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Abstract— Systematic research on noncoding RNAs (ncRNAs)
has revealed that many ncRNAs are actively involved in various
biological networks. Therefore, in order to fully understand
the mechanisms of these networks, it is crucial to understand
the roles of ncRNAs. Unfortunately, the annotation of ncRNA
genes that give rise to functional RNA molecules has begun only
recently, and it is far from being complete. Considering the huge
amount of genome sequence data, we need efficient computational
methods for finding ncRNA genes. One effective way of finding
ncRNA genes is to look for regions that are similar to known
ncRNA genes. As many ncRNAs have well-conserved secondary
structures, we need statistical models that can represent such
structures for this purpose. In this paper, we propose a new
method for representing RNA sequence profiles and finding
structural alignment of RNAs, based on profile context-sensitive
HMMs (profile-csHMMs). Unlike existing models, the proposed
approach can handle any kind of RNA secondary structures, in-
cluding pseudoknots. We show that profile-csHMMs can provide
an effective framework for the computational analysis of RNAs
and the identification of ncRNA genes.

Index Terms— Noncoding RNA (ncRNA) gene prediction, pro-
file context-sensitive HMM (profile-csHMM), sequential compo-
nent adjoining (SCA) algorithm, RNA similarity search.

I. INTRODUCTION

The various cellular mechanisms that sustain the life of
living organisms are carried out by the elaborate collaborations
of numerous biomolecules, such as DNA, RNA, and proteins.
For a long time, proteins have been believed to be the most
important molecules among them, which perform most of the
structural, catalytic, and regulatory roles in all cells. In the
meanwhile, DNA has been mainly viewed as the reservatory
for protein coding information and RNAs have been regarded
as passive intermediary molecules that simply interconnect
DNA and proteins.

However, a number of recent observations in molecular
biology indicate that this traditional view may have been too
restrictive and incomplete to explain many biological functions
in complex multicellular organisms, such as plants, insects,
and animals. Recent studies on various genomes has revealed
that there are numerous noncoding RNAs (ncRNAs), which
are RNA molecules that are not translated into proteins but
directly function as RNAs, that play crucial roles in various
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biological processes [7], [16], [25]. In addition to the well-
known examples such as tRNAs (transfer RNAs) and rRNAs
(ribosomal RNAs), functional ncRNAs have been found to be
abundant, and the functions of the ncRNAs that have been
identified till now are truly diverse. For example, ncRNAs are
known to be involved in gene silencing [24], RNA process-
ing [31], RNA modification [23], translation and transcription
control [29], just to name a few.

As RNAs can directly interact with other RNA and DNA
molecules in a sequence-specific manner, they can be espe-
cially useful in regulatory mechanisms, where the recognition
of a specific nucleotide sequence is required [7]. In fact, it
has been shown that many ncRNAs are actively involved in
controlling various gene regulatory networks [12]. Examples
of such regulatory RNAs include miRNAs (microRNAs) [2],
riboregulators [9], and riboswitches [26]. In higher organisms
such as mammals, the genomic output seems to be dominated
by ncRNA transcripts, which suggests that the greater portion
of their genome may be dedicated to regulating the develop-
ment of cells [16].

Based on these observations, it becomes clear that we cannot
fully understand the precise mechanisms of various biological
networks, unless we first understand the roles of ncRNAs in
these networks. Unfortunately, the annotation of ncRNA genes,
which are regions in the DNA that give rise to functional
ncRNAs, has begun only recently, and it is still far from
being complete [17]. Although several systematic screenings
of various genomes have identified many ncRNAs, it is be-
lieved that there still exist numerous ncRNAs that have not
been discovered yet. Given the enormous amount of genome
sequence data that is still growing at a fast pace, finding
ncRNA genes solely by experimental means is practically
infeasible. For a fast annotation of ncRNA genes in genome
sequences, it is crucial to develop efficient computational
methods for finding these genes.

One effective method for finding new ncRNA genes is to
search for regions that look similar to known ncRNA genes.
This is typically called a similarity search or a homology
search. As many ncRNAs have secondary structures that are
well-conserved among different species, it is important to
incorporate this structural information in the search. In fact,
scoring schemes that effectively combine contributions from
the sequence similarity and the structural similarity are known
to be much more discriminative than schemes that are based
on sequence similarity alone [8].

Until now, a number of statistical models have been pro-



posed that can be used for representing RNA secondary
structures and implementing scoring schemes that combine
sequence similarity and structural similarity [5], [21], [15].
However, these models can handle only a limited class of
RNA secondary structures. For example, the CMs (covariance
models) [6], which have been widely used in RNA sequence
analysis, and the PHMMTSs (pair hidden Markov models on
tree structures) [21], which are a more recent development,
cannot handle RNAs that have pseudoknots.! As there exist
many RNAs with functionally important pseudoknots [13],
[27], this can be potentially a serious limitation. Recently,
another method has been proposed based on PSTAGs (pair
stochastic tree adjoining grammars) [15] that can handle many
known pseudoknots, but not all of them.

In this paper, we propose a new method for representing
RNA sequence profiles and building RNA sequence analysis
tools. The proposed method is based on profile context-
sensitive hidden Markov models (profile-csHMMs) [38], and
it can in principle handle any kind of pseudoknots. To
demonstrate the effectiveness of the new approach, we build
a structural alignment tool for RNAs, which can be directly
used for computing the similarity score between two RNAs.
Experimental results will show that the profile-csHMM based
approach can achieve high prediction ratios at a relatively
low computational cost, providing an effective framework for
building tools for finding ncRNA genes.

A. Scope and Outline

The purpose of this paper is twofold. We first present
an overview of recent results on context-sensitive HMMs
(csHMMs) and profile-csHMMs, and then we present new
results on the application of profile-csHMMs in RNA sequence
analysis. The paper is organized as follows. In Sec.II, we begin
with a review of RNA and RNA secondary structure, and we
give a brief overview of RNA similarity search. In Sec.IIl, we
review the concept of csHMMs that has been proposed in [32],
[37]. Context-sensitive HMMs are extensions of traditional
HMMs that can effectively describe long-range correlations
between distant symbols, and they have been shown to be
useful in RNA sequence analysis [33], [34], [39]. In Sec.IV,
we elaborate on profile-csHMMs [38], which are a subclass
of csHMMs that are especially useful in representing RNA
sequence profiles. A dynamic programming algorithm that can
be used for finding the optimal path in a profile-csHMM is
described in Sec.V. In Sec.VI, we propose a new method
for finding structural alignments of RNAs based on profile-
csHMMs. Experimental results of the proposed method are
presented in Sec.VII and Sec.VIII, where it is compared to
other existing methods. The paper is concluded in Sec.IX.

II. REVIEW OF STATISTICAL MODELS FOR REPRESENTING
RNA SEQUENCES

A. RNA Secondary Structure
RNA is a nucleic acid polymer that consists of four types
of nucleotides. The nucleotides are denoted by A, C, G, and

IRNA secondary structures that have crossing base-pairs are called pseu-
doknots. Formal definition of a pseudoknot can be found in Sec.II.
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Fig. 1. Examples of RNA secondary structures. The dashed lines indicate
the interactions between bases that form complementary base-pairs. (a) RNA
with a hairpin (stem-loop) structure. (b) RNA with pseudoknots.

U, which stand for adenine, cytosine, guanine, and uracil.
In DNA, uracil is replaced by thymine (T), and they are
chemically similar to each other. A-U and C-G can form
hydrogen-bonded base-pairs, which are called Watson-Crick
base-pairs. In addition to the canonical A-U and C-G pairs,
non-canonical pairs do also exist, where the most common
non-canonical pair is the G-U wobble base-pair. Bases that
can form a base-pair are typically said to be complementary
to each other. Unlike DNA, which exists in a double-stranded
form (called DNA double helix), RNA molecules are generally
single-stranded.

