have

7For example, the sensitivity of RNAz for U70 snoRNAs (small nucleolar RNAs) is below 62%, and for tmRNAs (transfer-
messenger RNA) it is below 25% [48].



been sequenced so far, the annotation of ncRNA genes have just begun. At present, it is even difficult

to give a reliable estimate of the total number of ncRNAs in a genome. Given the enormous amount

of genomic data, which is still increasing nowadays, we cannot stress strongly enough the impor-

tance of computational methods in finding ncRNA genes and analyzing them. Interestingly enough,

many methods that are widely used in RNA sequence analysis have been already extensively used

in the signal-processing community for a long time. For example, SCFGs that are frequently used for

constructing RNA-profiles were originally used in speech recognition and natural language process-

ing [24]. Moreover, profile-HMMs and profile-csHMMs are variants of traditional HMMs that have

been also extensively used in speech and audio processing. The emerging field of computational RNA

sequence analysis poses plenty of interesting questions to researchers across diverse areas, and we be-

lieve that the signal processing community can make a meaningful contribution to the advancement

of this field.
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[48] S. Washietl, I. L. Hofacker, M. Lukasser, A. Hüttenhofer and P. F. Stadler, “Mapping of conserved RNA
secondary structures predicts thousands of functional noncoding RNAs in the human genome”, Nature
Biotechnology, vol. 23, pp. 1383-1390, 2005.

[49] C. Witwer, I. L. Hofacker, and P. F. Stadler, “Prediction of consensus RNA secondary structures including
pseudoknots”, IEEE Trans. Comp. Biology and Bioinformatics, vol. 1, pp. 66-77, 2004.

[50] B.-J. Yoon and P. P. Vaidyanathan, “HMM with auxiliary memory: A new tool for modeling RNA secondary
structures”, Proc. 38th Asilomar Conference on Signals, Systems, and Computers, Monterey, CA, Nov. 2004.

[51] B.-J. Yoon and P. P. Vaidyanthan, “An overview of the role of context-sensitive HMMs in the prediction of
ncRNA genes”, Proc. IEEE Workshop on Statistical Signal Processing, Bordeaux, France, July 2005.

[52] B.-J. Yoon and P. P. Vaidyanathan, “Context-sensitive hidden Markov models for modeling long-range
dependencies in symbol sequences”, IEEE Transactions on Signal Processing, to appear.

[53] B.-J. Yoon and P. P. Vaidyanathan, “Profile context-sensitive HMMs for probabilistic modeling of sequences
with complex correlations”, Proc. 31st IEEE International Conference on Acoustics, Speech, and Signal Process-
ing, Toulouse, May 2006.

[54] M. Zuker and P. Stiegler, “Optimal computer folding of large RNA sequences using thermodynamics and
auxiliary information”, Nucleic Acids Research, vol. 9, pp. 133-148, 1981.


