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ABSTRACT

The hidden Markov model (HMM) has been widely used in signal processing and digital communication

applications. It is well-known for its efficiency in modeling short-term dependencies between adjacent

symbols. However, it cannot be used for modeling long-range interactions between symbols that are

distant from each other. In this paper, we introduce the concept of context-sensitive HMM. The proposed

model is capable of modeling strong pairwise correlations between distant symbols. Based on this model,

we propose dynamic programming algorithms that can be used for finding the optimal state sequence and

for computing the probability of an observed symbol string. Furthermore, we also introduce a parameter

re-estimation algorithm, which can be used for optimizing the model parameters based on the given training

sequences.1

1Work supported in parts by the NSF grant CCF-0428326 and the Microsoft Research Graduate Fellowship.
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Figure 1: The Chomsky hierarchy of transformational grammars nested according to the restrictions on
their production rules.

1 Introduction

Hidden Markov models (HMMs) have been widely used in many fields. They are well-known for their

efficiency in modeling short-term dependencies between adjacent symbols, which made them popular in

diverse areas. Traditionally, HMMs have been successfully applied to speech recognition, and many speech

recognition systems are built upon HMMs and their variants [1, 2]. They have been also widely used in

digital communications, and more recently, HMMs have become very popular in computational biology as

well. They have been proved to be useful in various problems such as gene identification [3, 4, 5], multiple

sequence alignment [5, 6], and so forth. Due to its effectiveness in modeling symbol sequences, the HMM

gave rise to a number of useful variants that extend and generalize the basic model [7]-[13].

Although HMMs have a number of advantages, the basic HMM [1, 2] and its variants in [7]-[13] have also

inherent limitations. For example, they are capable of modeling sequences with strong correlations between

adjacent symbols, but they cannot grasp long-range interactions between symbols that are distant from

each other. Therefore, the resulting model always displays sequential dependencies2, and more complex

sequences with non-sequential dependencies cannot be effectively represented using these HMMs.

In his work on transformational grammars, Chomsky categorized all grammars into four classes [14].

These include regular grammars, context-free grammars (CFG), context-sensitive grammars (CSG), and

unrestricted grammars, in the order of decreasing restrictions on the production rules. The aforementioned

classes comprise the so-called Chomsky hierarchy of transformational grammars as shown in Fig. 1. The

regular grammars are the simplest among the four, and they have the most restricted production rules.

HMMs can be viewed as stochastic regular grammars (SRG), according to this hierarchy. Due to the

restrictions on their production rules, regular grammars have efficient algorithms such as the Viterbi

algorithm [15] for finding the optimal state sequence (popularly used in digital communication receivers),

the forward algorithm [1, 2] for computing the probability of an observed symbol string, and the Baum-

Welch algorithm [16] for re-estimation of the model parameters. Other transformational grammars that

belong to a higher order class in the hierarchy have less restrictions on their production rules, and therefore

they have greater descriptive power to represent more complex dependencies between symbols. However,

the computational complexity for parsing an observation sequence increases very quickly, which makes the

use of higher order grammars sometimes impractical.
2By sequential dependencies, we imply that the probability that a symbol appears at a certain location depends only on

its immediate preceding neighbors.
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aabaabaa

babbaabbab

Figure 2: Examples of sequences that are included in the palindrome language.

One interesting language that cannot be represented using regular grammars - or equivalently, using

HMMs - is the palindrome language [14]. The palindrome language is a language that contains all strings

that read the same forwards and backwards. For example, if we consider a palindrome language that uses

an alphabet of two letters {a, b} for terminal symbols3, it contains all symbol sequences of the form aa,

bb, abba, aabbaa, abaaba, and so on. Fig. 2 shows examples of symbol strings that are included in this

language. The lines in Fig. 2 that connect two symbols indicate the pairwise correlation between symbols

that are distant from each other. This kind of long-range interactions between symbols cannot be described

using regular grammars. It is of course possible that a regular grammar generates such palindromes as

part of its language. However, we cannot force the model to generate only such palindromes. Therefore

regular grammars are not able to effectively discriminate palindromic sequences from non-palindromic

ones. In fact, in order to describe a palindrome language, we have to use higher-order grammars such as

the context-free grammars. Context-free grammars are capable of modeling nested dependencies between

symbols that are shown in Fig. 2.