Due to the interactions between the complementary bases,
an RNA molecule often folds onto itself to form a number of
stacked base-pairs. The two-dimensional structure that results
from this intramolecular folding is called the RNA secondary
structure. In contrast, the one-dimensional nucleotide sequence
is called the primary sequence of the RNA. Examples of RNA
secondary structures are shown in Fig.l. For example, the
RNA shown in Fig.1(a) forms three base-pairs after folding.
These stacked base-pairs are called a stem. The unpaired
bases that are bounded by the base-pairs are called a loop.
For this reason, the secondary structure in Fig.1(a) is usually
called a stem-loop structure (or a hairpin structure, due to
its shape). Fig.1(b) shows another interesting example of an
RNA secondary structure. Unlike the RNA in Fig.1(a), where
all base-pairs occur in a nested manner, the RNA shown in
Fig.1(b) has crossing base-pairs. To be more precise, let us
consider a base-pair between the positions ¢ and j (i < j),
and another base-pair between the positions k and ¢ (k < {).
If the base-pairs (¢,7) and (k, ¢) satisfy

i<k<l<jor k<i<j</t

we say that the two pairs are nested. On the other hand, if
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Fig. 2. Tllustration of an RNA similarity search.

they satisfy
i1<k<j<flor k<i<l<j

we say that these pairs are crossing. RNA secondary structures
that have crossing base-pairs are typically called pseudoknots.
In most cases, the base-pairs in an RNA secondary structure
occur in a nested manner. However, there exist also many
RNAs with pseudoknots [13], [27]. Crossing base-pairs intro-
duce some complications in RNA sequence analysis, as will
be shown later.

B. Scoring Scheme for Comparing RNA Sequences

For many ncRNAs, their secondary structures play pivotal
roles in carrying out their biological functions. As a result,
many RNA families have characteristic secondary structures
that are commonly shared by their members [5]. Sometimes,
this secondary structure can be still observed when there is lit-
tle similarity between the primary sequences of two members.
For this reason, it is important to consider both the primary
sequence and the secondary structure when performing an
RNA similarity search.

In an RNA similarity search, we scan a sequence database
to look for regions that closely resemble the reference RNA
that is of our interest. Generally, we use a sliding window and
compare the target RNA that is located inside the window with
the reference RNA. This is illustrated in Fig.2. Note that the
size of the sliding window need not be fixed. In general, we
use a variable window, with restrictions on its minimum and
maximum lengths. If the target RNA is ‘similar enough’ to the
reference RNA, we report it as a putative member that is likely
to belong to the same family as the reference RNA. In order
to decide whether the two RNAs are similar or not, we need
a scoring scheme that can give us a quantitative measure of
the similarity between them. As homologous RNAs conserve
their primary sequences as well as their secondary structures,
this scoring scheme should be able to reasonably combine the
contributions from sequence similarity as well as structural
similarity. In fact, it has been observed that such a combined
scoring scheme can significantly enhance the specificity of an
RNA similarity search [8].

Let us consider how we can devise such a scoring scheme.
Measuring the similarity between two primary sequences is
relatively straightforward. Conceptually, we can simply align
the sequences and see where the two sequences differ from
each other. We can assign negative scores for base substitutions

(a) Reference RNA

(b) Target RNA

Fig. 3. Comparing the structural similarity between two RNAs. (a) A
reference RNA with a stem-loop structure. (b) A target RNA with an unknown
structure. We can investigate its base correlations to see whether the given
RNA can fold to the same secondary structure as the reference RNA.

and gaps, while assigning positive scores for identical bases.
For example, let us consider the following alignment.

A C C G - U )
- C G G AU

If we respectively assign —3, —4, and +1, for each base
substitution, gap, and identity, the primary sequence similarity
score for the alignment shown in (1) will be

~4+1-3+41-4+1=-8

Since there can be many different ways for aligning the two
sequences, one immediate question is which alignment should
be used for computing the similarity score. A reasonable
and widely used solution is to find the optimal alignment
that maximizes the score, and use this maximum score as
a quantitative measure of their similarity. There are efficient
algorithms for finding the optimal alignment [5].

However, it is not immediately obvious how we can com-
pare the secondary structures of two RNAs. Given a reference
RNA with a specific secondary structure, how can we figure
out whether this structure is conserved in the target RNA? In
order to answer this question, let us consider the example in
Fig.3(a). The reference RNA shown in Fig.3(a) has a stem-
loop structure. As mentioned earlier, this secondary structure
results from the interactions (shown in dashed lines) between
the complementary bases that make the RNA molecule fold
onto itself. Now, let us consider a target RNA with an
unknown structure, as shown in Fig.3(b). If this RNA is to
fold to the same structure as the reference RNA, what kind
of conditions should be satisfied by its primary sequence?
From Fig.3(b), we can easily see that in order for this to be
true, the bases (X1, Xy), (X2, Xs), and (X3, X7) should form
complementary base-pairs. For example, ‘GAACACUUC’ and
‘ACGAAACGU’ can fold to the same secondary structure,
while ‘CCCAAAUUU’ cannot.

This shows that we can represent an RNA secondary struc-
ture in terms of base correlations in the primary sequence of
the RNA. Therefore, in order to develop a scoring scheme



unrestricted

context-sensitive

context-free

* more complex
* more powerful
« less restricted

Fig. 4. Chomsky hierarchy of transformational grammars.

that can properly combine the contributions from sequence
similarity and structural similarity between a reference RNA
and a target RNA, we need a statistical model that can
effectively represent the base correlations in the reference
RNA.

C. Modeling RNA Secondary Structures

Then, what kind of statistical models can we use for model-
ing the base correlations that arise from a conserved RNA sec-
ondary structure? We can find the answer by examining the so-
called Chomsky hierarchy of transformational grammars [3].
A transformational grammar can be viewed as a set of ‘symbol
rewriting rules (production rules)’ that can be repetitively used
to generate a set of symbol sequences over a given alphabet.
Chomsky categorized transformational grammars into four
classes, namely, regular grammars, context-free grammars,
context-sensitive grammars, and unrestricted grammars, in the
order of increasing descriptive power. The Chomsky hierarchy
is illustrated in Fig.4.

An RNA with a secondary structure contains one or more
symmetric regions (or more precisely, reverse complementary
regions) in the primary sequence, due to the complementary
base-pairs that make the RNA fold. In this sense, we can
view RNAs with conserved secondary structures as biological
palindromes. Palindromes are symmetric sequences that read
the same in either direction. Due to the symmetry, palindromes
have strong correlations between distant symbols.

It is known that the regular grammars, which are the
simplest among the four classes in the Chomsky hierarchy,
cannot describe palindrome languages [3], [5]. The HMMs
(hidden Markov models), which have been widely used in
various applications, can be viewed as stochastic regular
grammars, hence they cannot be used for describing palin-
drome languages. It is of course possible that a HMM gen-
erates palindromes, but the important point is that we cannot
construct a HMM that generates only such palindromes. For
this reason, HMMs cannot effectively discriminate between
palindromes and non-palindromes, which makes them unsuit-
able for developing an RNA scoring scheme.

In order to model palindrome languages, we have to use
higher-order grammars, such as the context-free grammars.
Context-free grammars can effectively describe symbol cor-
relations that occur in a nested manner. As most RNA sec-
ondary structures have nested base-pairs, SCFGs (stochastic
context-free grammars) have been extensively used in RNA

sequence analysis [5], [8].2 However, context-free grammars
are inherently incapable of describing crossing correlations. As
a result, SCFGs cannot handle RNA pseudoknots, which can
be potentially a serious limitation. In order to overcome this
problem, two subclasses of context-sensitive grammars (CSGs)
have been proposed relatively recently [15], [18]. These gram-
mars can handle a large number of known pseudoknots, but
neither of them can handle all pseudoknots.

Instead of using these grammars, we can use the context-
sensitive HMMs that have been recently proposed [32], [37].
As we will show in the following section, csHMMs can
describe any kind of pairwise symbol correlations, hence
they are capable of handling any kind of RNA secondary
structures, including pseudoknots. For further discussions on
RNA sequence analysis, the reader is referred to [5], [8], [40].

III. CONTEXT-SENSITIVE HIDDEN MARKOV MODELS

Context-sensitive HMMs are extensions of conventional
HMMs and they have been recently introduced in [32], [37]. In
a csHMM, certain states have variable emission and transition
probabilities that depend on the ‘context’. Emissions made
at specific states are stored in the memory, and this data
(or the context) is used to adjust the probabilities of some
future states. This context-dependent property is very useful
in modeling long-range correlations between distant symbols,
and it can significantly increase the descriptive power of
HMMs.

Unlike conventional HMMs, csHMMs have three different
kinds of hidden states, namely, single-emission states S,
pairwise-emission states P, and context-sensitive states C,,.
Single-emission states are identical to regular states in tradi-
tional HMMs, and they have fixed emission probabilities that
do not depend on the context. Pairwise-emission states are
similar to single-emission states in the sense that their emission
probabilities are also fixed. The difference is that the symbols
emitted at pairwise-emission states are stored in the associated
memory?, so that they can be used to adjust the probabilities at
the context-sensitive states. When we enter a context-sensitive
state, it first accesses the associated memory to retrieve the
symbol that has been previously emitted at the corresponding
pairwise-emission state. The emission probabilities of the
context-sensitive state is adjusted according to the retrieved
symbol. As the pairwise-emission state F,, and the context-
sensitive state C,, work cooperatively, they always exist in
pairs, where each state pair is assigned a separate memory.
As we need a context to adjust the emission probabilities
at a context-sensitive state, the transition probabilities in the
model are adjusted (based on the status of the memory that
is associated with the context-sensitive state), such that we
cannot enter a context-sensitive state when the memory is
empty.

By arranging the pairwise-emission states and the corre-
sponding context-sensitive states appropriately, we can repre-
sent any kind of pairwise symbol correlations. For example,

2Note that the CM (covariance model) is a SCFG with a special structure.

3The associated memory can be a stack or a queue, depending on the type
of correlations we want to model. For modeling RNA secondary structures,
it is usually more convenient to use a stack.
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Fig. 5. A context-sensitive HMM that generates only palindromes.

using a csHMM, we can easily construct a model that gener-
ates only palindromes. An example of such a model is shown
in Fig.5. As we can see in Fig.5, the csHMM has a single-
emission state S7, a pairwise-emission state P, and a context-
sensitive state C. In this example, the state pair (P;, Cy) uses
a stack. Initially, the model begins at the pairwise-emission
state ;. It can make several self-transitions to emit a number
of symbols, which will be stored in the stack. At some point,
the model will enter the context-sensitive state C;. When we
enter C'7, we retrieve a symbol from the top of the stack, and
the emission probabilities of C are adjusted such that it emits
the same symbol as the retrieved one. Transition probabilities
of C'; are adjusted such that it makes self-transitions until
the stack becomes empty. Once the stack is empty, the model
terminates. In this way, the csHMM in Fig.5 can generate
palindromes that take one of the following forms

(even length)
(odd length).

X1 = 12 ... TNITN ...T2X1
X2 = I1T2...TNINH1LN ...T2Tq
The underlying state sequences for x; and x» will be
Y1 :Pl...PlCl...Cl

——— ——

N states N states

and y2:P1...P15101...01,
——— ———

N states N states

respectively. In case we want to generate biological palin-
dromes that are reverse complementary to themselves, we can
simply adjust the emission probabilities of C; such that it
emits bases that are complementary to the bases emitted at
P;. By adjusting the context-sensitive emission probabilities
at C1, we can model any kind of base-pairs including non-
canonical pairs.

Similarly, using a csHMM, we can also construct a model
that generates only symbol sequences of the form

X3 =21T2...TNT1L2... TN,

which is a concatenation of two identical sequences. A lan-
guage that contains only such sequences is called a copy lan-
guage. Fig.6(a) shows an example of a csHMM that represents
a copy language. Note that the csHMM in Fig.6(a) uses a
queue instead of a stack. An interesting thing about a copy
language is that it gives rise to symbol correlations that cross
each other. This can be clearly seen in Fig.6(b). As we have
mentioned earlier, such correlations cannot be described by
SCFGs, needless to mention HMMs.

@ End
I I:ﬁ read

Queue 1

X1 X2 X3

XN X1 X X3 ot Xy

first half second half

Fig. 6. (a) An example of a csHMM that represents a copy language. (b)
Symbol sequences in a copy language contain crossing correlations.
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Fig. 7. The position of csHMMs in the Chomsky hierarchy.

It would be interesting to find out where the csHMM lies
in the Chomsky hierarchy. This is illustrated in the Venn
diagram shown in Fig.7. As context-sensitive HMMs are
generalizations of conventional HMMs, it completely contains
the SRGs (stochastic regular grammars). The csHMMs have
a considerable overlap with SCFGs (stochastic context-free
grammars), but neither of them fully contain the other [37].
For example, there are many languages that include sequences
with crossing correlations, which can be represented by a
csHMM but not by a SCFG. One such example is the copy
language that can be modeled by the csHMM shown in
Fig.6(a). Similarly, there exist languages that can be described
by a SCFG but not by a csHMM. Such an example can be
found in [37].4

There exist efficient algorithms for csHMMs that can be
used for finding the optimal state sequence of an observed
symbol sequence [35], [37], computing the probability of the
symbol sequence [36], [37], and for optimizing the model
parameters [37]. It has been shown that csHMMs can be
effectively used in RNA sequence analysis [33], [34], [39].
For further discussions on csHMMs and their applications in
computational RNA sequence analysis, the reader is referred
to these references.

IV. PROFILE CONTEXT-SENSITIVE HMM

In the previous section, we have seen that csHMMs can
easily model correlations between non-adjacent symbols by

“4In practice, as far as representing RNA secondary structures is concerned,
any structure that can be represented by a SCFG is also representable by a
csHMM.



arranging the pairwise-emission states and the corresponding
context-sensitive states in an appropriate manner. This is
indeed very convenient for describing the base correlations
that are frequently observed in RNA sequences, and we can
use csHMMs to represent various kinds of RNA secondary
structures [32]. In this section, we review the concept of profile
context-sensitive HMMs (profile-csHMMs) [38], which are a
subclass of csHMMs with a special structure. Profile-csHMMs
are especially useful for building probabilistic sequence pro-
files of RNA families, as we show next.

A. Representing Consensus RNA Sequences

Let us assume that we are given a multiple alignment of
RNA sequences that belong to the same RNA family. How can
we construct a model that can statistically represent the com-
mon patterns and the important motifs in this alignment? We
typically call such a representation a probabilistic sequence
profile or a consensus sequence of the RNA family. Once we
have constructed this model, it can be used for scoring new
RNA sequences and finding homologous RNAs.

One model that has been widely used for building proba-
bilistic profiles of protein coding genes and protein sequences
is the profile-HMM [5]. Profile-HMMs are a subclass of
HMMs that have linear repetitive structures (i.e., state tran-
sition diagrams). Because of their convenience in modeling
sequence profiles, many coding-gene finders have been built
based on profile-HMMs [5]. Since HMMs are incapable of
describing the base correlations that arise from RNA secondary
structures, profile-HMMs cannot be directly used for repre-
senting consensus RNA sequences. However, we can construct
csHMMs in a similar manner so that they become suitable for
representing RNA sequence alignments. Such csHMMs are
called profile-csHMMs [38].

B. Constructing a Profile-csHMM

The structure of a profile-csHMM is similar to that of a
conventional profile-HMM. Profile-csHMMs repetitively use
three kinds of states, namely, match states My, insert states
I;., and delete states D;,.

1) Building an ungapped model: The match state My is
used to represent the case when a base in the observed
RNA sequence matches the k-th base in the consensus RNA
sequence that was used to construct the profile-csHMM. For
this reason, the number of match states in a profile-csHMM
is identical to the length of the consensus RNA sequence.
Each match state M, can have a different set of emission
probabilities, so that we can describe the observed frequencies
of the four bases at each position.

The main difference between the conventional profile-
HMMs and the profile-csHMMs is that the profile-csHMMs
have three different types of match states. As we have seen in
Sec.III, csHMMs have three distinct types of states, which are
single-emission states, pairwise-emission states, and context-
sensitive states. Each M}, can choose from these three types,
hence there will be single-emission match states, pairwise-
emission match states, and context-sensitive match states.

base-pair
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Fig. 8. Constructing a profile-csHMM from an RNA sequence alignment.
(a) Example of an RNA sequence alignment. The consensus RNA has two
base-pairs. (b) An ungapped profile-csHMM that corresponds to the consensus
RNA sequence. (c) The final profile-csHMM that allows additional insertions
and deletions in the consensus sequence. (d) A variant of the standard profile-
csHMM that allows local alignment.

Single-emission match states are used to represent the base po-
sitions that are not involved in base-pairing. For two positions
that form a base-pair, we use a pair of pairwise-emission match
state and the corresponding context-sensitive match state to
describe the correlation between these bases.

As an example, let us consider the RNA sequence alignment
shown in Fig.8(a). Since the length of the consensus RNA
sequence is five, we need five match states to represent
the sequence. As we can see in Fig.8(a), the secondary
structure of the consensus RNA has two base-pairs. In order
to model the base-pair between the first and the fourth
bases, we use a pairwise-emission state for M; and the
corresponding context-sensitive state for M,. Similarly, we
use a pairwise-emission state for M> and a context-sensitive
state for M5. As the third base does not form a base-pair, we
simply use a single-emission state for M3. By interconnecting
the match states My, Ms,..., M5, we obtain an ungapped
profile-csHMM as shown in Fig.8(b). The ungapped model
serves as the ‘backbone’ of the final profile-csHMM, and it
can represent RNA sequences that match the consensus RNA
sequence without any gap.