In this paper, we introduce the idea of context-sensitive hidden Markov model (csHMM), which is an

extension of the traditional HMM. The csHMM is capable of modeling long-range correlations, by rendering

certain states in the model context-sensitive. The proposed model has several advantages over the existing

models including the stochastic context-free grammars (SCFG), which will be demonstrated later. The

organization of this paper is as follows. In Sec. 2, we elaborate on the basic concept of context-sensitive

HMMs. It will be explained how they can represent complex dependencies between symbols that are far

away from each other. In Sec. 3, we propose a dynamic programming algorithm that can be used for

finding the optimal state sequence of an observed symbol string, based on the given model. In Sec. 4, the

scoring algorithm for csHMM is introduced, which can compute the probability of an observed sequence in

an efficient way. Moreover, we also introduce the outside-algorithm that can be used along with the scoring

algorithm for training the model based on the given sequences. The parameter re-estimation algorithm

that is used for training csHMMs is proposed in Sec. 5. Sec. 6 provides an example that illustrates

the effectiveness of the proposed algorithms. In Sec. 7, we discuss several interesting issues regarding

the descriptive power of the csHMM. We also compare the proposed model with other variants of the

traditional HMM and other stochastic grammars. The paper is concluded in Sec. 8.

It has to be noted that the context-sensitive HMMs proposed in this paper are not related to the

so-called context-dependent HMMs that have been widely used in speech recognition [17, 18, 19]. They

are regular HMMs, whose basic building blocks are built by considering the phonetic context, hence called

context-dependent HMMs.
3A transformational grammar has two kinds of symbols, namely, non-terminal symbols and terminal symbols. Non-terminal

symbols are similar to the states in HMMs that are hidden to us, and terminal symbols are the symbols that we observe.
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2 Context-Sensitive Hidden Markov Models

The context-sensitive HMM can be viewed as an extension of the traditional HMM, where some of the

states are equipped with auxiliary memory [20, 21]. Symbols that are emitted at certain states are stored

in the memory, and the stored data serves as the context which affects the emission probabilities and the

transition probabilities of the model. This context-sensitive property increases the descriptive power of the

model significantly, compared to the traditional HMM. Let us first formally define the basic elements of

the context-sensitive HMM.

2.1 Basic elements of a csHMM

Similar to the traditional HMMs, the csHMM is also a doubly-stochastic process, which consists of a non-

observable process of hidden states and a process of observable symbols. The process of the hidden states is

governed by state-transition probabilities that are associated with the model, and the observation process

is linked to the hidden process via emission probabilities of the observed symbol that is conditioned on the

hidden state. A csHMM can be characterized by the following elements.

2.1.1 Hidden states

We assume that the csHMM has M distinct states. The set of hidden states V is defined as

V = S ∪ P ∪ C ∪ {start, end}, (1)

where {start, end} denote the set of special states that are used to denote the start state and the end state

of the model. As can be seen in (1), there are three different classes of states, namely, single-emission states

Sn, pairwise-emission states Pn, and context-sensitive states Cn. S is the set of single-emission states

S = {S1, S2, . . . , SM2}, (2)

where M2 is the number of single-emission states in the model. Similarly, P and C denote the set of

pairwise-emission states and the set of context-sensitive states

P = {P1, P2, . . . , PM1}, C = {C1, C2, . . . , CM1}. (3)

As shown in (3), the number of pairwise-emission states is the same as the number of context-sensitive

states. Therefore, we have M = 2M1 + M2 + 2 hidden states in total. The states Pn and Cn always exist

in pairs. For example, if there are two pairwise-emission states P1 and P2 in the model, then the HMM

is required to have also two context-sensitive states C1 and C2. The two states Pn and Cn are associated

with a separate memory element Zn, such as a stack or a queue. We may also use other memory types

depending on the application. Fig. 3 shows an example where Pn and Cn are associated with a stack Zn.

We use the same notation Zn for both the memory and the data stored in the memory (the context), for

simplicity.

4



P
n

C
n

Stack n

X
1

X
2

X
3

X
4

Figure 3: The states Pn and Cn associated with a stack Zn.

Differences between the three classes of states. The differences between the three classes of states

are as follows.

Single-emission state Sn. The single-emission state Sn is identical to the regular hidden state in the

traditional HMMs. As we enter the state, it emits an observable symbol according to the associated

emission probabilities. After the emission, Sn makes a transition to the next state according to the

specified transition probabilities.