2) Modeling additional insertions and deletions: After
constructing the ungapped model, we can add insert states
I, and delete states Dy to obtain the final profile-csHMM.
These states are used to represent insertions and deletions in
the observed RNA sequence. For example, let us consider the
case when the observed RNA is longer than the consensus
RNA. In this case, if we align the two RNAs, there will
be one or more bases in the observed RNA that are not
present in the original RNA. Such bases are modeled by
insert states. The insert state I is used to handle insertions
between the positions k£ and k + 1 in the consensus RNA
sequence. As the inserted bases are not correlated to other
bases, we use single-emission states for insert states.” Now,
let us consider the case when the observed RNA is shorter
than the consensus RNA. If we align these RNAs, there will
be one or more bases that are present in the consensus RNA
but are missing in the observed RNA. Such deletions can
be handled by delete states, where the state Dy is used to
model the deletion of the k-th symbol in the original RNA.
As delete states deal with ‘missing’ bases, these states are
non-emitting states, which are simply used to interconnect
other states. The final profile-csHMM that corresponds to the
RNA sequence alignment in Fig.8(a) is shown in Fig.8(c).

3) Allowing Local Alignments: Although the profile-
csHMM shown in Fig.8(c) assumes that the observed target
RNAs will be globally aligned to the model, it is quite
straightforward to change the model to allow local alignments
as well. For example, we can simply allow transitions from
the START state to any [ or M states, and similarly, allow
transitions from any I or M) states to the END state. In
this way, we can handle sequences that match the model only
locally. Another way to allow local alignments is to use the
structure shown in Fig.8(d), which is similar to that of the
profile-HMM variant used in the HMMER package [5]. The
states I; and I. are used to model the flanking sequences at
the beginning and the end of the original sequence profile,
respectively. Dy and D, are non-emitting states, which are
respectively used to allow transitions to (and from) any match
state.

C. Descriptive Power of Profile-csHMMs

As we can see in the previous example, profile-csHMMs
provide a simple and intuitive way of representing RNA se-
quence profiles. One important advantage of profile-csHMMs
is their large descriptive power. In fact, profile-csHMMs can
represent any kind of base-pair correlations by arranging the
pairwise-emission match states and the context-sensitive match
states in an appropriate manner. Therefore, profile-csHMMs
are capable of representing any kind of pseudoknots unlike
many existing models. As mentioned earlier, CMs (covariance
models) [6] and PHMMTSs (pair hidden Markov models
on tree structures) [21] can only represent RNA secondary

SIn principle, we can also allow insertions of additional base-pairs. This
can be done by using a pair of a pairwise-emission insert state and a context-
sensitive insert state.
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Fig. 9. Various types of RNA secondary structures. (a) RNA with 2-crossing
property. (b) RNA with 3-crossing property. (c) RNA with 4-crossing property.

structures with nested correlations, hence incapable of dealing
with pseudoknots. PSTAGs [15] are capable of representing
pseudoknots with exactly 2-crossing property. A secondary
structure is said to have a m-crossing property, if there exist
m(> 2) base-pairs in the given secondary structure such
that any two pairs in these m base-pairs cross each other.
Fig.9(a) shows an example of an RNA secondary structure
with 2-crossing property. PSTAGs can handle many known
pseudoknots, as a large portion of known pseudoknots has 2-
crossing property. But there also exist more complex pseudo-
knots that are beyond the descriptive power of PSTAGs. One
such example is the flavivirus 3° UTR pseudoknot family [22],
which will be considered in our experiments presented in
Sec.VIL. It will be shown that profile-csHMMs can be used
for modeling and predicting the secondary structure of these
pseudoknots. Profile-csHMM can also represent RNAs with
even more complex secondary structures as those shown in
Fig.9(b) (RNA with 3-crossing property) and Fig.9(c) (RNA
with 4-crossing property), in a similar manner as described in
Sec.IV-B.

V. COMPUTING THE OPTIMAL ALIGNMENT SCORE BASED
ON PROFILE-CSHMMS

Once we have constructed a profile-csHMM that statistically
represents an RNA sequence family, this model can be used
for finding new RNAs that look similar to the given RNA
family. Let us assume that we are given a new RNA sequence
(a ‘target’ RNA), and we want to find out how close it is to the
RNA family under consideration (the ‘reference’ RNA). How
can we compute the similarity score between the target RNA
and the RNA family that is used as the reference? One good
solution is to use the maximum observation probability of the
target sequence based on the profile-csHMM that represents
the reference RNA family. When using a csHMM, there can be
many different state sequences (or paths) that give rise to the
same symbol sequence, but each with a different probability.
Therefore, in order to compute the maximum probability of
an observed symbol sequence, we have to find the optimal
path that maximizes the observation probability. As this can
be viewed as finding the best alignment between a symbol



sequence and the given model, it is typically called the opti-
mal alignment problem. Since the number of paths increases
exponentially with the length of the observed sequence, we
need an efficient algorithm for finding the optimal path in a
systematic way. When using traditional HMMs, we can utilize
the Viterbi algorithm [28] for finding the optimal path and
computing the maximum observation probability. For SCFGs,
we can use the CYK (Cocke-Younger-Kasami) algorithm [5]
for this purpose.

However, as profile-csHMMs can describe many compli-
cated symbol correlations that cannot be described by HMMs
nor SCFGs, we need a more general algorithm that can deal
with such correlations. Although we cannot directly use the
existing algorithms, we can generalize them to develop an
optimal alignment algorithm for csHMMs. In this section, we
describe a dynamic programming algorithm called the SCA
(sequential component adjoining) algorithm that can be used
for the optimal alignment of profile-csHMMs. The basic idea
of the SCA algorithm has been proposed in [38]. In the follow-
ing, we describe the algorithm in more detail, with additional
discussions on several important issues, such as the adjoining
order of the algorithm and the computational complexity for
handling RNAs with various secondary structures.

A. Two Generalizations

The SCA algorithm iteratively finds the optimal state se-
quence in a similar way as the Viterbi algorithm and the CYK
algorithm. Given an observation sequence, the SCA algorithm
first finds the optimal state sequences of short subsequences,
and then it uses this information to find the optimal state
sequences of longer subsequences. This process is repeated
until we find the optimal state sequence of the entire observed
sequence. In order to handle more complex correlations, the
SCA algorithm makes the following generalizations to the
existing algorithms.

Firstly, instead of using a subsequence that has a single
interval, the SCA algorithm can use a subsequence that
consists of multiple non-overlapping intervals. In order to
define a subsequence, the SCA algorithm uses an ordered
set of variable number of closed intervals. Let us consider
an observed symbol sequence x = x1x2...xr. We define
a set of I non-overlapping intervals N' = {ni,na,...,ns},
where ny, = [nf,n}] denotes the interval nf, < n < nj. The
subscript k indicates the k-th interval, and the superscripts ¢
and r are used to designate the ‘left’ and the ‘right’ ends of
the given interval, respectively. We assume that the intervals
in N are ordered, such that they satisfy

)4

n; <mn; for i<j. 2)

Based on the set N, the subsequence x(A) is defined as
follows

X(N):.’L'ni...

¢ x”l xngxnémz

ni nz ny

Note that N' = {njy,ns, ..., n;} is generally nor a partition of
the entire interval [1, L], hence the subsequence x(N') usually
contains only a portion of the observation sequence x.

Using this notation, we can define subsequences of x as
follows

M ={[2,4]} = x(MN) =324
NQ = {[1,2], [476]} — X(NQ) =2X1T2 T4T5T¢
N; = {[17 1]> [3’4]’ [77 8]} g X(NS) =1 T3XT4 T7T8-

This generalization considerably increases the number of ways
in which the intermediate subsequences (used during the
iterative process of finding the optimal state sequence) can
be defined, extended, and adjoined. As we continue these
iterations, the set A/ that defines the intermediate subsequence
will approach a partition of the entire range [1, L], ultimately
covering the entire sequence.

Secondly, the SCA algorithm allows us to explicitly define
how the optimal state sequences of shorter subsequences can
be extended and adjoined to find the optimal state sequences
of longer subsequences. When using the SCA algorithm,
there can be numerous ways to define the intermediate subse-
quences. These intermediate subsequences have to be defined
in such a way that can take care of all the correlations in the
profile-csHMM. Therefore, we cannot find the optimal state
sequence of the observed sequence simply by proceeding left-
to-right (as the Viterbi algorithm) or by proceeding inside-to-
outside (as the CYK algorithm). In fact, we have to define a
model-dependent adjoining order that specifies how we should
define the intermediate subsequences, and how the extension
and adjoining rules should be applied. This is elaborated in
Sec.V-E in more detail.

B. Notations

Before describing the details of the SCA algorithm, let us
first define the notations. As before, we denote the observed
symbol sequence as X = x1x3...xr. The underlying state
sequence is denoted as y = 41z ...yr. Note that the length
L of the state sequence can be larger than the length L of
the observation, since y can have one or more non-emitting
states (i.e., delete states Dy). We assume that the length of the
profile-csHMM (defined as the the number of match states
in the model) is K. The emission probability of a symbol
z at a single-emission state or a pairwise-emission state v is
denoted by e(xz|v). The emission probability of a symbol z,. at
a context-sensitive state w is denoted by e(x.|w, ,), where x,,
is the symbol that was previously emitted at the corresponding
pairwise-emission state. The transition probability from state
v to state w is denoted by (v, w).

Consider an ordered set of I intervals N = {n;,...,ns},
where the intervals satisfy (2). For this set A/, we define
S = {s1,...,87} to be an ordered set of state-pairs s; =
(s%,sI), where s and s? represent the hidden states at the
left and right ends of the i-th interval n; = [nf, n]. Now, we
define P (x(N),y(N)) as the observation probability of the
subsequence x(N'), whose underlying state sequence is

YN) =yne - Yar Yng - Yng Ynt - Yy -
—_— — ——
ni no ny
Since y(A) can contain non-emitting states, 7¢ may not
satisfy nf = nf. Similarly, we may have ! # n}. Based on



this notation, we finally define (N, S) to be the maximum
log-probability of the subsequence x(N)

oM, 8) = max | 1og P (x(V), yV)) |,

over all possible state sequences y(N) that satisfy Ynt = st
and ypr = s; for all ¢ = 1,...,]. In addition to this, we
define two variables AN, S ) and Ap(N, S) that will be used
for tracing back the optimal state sequence that maximizes the
observation probability.

C. Initialization

Initially, we begin with computing the optimal log-
probability a(N,S) of subsequences that either consist of a
single base or a single base-pair.

(i) For a position k£ (1 < k < K) in the profile-csHMM where
Mj, is a single-emission match state, we let N = {[n,n]},
S = {(My, M)} and initialize

a(N,S)
AN, 8) = (@

= log e(x,, | My)

), MW(N,8) = (2,9)

for all positions 1 < n < L. Similarly, we let N = {[n,n—1]},
S = {(Dg, Dy)} and initialize

aN,8)=0

AN, 8) = (2,9), WWN,S) = (2,9)

foralll <n<L+1.

(ii) For positions j and & (1 < j < k < K) where M;
is a pairwise-emission state and M} is the corresponding
context-sensitive state, we let N7 = {[n,n],[m,m|}, & =
{(M;, M;),(My, M)} and compute

a(vasl) = 10g€($n|Mj) + loge<xm|Mk>xn)
AN, 81) = (9,9), (N, 81) = (9,9)
for all positions 1 < n < m < L. Furthermore, we let N5 =

{ln,n—1],Im,m —1]}, S = {(D;, D;),(Dk, Dy)}, and
initialize the log-probability as follows

OZ(NQ,SQ) = O

)\a(N2782) = (Q Q)v )‘b(NQaSQ) = <®7®)

forallnand m 1 <n<m<L+1).

(iii) For single bases emitted at insert states, we let NV =
{[n,n]}, S = {(Ix, I1)}, and initialize

a(N,S)
AN, 8) = (@

= IOg e(xn‘jk)

), W(WN,8) = (2,9)

forall 0< k< Kand1<n<L.

D. Adjoining Subsequences

After computing the optimal log-probabilities of all
subsequences that consist of a single base or a single
base-pair, we recursively adjoin these subsequences to obtain
the optimal log-probabilities of longer subsequences. This
can be done by applying the following adjoining rules.

Rule 1 Consider the log-probabilities a(N®,8%) and
a(N?, S) of the two subsequences x(N®) and x(N*), where

N®={nf,...,n7 }, 8 ={s{,...,s7}

Ne={n} ... n}}, St ={s},....s) )
We assume that there is no overlap between the symbol
sequences x(N%) and x(N®) nor between the underlying state
sequences y(N®) and y(N?®). In this case, we can compute
the optimal log-probability of the longer subsequence x(N)
as follows

a(N,S) = a(N?, S + a(N?,S?)
AN, S) = (N, 8, Np(N,S) = (NP, 8P).

The sets A and S are unions of the smaller sets

N = NQUNb:{Ill,...,n]}

S = S*US = {sy,...,s1},
where I = I, + I, and the intervals n; are relabeled such
that they satisfy (2) and s; € S corresponds to n; € N. |

Rule 2 Assume that there exist two intervals n;,n; ;1 € N
that satisfy n;] +1 =nf 11> which implies that the two intervals
[nf, nl] and [nf,,, nl,4] are adjacent to each other. For
simplicity, let us assume that ¢ = I — 1. In this case, we
can combine the two intervals n;_; and n; to obtain a larger

interval
nlI—l = [”1}—17 nyl = {n| ”1}—1 <n< np}

where the corresponding state-pair is s7_; = (s¢_,, s7). Now,
the log-probability a(N”,S’) for

N,:{Ilh...

can be computed as follows

,1’1[,2,1’1/171}, S'= {517 s 7517255/171}

a(N',8) = max ( max {a(./\/’,S)—&—logt(s?hsf)})
(n*,sf,s;) =  argmax [a(N,S)+logt(s§71,sf)}
(nf_187_1:57)
N* = {ny,...,np0,[nf_y, 0], [0+ 1,n]]}
S = {Slv" ,S1-2, ( S? 1557); (82733)}
/\G(Nlasl) = (N*aS*)v )‘b(va I) = (@7@),

For : < I — 1, we can similarly combine the two adjacent
intervals n; and n;;; to obtain the optimal log-probability
a(N’,8') for the updated sets A and S’. [ |

For simplicity, we have described the adjoining process in
two distinct steps, namely, (i) adjoining two non-overlapping



subsequences and (ii) combining adjacent intervals in a single
subsequence. In practice, we can often combine these rules
and apply them at the same time. This can be more convenient
than applying them one by one. For example, if we know the
optimal log-probability of two adjacent subsequences, where
each subsequence consists of a single interval, we can adjoin
the two sequences and combine the two intervals to compute
the optimal log-probability of a longer subsequence that has
also a single interval.

E. Adjoining Order

As mentioned earlier, when using the SCA algorithm we
have to specify the adjoining order, according to which the
adjoining rules should be applied. This adjoining order can
be obtained from the consensus RNA sequence that was
used to construct the profile-csHMM. Based on the consensus
sequence, we first find out how the bases and the base-pairs in
the given sequence can be adjoined one by one to obtain the
entire sequence. During this procedure, we try to minimize the
number of intervals that is needed to describe the intermediate
subsequences, as a larger number of intervals leads to a higher
computational cost for adjoining the subsequences.

An example is shown in Fig.10(a), which illustrates how we
can obtain the consensus sequence in Fig.8(a) by sequentially
adjoining its base and base-pairs. Note that the numbers
inside the squares in Fig.10(a) indicate the original base-
positions. Fig.10(b) shows the portion of the profile-csHMM
that corresponds to the respective RNA subsequence at each
step of Fig.10(a). Some steps in Fig.10(a) are subdivided
into multiple steps in Fig.10(b) for illustration. Following this
adjoining order, we can ultimately compute the maximum
log-probability of the target RNA sequence and find the
optimal state sequence that maximizes the probability. At
each step, we compute the maximum log-probability of every
possible subsequence (of the observed target RNA), whose
underlying state sequence matches the corresponding portion
of the profile-csHMM as shown in Fig.10(b).