Pairwise-emission state Pn. The pairwise-emission state Pn is almost identical to the single-emission

state Sn, except that the symbols emitted at Pn are stored in the auxiliary memory Zn dedicated

to Pn and Cn. The data stored in the memory affects the emission probabilities and the transition

probabilities of Cn in the future. After storing the emitted symbol in the memory, a transition is

made to the next state according to the transition probabilities of Pn.

Context-sensitive state Cn. The context-sensitive state Cn is considerably different from the other

states, in the sense that its emission probabilities and the transition probabilities are not fixed. In

fact, these probabilities depend on the context, or the data stored in the associated memory Zn,

which is the reason why Cn is called a context-sensitive state. When entering Cn, it first accesses

the memory Zn and retrieves a symbol x. Once the symbol is retrieved, the emission probabilities of

Cn are adjusted according to the value of x. For example, we may adjust the emission probabilities

of Cn such that it emits the same symbol x with high probability (possibly, with probability one).

Transition probabilities at Cn also depend on the context, which will be explained later.

We denote the hidden state process as s = s1s2 . . . sL, where si is the state at time i and L is the length

of the entire sequence. Each state takes a value from si ∈ V − {start, end}. The virtual start state s0 and

the end state sL+1 are assumed to be s0 = start and sL+1 = end .

2.1.2 Observation symbols

We denote the observation process as x = x1x2 . . . xL, where xi is the observed symbol at time i. Each

symbol xi takes a value from an alphabet xi ∈ A. Note that the virtual start state s0 and the end state

sL+1 do not make any emission.
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2.1.3 Transition probabilities

Let us define the probability that the model will make a transition from a state si = v to the next state

si+1 = w. For v ∈ S ∪ P, we define the probability as

P (si+1 = w|si = v) = t(v, w). (4)

Note that the transition probabilities are stationary and do not depend on the time index i. As mentioned

earlier, the transition probabilities at a context-sensitive state Cn depend on the context Zn. Cn uses two

different sets of transition probabilities, depending on whether the associated memory Zn is empty or not.

For each context-sensitive state Cn, we define the following sets

En = { Subset of V that contains the states to which Cn can make

transitions when the associated memory element Zn is empty } (5)

Fn = { Subset of V that contains the states to which Cn can make

transitions when the associated memory element Zn is not empty }, (6)

where En ∩ Fn = ∅. At a context-sensitive state Cn, the memory is examined after making the emission.

If the memory is empty, v = Cn can make a transition only to w ∈ En. Similarly, if the memory is not

empty, v = Cn makes a transition to w ∈ Fn. Based on this setting, we define the two sets of transition

probabilities when v ∈ C as follows

P (si+1 = w|si = v, Zn) =
{

te(v, w) if Zn is empty
tf (v, w) if Zn is not empty.

(7)

Since En ∩ Fn = ∅, the probabilities te(v, w) and tf (v, w) cannot have non-zero values at the same time.

Therefore, we can let t(v, w) = te(v, w) + tf (v, w) without any ambiguity. Now, the transition probability

from si = v ∈ C to si+1 = w can be simplified as

P (si+1 = w|si = v, Zn) = t(v, w). (8)

Note that we have
∑

w∈En
t(v, w) = 1 and

∑
w∈Fn

t(v, w) = 1 in this case. The probability t(start , v) is

used to define the initial state distribution P (s1 = v), and t(w, end) denotes the probability that the HMM

will terminate after the state w.

Preventing degeneracies. The restrictions on the states to which a context-sensitive state v ∈ C is

allowed to make transitions depending on the context, can be conveniently used to maintain the number

of Pn and that of Cn identical in a state sequence. In this way, we can prevent degenerate situations due

to a mismatch of the two states. Let s = s1s2 . . . sL be a feasible state sequence of an observed symbol

string x = x1x2 . . . xL. The csHMM should be constructed such that the number of occurrences of Pn in

the sequence s is kept the same as the number of occurrences of Cn in s. This restriction is reasonable for

the following reasons. In the first place, if there are more Cn states than there are Pn states, the emission

probabilities of the context-sensitive state Cn cannot be properly determined. On the other hand, if there

are more Pn states than Cn states, the symbols that were emitted at the “surplus” Pn states do not affect

the probabilities in the model at all, hence they may be simply replaced by single-emission states.
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2.1.4 Emission probabilities

The probability of observing a symbol xi = x depends on the underlying hidden state si = v. For v ∈ S∪P,

this emission probability can be defined as

P (xi = x|si = v) = e(x|v). (9)

For v ∈ C, the emission probability depends on both si = v and the context Zn, hence it is defined as

P (xi = x|si = v, Zn) = e(x|v, Zn). (10)

In case the emission probability depends only on a single symbol xp in the memory Zn (e.g. if Zn uses

a stack, xp may be the symbol on the top of the stack), the emission probability in (10) can be simply

written as e(x|v, xp).

2.2 Constructing a csHMM

By using the proposed context-sensitive HMM, we can easily construct a simple model that generates only

palindromes. For example, we may use the structure shown in Fig. 4. As can bee seen in Fig. 4, there

are three hidden states S1, P1, and C1 in the model, where the state-pair (P1, C1) is associated with a

stack. Initially, the model begins at the pairwise-emission state P1. It makes several self-transitions to

generate a number of symbols, which are pushed onto the stack. At some point, it makes a transition

to the context-sensitive state C1. Once we enter the context-sensitive state C1, the emission probabilities

and the transition probabilities of C1 are adjusted, such that the state always emits the symbol on the

top of the stack and makes self-transitions until the stack becomes empty. In this way, C1 emits the same

symbols as were emitted by P1, but in the reverse order, since the stack is a last-in-first-out (LIFO) system.

If we denote the number of symbols that were emitted by P1 as N , the generated string will always be

a palindrome of the form x1 . . . xNxN . . . x1 (even length sequence) or x1 . . . xNxN+1xN . . . x1 (odd length

sequence).

In the following discussions, we mainly focus on those context-sensitive HMMs that generate sequences

with nested interactions. These models include the ones that generate palindromic sequences as illustrated

in Fig. 4. As in Fig. 4, we assume that every state-pair (Pn, Cn) is associated with a stack. Based on these

csHMMs, we describe efficient algorithms that can be used for sequence analysis.

P
1

C
1

Stack 1

X
1

X
2

X
3

Start End

push pop

S
1

Figure 4: An example of a context-sensitive HMM that generates only palindromes.
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3 Finding the Most Probable Path

Let us consider an observation sequence x = x1x2 . . . xL. As described in Sec. 2, we denote the underlying

state of xi as si. Assuming that there are M distinct states in the model, we have ML different paths.

Given the observation sequence x, how can we find the path that is most probable among the ML distinct

paths? This problem is tradictionally called the optimal alignment problem, since we are trying to find the

best alignment between the observed symbol string and the given HMM.

One way to find the most probable path would be to compute the probabilities of all paths, and pick

the one with the highest probability. However, this approach is impractical, since the number of paths

increases exponentially with the length L of the sequence. When using traditional HMMs, this problem

can be solved very efficiently by the Viterbi algorithm [15], which is widely used in digital communication

receivers. The Viterbi algorithm exploits the fact that if s1 . . . si−1si is the optimal path for x1 . . . xi−1xi

among all paths that end with the state si, then s1 . . . si−1 must be the optimal path for x1 . . . xi−1 among

all paths that end with the state si−1. Therefore, in order to find the optimal path for x1 . . . xi with si = v,

we only have to consider the M optimal paths for x1 . . . xi−1 that end with si−1 = 1, . . . ,M , the transition

probability from each of these states to the state si = v, and the probability of emitting the symbol xi at

the state si. This makes the computational complexity of the Viterbi algorithm only O(LM2), which is

considerably better than O(LML) of the exhaustive search.

Unfortunately, the same intuition does not hold for context-sensitive HMMs. Since the emission prob-

abilities and the transition probabilities of context-sensitive states Cn depend on the previously emitted

symbols at the pairwise-emission states Pn, we have to keep track of the previous states in order to com-

pute the probability of a certain path. Therefore, the optimal path for x1 . . . xi cannot be found simply by

considering the optimal paths for x1 . . . xi−1 and extending it.