For every step in the adjoining order, we first compute
the log-probability «(N,S) of those subsequences, whose
terminal states (i.e., sf,s’) do not contain insert states. For
example, in STEP 1, we compute a(N7,S;) for N7 = {[n,n]},
81 = {(Mg,Mg)} and Nl = {[n,n - 1]}, Sl = {(Dg,Dg)}
using the initialization rules described in Sec.V-C. Note that
the states in S; correspond to the third base position in
the original consensus sequence. Similarly, we compute the
log-probability (N3, Sz) in STEP 2 (and also «(Ny, Sy) in
STEP 4) based on the base-pair initialization rules in Sec.V-
C. At some steps, the optimal log-probability is obtained
by combining the log-probabilities computed in the previous
steps. For example, in STEP 3, we can compute a (N3, S3) for
N3 = {ln,na], [ng, 3]}, Sz = {(My, My), (M3, My)} by
combining «(N7,S1) and a (N3, Ss) as follows

a(N;3,S3) = max a(N1,81) + logt(v, My) + (N2, S2) |,

where N7 = {[n§,n5 — 1]}, S; = {(Ms3,v)} and Ny =
{[n1, 1], [n5, 5]}, So = {(My, My), (My, My)}. As shown
in the above equation, we consider all possible transitions

from state v € {M3, D3, I3} to state My, and choose the one
that maximizes the log-probability. In the example shown in
Fig.10, the log-probability (N7, S;) is computed in STEP 1
and a(N2,Sy) is computed in STEP 2.

After computing these log-probabilities, we move on to
compute the log-probabilities of those subsequences that have
one or more insertions at the beginning and/or the end of some
intervals. For example, at STEP 1, we can compute a(N 1,81)
for N1 = {[n,n+ 1]} and S&; = {(M3, I3)} from

a(N1,81) = a(NE, S8) + logt(Ms, I3) + a(NP, SP),

where N = {[n,n]}, 8¢ = {(My, M)}, N? = {[n+1,n+
1]}, S? = {(I3,I3)}. In a similar manner, we can also deal
with a left insertion as well as multiple insertions.

F. Termination

By iteratively applying the adjoining rules, we can
obtain the log-probability «(N,S) for N = {[1,L]}
and S=/{(s,s")}, for all s*e{ly,M,D;} and
s" € {Ix,Mg,Dr}. Let us define #(START,s’) to be
the probability that the profile-csHMM will begin at the state
s, and t(s",END) as the probability that the model will
terminate after s”. The maximum log-probability of the entire
observation sequence x can be computed as follows

log P(x,y") = max|log P(x.y)]
= rsllléi)ri[logt(START,sl)
+a(N,S) +logt(s", END)}
(s;,s5) = afg;‘)ma)hx{logt(START,sz)
stsT
+a(N,S) +logt(s", END)}
= (1L Gs7s)).

where y* is the optimal state sequence that maximizes the
observation probability.

G. Trace-Back

Once we have computed the maximum log-probability
log P(x,y™*), we can trace-back the adjoining process to find
the optimal state sequence y* that gave rise to this log-
probability. To describe the trace-back algorithm, let us define
At = (W, S) and a stack 7. The trace-back algorithm proceeds
as follows.

1) Lety; =0 (i=1,2,...,L).

2) Push A\* onto the stack 7.

3) Pop Ay = (N, S) from T. If \; = (&, @), goto step 6.
Otherwise, proceed to step 4.

4) If Ao(\t) # (9,9) push Ay (A\:) onto T. Otherwise,
Yoo = si, for all n; = [nf, nj] € N and the

corresponding s; = [sf, s7] € S. (Note that when

Aa(N¢) = (2, D), we have nf = nl and s = s7.)

5) If A\p(Ae) # (9, 2) push A\p(A;) onto T.
6) If T is empty, proceed to step 7. Otherwise, goto step 3.
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Fig. 10. (a) The adjoining order for the profile-csHMM shown in Fig.8(c). This shows how the reference RNA can be obtained by adjoining the base and

base-pairs. (b) Corresponding parts in the profile-csHMM. This illustrates in which order the optimal state sequence can be found.

7) Let y* = y1y2...yr and terminate.

At the end of the trace-back procedure, we can find the op-
timal state sequence y* in the profile-csHMM that maximizes
the observation probability of x.

H. Principle of Optimality

In order to ensure that the “optimal state sequence” y*
obtained in Sec.V-G is indeed optimal, the following con-
ditions should be satisfied. Firstly, when adjoining optimal
subsequences (or combining intervals in an optimal subse-
quence), we have to make sure that (i) all possible state
transitions are considered for every adjoining point, (ii) all
possible adjoining positions are compared to each other, and
that (iii) the conditions that maximize the probability are
chosen. Secondly, the probabilities of the subsequences that
are adjoined should be independent of each other. These
two conditions ensure that all possible state sequences have
been considered in finding the optimal probability of the new
subsequence, and that there is no other partition of the given
subsequence that will make the probability higher. Hence
the new subsequence that is obtained by optimally adjoining
shorter optimal subsequences will be also optimal. In fact, for
a given profile-csHMM, if we define the adjoining order as
in Fig.10(a) and proceed to find the optimal state sequence
as described in Sec.V-E (and illustrated in Fig.10(b)), the
aforementioned conditions are naturally satisfied. Therefore,
at the end of the algorithm, it is guaranteed that the resulting
state sequence y* will be indeed optimal.

1. Computational Complexity of the SCA Algorithm

Unlike the Viterbi algorithm and the CYK algorithm, the
computational complexity of the SCA algorithm is not fixed,
and it depends on the adjoining order. As the adjoining order
is specified based on the correlation structure of the profile-
csHMM, the computational cost ultimately depends on the
secondary structure of the consensus RNA sequence that was
used to construct the model. For example, when we are dealing
with an RNA that has a stem-loop structure, the complexity for
finding the optimal alignment will be in the order of O(L?K),
where K is the length of the profile-csHMM and L is the
length of the target RNA. For this RNA, the SCA algorithm
can simply proceed inside-to-outside (like the CYK algorithm)
to find the optimal alignment. Therefore, its complexity is
essentially identical to the complexity of using the CYK algo-
rithm for parsing a CM without any “bifurcation rule” (used to
generate multiple stems) [5]. Similarly, if the consensus RNA
has multiple stems (without crossing correlations) like the
tRNA cloverleaf structure, the complexity will be O(L3K).
Again, this is identical to the complexity for using the CYK
algorithm for parsing a general CM with bifurcation rules.

For RNAs with pseudoknots, which cannot be represented
by SCFGs, the complexity becomes higher. In order to deal
with crossing base correlations, we have to define inter-
mediate subsequences with at least two intervals. As we
have to consider all possible positions for the intermediate
subsequences, there are O(L*) possibilities for choosing their
positions. Furthermore, since the number of adjoining steps
in the SCA algorithm is proportional to the length K of
the profile-csHMM (which is identical to the length of the



reference RNA) as illustrated in Fig.10, the computational
complexity® of the SCA algorithm becomes at least O(L*K).
As a comparison, note that the computational complexity of
the PSTAG algorithm is also at least O(L*M), and it can be
as large as O(L® M) depending on the structure of the PSTAG
tree [15].

VI. STRUCTURAL ALIGNMENT OF RNAS USING
PROFILE-CSHMMS

As we have shown in the previous section, profile-csHMMs
provide a convenient framework for statistically representing
RNA sequence families, developing RNA similarity scoring
schemes that can reasonably combine contributions from
sequence similarity and structural similarity, and ultimately,
building RNA homology search tools. To demonstrate the
effectiveness of the proposed method, we have built a program
that can be used for structural alignment of RNA sequences
including pseudoknots.” Similar to the PSTAG-based align-
ment tool developed by Matsui er al. [15], it uses a single
structured RNA sequence as a reference and aligns unfolded
RNA sequences to it. However, unlike PSTAGs that can
only handle pseudoknots with 2-crossing property, the given
program can deal with a much larger class of RNAs.

The program proceeds as follows. It first constructs a
profile-csHMM based on the reference RNA and its structural
annotation. Instead of using a fully stochastic model with
position-dependent emission probabilities, in this implementa-
tion, we have used the non-stochastic scoring matrix proposed
in [11], as it has been used by several RNA analysis tools
with good performance. Secondly, the program automatically
finds the adjoining order that can be used for predicting the
optimal state sequence of the profile-csHMM. The adjoining
order is obtained in the following way. Let us consider a
subsequence X of the reference RNA that consists of [ (<
Inax) intervals. We define I'(X) as the number of base-
pairs that are fully contained in the subsequence X. For a
given X, we try to split it into two subsequences X, and X,
where each of them may have up to I,.x intervals, such that
I'(x) = I'(x¢)+T'(x,) is maximized. We begin this process by
finding the best ‘division’ for the entire sequence, and proceed
in a recursive manner until we reach the point where every
subsequence consists of a single base or a single base-pair. The
adjoining order of the profile-csHMM can be simply obtained
by reversing this division process.

Currently, the program can deal with RNA secondary struc-
tures which can be handled by the SCA algorithm using subse-
quences with up to two intervals (/y,ax = 2). This corresponds
to the entire class of RNA secondary structures that can be
represented by the grammar proposed by [18]. The so-called
Rivas&Eddy class is regarded as the most general RNA class
that is known today, and it covers almost all RNA secondary
structures that have been identified until now [4]. Although the
current implementation of the structural alignment program

6The complexity for aligning pseudoknots in the Rivas&Eddy class [18]
will be at most O(L8 K), which can be verified by a similar reasoning. For
RNAs outside R&E class, the computational complexity can be even higher.

"The software and its C++ source code are available upon request.
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Fig. 12. Limiting the search region for finding the matching bases can

significantly reduce the overall complexity of the structural alignment.

covers only the Rivas&Eddy class, it has to be noted that the
capability of the profile-csHMMs and the SCA algorithm goes
beyond the R&E class. For RNAs that are outside the R&E
class, we can easily extend the current program to handle them.

One advantage of the given program is that it does not reject
RNAs even if they are outside the descriptive capability of the
current implementation. For example, if the reference RNA has
a complex structure that is outside the R&E class, the program
chooses the subset with maximum number of base-pairs such
that the resulting secondary structure is contained in the R&E
class.

Now, the constructed profile-csHMM can be used for car-
rying out a structural alignment between the reference RNA
and a target RNA with unknown structure. We can follow the
adjoining order that has been obtained in the previous step to
find the optimal state sequence of the target RNA, which in
turn yields the prediction of its secondary structure.

In implementing the SCA algorithm, we have introduced
a parameter D, which is the length of the search region
for finding the matching bases in the sequence alignment.
This is motivated by the following observation. When we
align two RNA sequences that are biologically relevant, the
matching bases in the reference RNA and the target RNA are
usually located very close to each other. Fig.11(a) shows an
example of a typical sequence alignment, where the maximum
distance between a base in the reference sequence and the
matching base in the target sequence is two. Alignments
with a large distance between the matching bases, as the
one shown in Fig.11(b), are generally less probable. Based
on this observation, we limit the search region as illustrated
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Fig. 13.  Structural alignments of RNAs with various secondary structures.

in Fig.12. When looking for the base x; in the target RNA
X = x1...x7 that matches the k-th base in the reference
RNA, we only consider the bases between max(k — dy,1)
and min(k + ds, L), hence the maximum length of the search
region is D = dy + dgy + 1.

Restricting the search region has several advantages. First
of all, it significantly reduces the overall complexity of the
alignment algorithm, making the program practically usable
in real applications. The computational complexity of aligning
pseudoknots will be reduced from O(L*K) to O(D*K) (or
from O(L°K) to O(D®K) in the worst case). For exam-
ple, assume that we want to align two pseudoknots in the
ToMBUS_3_IV RNA family (seed alignment) in the Rfam
database [13]. The average length of these RNAs is around
L = 91, and D = 7 is enough for finding the optimal
alignment between any two members in the given family.
In this case, limiting the search region reduces the overall
complexity to around (D/L)* ~ 0.35% of the original.
Secondly, when the structural alignment score obtained from
the SCA algorithm is used for finding homologues of an
RNA family, restricting the search region can yield better
discrimination between homologues and non-homologues, as
long as D is large enough to obtain the optimal alignment.
As the optimal alignment of homologues is contained within
the search space, the imposed restriction does not affect the
alignment score of homologous sequences. However, limiting
the search region will lead to an overall decrease in the
alignment score of non-homologues, hence providing better
discrimination between homologues and non-homologues.

A good way of choosing D is to compute the range between
the matching bases in the original sequence alignment, and
make it slightly larger than this range. Another method for
estimating D is to construct a simple profile-HMM from
the sequence alignment and find an (sequence-based) align-
ment between the target sequence and the profile-HMM. This
alignment can be found very quickly, since the computational
complexity for aligning a profile-HMM is only O(LK). Then
we compute the maximum distance between the matching
bases in the given alignment, and use it to estimate D. This

TABLE I
PREDICTION PERFORMANCE OF PROFILE-CSHMM AND PSTAG.

Profile-csHMM PSTAG
SN (%) SP (%) SN (%) SP (%)
CORONA_PK3 96 97 95 96
HDV_RIBOZYME 95 95 94 96
ToMBUS_3_1V 97 97 97 97
FLAVI_PK3 95 96 - -

is indeed a very efficient strategy that results in a tremendous
reduction in the CPU time needed for finding the structural
alignments, while providing a good prediction performance,
as will be demonstrated in Sec.VIIL.

Fig.13 shows a few examples of structural alignments
obtained from the program that has been just described.
RNAs illustrated in Fig.13(a) and Fig.13(b) have 2-crossing
properties and Fig.13(c) has a 3-crossing property. In each
example, a target RNA with unknown structure is aligned to
the reference RNA whose structure is known. As we can see in
this example, the proposed approach can find good structural
alignments for RNAs with various secondary structures.

VII. NUMERICAL EXPERIMENTS

We tested the performance of our program using several
pseudoknots included in the Rfam database [13]. The Rfam
database provides a large collection of various RNA families,
where the member sequences in each family are aligned to
each other. In our experiments, we have used the sequences in
the ‘seed alignment’ of each RNA family, as they are hand-
curated and have reasonably reliable structural annotation. For
each sequence family, we chose one of its members as the
reference RNA, and used it along with its structural annotation
to predict the secondary structure of all the other sequences
in the same family. The predicted secondary structure has
been compared to the annotated structure in the database,
and we counted the number of correctly predicted base-
pairs (true-positives; TP), the number of incorrectly predicted
base-pairs (false-positives; FP), and the number of base-pairs
in the annotated structure that were not predicted by the
program (false-negatives; FN). These numbers have been used
to compute the sensitivity (SN) and the specificity (SP) of the
program that are defined as follows

TP p_ TP

- TP+FN’ - TP+ FP’

To obtain reliable estimates of these quantities, we performed a
cross-validation experiment by repeating the previous process
for every member in the given RNA family and computed the
overall prediction ratios.

In order to compare the performance of the proposed
method with that of PSTAGs, we first tested the program
for three RNA families, CORONA_PK3, HDV_RIBOZYME, and
ToMBUS_3_1V, which have all pseudoknot structures. Table I
shows the prediction result of the proposed method along
with the prediction result of PSTAGs.® In each case, the
higher prediction ratio is boldfaced. As we can see in Table I,

SN

8The prediction results of PSTAGs are obtained from [15] and have been
rounded to integer values.
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Fig. 14. Structural alignment of two RNAs in the FLAVI_PK3 family. The secondary structure of the target RNA has been predicted from the given alignment.
Incorrect predictions (one false-negative and two false-positives) have been underlined.

TABLE I
AVERAGE CPU TIME FOR FINDING A STRUCTURAL ALIGNMENT.

Average CPU Time (sec)

Profile-csHMM PSTAG
CORONA_PK3 1.2 37.2
HDV _RIBOZYME 1.7 207.5
ToMmBUS_3_IV 1.0 270.9
FLAVI_PK3 6.8 -

profile-csHMMs yielded accurate prediction results that are
comparable to PSTAGs for all three RNAs that have been
tested. But profile-csHMMs are more general than the PSTAGs
as demonstrated in the next example.

Secondly, we tested the performance of the proposed
method for the FLAVI_PK3 family that has a more complex
secondary structure than the previous RNA families, which
cannot be handled by the PSTAGs. The secondary structure
of FLAVI_PK3 is similar to the example shown in Fig.13(b),
which has two stems and additional base-pairs that cross
the base-pairs in both stems. As we have already seen in
Fig.13(b), profile-csHMMs are capable of dealing with such
structures. Fig.14 shows a structural alignment of two RNAs in
the FLAVI_PK3 family obtained using the proposed approach.
Note that most base-pairs have been correctly predicted. There
were two false-positives and a false-negative in the predicted
structure when compared to the annotated structure in Rfam.

Despite the generality of the proposed method, its computa-
tional cost was much smaller than that of the PSTAGs. It can
be seen that the profile-csHMM approach runs significantly
faster than the PSTAG approach, despite its larger descriptive
power. Table II shows the average CPU time that was needed
for finding the structural alignment between two sequences
in each RNA family.” In our experiments, the parameter D
was automatically estimated by performing a simple sequence-
based alignment as proposed in Sec.VI. It has to be noted that
the initial alignment obtained by the profile-HMM is only used
for estimating D, hence it does not affect the final structural
alignment of the profile-csHMM.

In the preceding examples, there is considerable similar-
ity between the primary RNA sequences in each category.
However, the prediction performance of the proposed method
does not depend strongly on the primary sequence similar-
ity. The method is therefore applicable in cases where the
sequences are related essentially by a common secondary
structure alone. In order to show this, we randomly mutated the
RNA sequences that were used in the previous experiments,
such that the sequence similarity between the homologous

9The experiments have been performed on a PowerMac G5 2.5 GHz with
4GB memory.

TABLE III
PREDICTION RESULTS OF THE PROPOSED METHOD USING RANDOMLY
MUTATED RNA SEQUENCES.

Profile-csHMM

SN (%) SP (%)
CORONA_PK3 90 91
HDV _RIBOZYME 91 92
ToMBUS_3_1IV 93 93
FLAVI_PK3 88 89

RNAs got completely removed. During this process, bases
that form complementary base-pairs were covaried to preserve
the original secondary structure. The experimental results are
summarized in Table III. As we can see in Table III, the
prediction ratios have decreased only slightly, indicating that
the proposed approach does not depend too much on sequence
similarity.

VIII. FURTHER COMPARISON

In Sec.VII, we compared the performance of the proposed
method with that of PSTAG [15]. To the best of our knowl-
edge, PSTAG is the first and the only grammar based method
that can be used for representing RNA pseudoknots and finding
their structural alignments. Therefore, it was most relevant
to compare the profile-csHMM based structural alignment
method with PSTAG. In this section, we provide further
comparison with two other popular methods, which can be
helpful in demonstrating the effectiveness of the proposed
method.

A. Traditional Profile-HMM

Traditional profile-HMMs have been widely used for mod-
eling protein sequences and protein-coding genes [5]. Profile-
HMMs can be easily constructed based on multiple sequence
alignments, and they are especially useful in performing
similarity searches for proteins and coding genes. Given an
observation sequence, traditional profile-HMMs find the op-
timal alignment between the model and the sequence solely
based on sequence similarity. One interesting question would
be how much we can improve the quality of the RNA
alignments by using the structural alignment method based
on profile-csHMMs, instead of using profile-HMMs. To verify
the advantage of profile-csHMMs, we performed similar cross-
validation experiments for predicting the structure of several
RNA families, as in Sec.VII. For this experiment, we used
sequences in the L20_LEADER, PURINE, and SRP_BACT



TABLE IV
PERFORMANCE COMPARISON BETWEEN PROFILE-CSHMM AND
PROFILE-HMM.

Profile-csHMM Profile-HMM

SN SP Time SN SP Time
(%) (%) (sec) (%) (%) (sec)
L20_LEADER 84 84 2.97 61 67 2.72
PURINE 85 89 143 58 65 1.35
SRP_BACT 74 76 1.20 44 52 1.12

families in the Rfam database. Note that the average identity
of the sequences in each of these families is relatively low.!?

The structure prediction results of profile-csHMMs and
traditional profile-HMMs are summarized in Table IV. The
prediction accuracies of the profile-csHMM method were
lower compared to the results in Table I, but still reason-
ably high. The main reason for the reduced accuracy is
the relatively large structural variations among the mem-
bers, rather than their low sequence similarity. As we have
shown in Table III, the performance of the profile-csHMM
based structural alignment method is not significantly affected
by sequence similarity. In Table IV, we can also see that
profile-csHMMs produced significantly better alignments than
traditional profile-HMMs, whose prediction accuracies were
around 20% ~ 30% higher. Nevertheless, the computational
cost of the profile-csHMM approach was comparable to that
of the profile-HMM approach.!' In addition to the superior
quality of the resulting alignments, another important advan-
tage of the profile-csHMM approach is that it can yield good
alignment scores that sensibly combine structural similarity
and sequence similarity, which is crucial in RNA similarity
search.

B. Iterated Loop Matching (ILM)

Recently, an efficient heuristic method, called iterated loop
matching (ILM), has been proposed for predicting RNA sec-
ondary structures including pseudoknots [19]. ILM can utilize
thermodynamic and/or comparative information to predict the
secondary structure of individual RNAs or an alignment of
RNAs, and it has been shown that ILM can achieve relatively
high prediction accuracy at a low computational cost. How-
ever, ILM is mainly used for predicting RNA secondary struc-
tures, and it cannot be used for representing RNAs and find-
ing structural alignments between structured and unstructured
RNAs. Even though ILM is quite different from the proposed
method in its goal and nature, comparing these methods might
be useful in demonstrating the effectiveness of the profile-
csHMM approach and showing the respective merits of the two
methods. For this experiment, we again used the sequences
in the FLAVI_PK3 and HDV_RIBOZYME families in Rfam.
The prediction performance of the profile-csHMM method was

10The average percentage identity is typically used to measure the sequence
similarity of the members in a given family. The average identities of
L20_LEADER, PURINE, and SRP_BACT RNA families are 55%, 56%, and
50%, respectively [13].

"IThe average CPU time of the profile-csHMM approach summarized in
Table IV consists of the time for estimating the search region (based on
profile-HMM) and the time for finding the structural alignment using the
SCA algorithm.

TABLE V
PERFORMANCE COMPARISON BETWEEN PROFILE-CSHMM AND ILM.

Profile-csHMM ILM
SN (%) SP (%) SN (%) SP (%)
HDV _RIBOZYME 95 95 78 65
FLAVI_PK3 95 96 58 59

measured based on cross-validation experiments as elaborated
in Sec.VIL. The performance of ILM has been measured by
predicting the secondary structure of the individual sequences
and comparing it to the annotated structure in the database.
Predictions have been made using the ILM online server with
the default parameters [20].

The prediction results of the two methods are summarized in
Table V. From this table, we can see that the profile-csHMM
based structural alignment method provides better performance
than ILM, as it can exploit the structural annotation of the
reference RNA. However, it has to be noted that the structural
alignment method can only be used when we have a reference
RNA whose structure is known. If we do not have a structured
RNA that can be used as a reference, we have to use ILM or
resort to other structure prediction methods.

IX. CONCLUDING REMARKS

In this paper, we proposed an effective framework for rep-
resenting RNAs with various secondary structures including
pseudoknots. The proposed approach was based on profile-
csHMMs, which can be easily constructed from RNA multiple
sequence alignments in a simple and intuitive manner. Ex-
perimental results indicate that the prediction accuracy of the
profile-csHMM approach is comparable to the state-of-the-art.
However, profile-csHMMs can handle a considerably larger
class of secondary structures at a much lower computational
cost.

The good prediction performance of the proposed scheme,
as well as its generality and the relatively low computational
cost makes profile-csHMMs an attractive choice for building
homology search tools for noncoding RNAs. For example, we
can build a family-specific prediction program similar to the
tRNA CM [6], which finds new candidates that may belong
to the given RNA family. Although we have used a non-
stochastic scoring matrix in our program, we can also use
a fully stochastic model with position-dependent probabilities
to improve the specificity of the prediction program. These
probabilities can be easily obtained from the multiple sequence
alignment of the RNA family that is under consideration.

Another interesting application would be to build a BLAST-
like tool that uses a single RNA with a known structure for
finding structural homologues. Klein and Eddy [14] developed
a database search program called RSEARCH that finds ho-
mologues of single structured RNAs, and they showed that
it outperforms primary sequence based programs (including
BLAST) in many cases. As RSEARCH is based on covariance
models, they cannot be used for finding pseudoknots. We
can develop a more general search program based on profile-
csHMMs that can practically deal with any kind of RNA
secondary structures.



Although the proposed approach can find structural align-
ments of RNAs in a relatively short time, it is still slow for
scanning a large database. Recently, Weinberg and Ruzzo [30]
suggested the use of heuristic profile-HMM filters to expedite
CM-based searches. They showed that using such filters can
make the scanning speed significantly faster at virtually no
loss of performance. In a similar manner, it is possible to
incorporate profile-HMM based pre-screening filters to speed-
up the database search based on profile-csHMMs. We are
currently investigating the optimal construction of such a pre-
screening filter from a given profile-csHMM, and preliminary
results indicate that considerable improvement in search speed
can be achieved by incorporating this strategy [41].

Even though the main focus of this paper was on RNA
similarity search, another useful approach for finding ncRNAs
is the comparative sequence analysis. A common strategy
of comparative methods is to find noncoding regions that
are well-conserved among different species. Once we have
identified such regions, they are investigated further to see
whether they also share a common secondary structure, as this
can be an indicator which shows that these regions correspond
to functional RNAs. Further details on these methods can be
found in [17].
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