In order to see this, let us consider the example in Fig. 5. This context-sensitive HMM has three hidden

states P1, C1, and S1, where each of these states emits a symbol in the alphabet A = {a, b}. The emission

probabilities and the transition probabilities of P1 and S1 are shown in the figure. The symbols emitted

at P1 are pushed onto the stack, and this data affects the probabilities at the state C1. Once we enter the

context-sensitive state C1, a symbol is popped out from the stack and is emitted. After the emission, the

stack is examined to check whether it is empty. If it is empty, the model terminates. Otherwise, the model

makes a transition back to C1 and continues emitting the symbols that are stored in the stack. Now, let us

consider the symbol sequence abbba. Assuming that this string comes from the model in Fig. 5, what is the

P1 C1Start EndS1

0.5

Stack 1

0.5

pa= 0.5

pb= 0.5

0.5 0.5

pa= 0.25

pb= 0.75

if Stack 1
is empty

if Stack 1
isn’t empty

Figure 5: An example of a simple context-sensitive HMM.
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most probable path s∗? It is not difficult to see that there are only two feasible paths: s1 = P1S1S1S1C1

and s2 = P1P1S1C1C1. Since both paths pass the state S1 in the middle, let us first consider the optimal

path for the first three symbols abb. We denote the sub-paths of s1 and s2 up to the third symbol as

ŝ1 = P1S1S1 and ŝ2 = P1P1S1, respectively. If we compute the probabilities of ŝ1 and ŝ2, we get

P (ŝ1) =
1
2
× 1

2
× 3

4
× 1

2
× 3

4
=

9
128

(11)

and

P (ŝ2) =
1
2
× 1

2
× 1

2
× 1

2
× 3

4
=

6
128

, (12)

hence the optimal path for the first three symbols abb is ŝ1. However, if we compute the probabilities of

the two paths s1 and s2, we obtain

P (s1) =
1
2
× 1

2
× 3

4
× 1

2
× 3

4
× 1

2
× 3

4
× 1

2
× 1× 1 =

27
2048

(13)

and

P (s2) =
1
2
× 1

2
× 1

2
× 1

2
× 3

4
× 1

2
× 1× 1× 1× 1 =

48
2048

, (14)

which shows that the optimal path for abbba is s2. Apparently, the globally optimal path s∗ = s2 is not

an extension of ŝ1, and this example clearly demonstrates that the Viterbi algorithm cannot be used for

finding the most probable path in context-sensitive HMMs.

3.1 Alignment of csHMM

Although the Viterbi algorithm cannot be used for finding the optimal path in a context-sensitive HMM, we

can develop a polynomial-time algorithm that solves the alignment problem in a recursive manner, similar

to the Viterbi algorithm. The proposed algorithm is conceptually similar to the Cocke-Younger-Kasami

(CYK) algorithm [22, 23] that can be used for parsing SCFGs. The main reason why the Viterbi algorithm

cannot be used in context-sensitive HMMs is because the interactions between symbols are not sequential.

Since the Viterbi algorithm basically considers only sequential depdendencies, it cannot take care of nested

interactions between distant symbols. However, if we implement an algorithm that starts from the inside

of the given sequence and proceeds to the outward direction by taking the nested interactions into account,

it is possible to find the optimal state sequence in a recursive manner.

When searching for the most probable state sequence, we assume that all pairwise interactions between

Pn and Cn are nested and they do not cross each other, as mentioned earlier. Fig. 6 illustrates several

examples of interactions that are allowed as well as those that are prohibited. The nodes in the figure

denote the observed symbols in the sequence, and the dotted lines that connect two symbols indicate

the pairwise interactions between them. The sequence in Fig. 6 (a)∼(c) shows sequences with nested

dependencies. On the other hand, the example in Fig. 6 (d) shows a sequence with a crossing interaction,

which is not considered in this case.

Before describing the algorithm, let us first define the variables that are needed in the proposed algo-

rithm. x = x1 . . . xL is the observation sequence and s = s1 . . . sL is the underlying state sequence. We

assume that the csHMM has M distinct states, which we simply denote by V = {1, 2, . . . ,M}. The state

9



(a)

(b)

(c)

(d)

Figure 6: Examples of interactions in a symbol string. The dotted lines indicate the pairwise dependencies
between symbols. (a), (b), (c) Nested interactions. (d) Crossing interactions.

v = 1 denotes the start state of the HMM and v = M denotes the end state. For v ∈ P ∪ C, we define v̄

as the complementary state of v as follows,

v = Pn → v̄ = Cn, v = Cn → v̄ = Pn. (15)

The emission probability of a symbol x at a state v is defined as e(x|v) for v ∈ S ∪ P, and e(x|v, xp) for

v ∈ C, where xp is the symbol that was previously emitted at the corresponding pairwise-emission state

v̄. The transition probability from v to w is defined as t(v, w). Finally, let us define γ(i, j, v, w) to be the

log-probability of the optimal path among all sub-paths si . . . sj with si = v and sj = w. In computing

γ(i, j, v, w), we consider only those paths where all the pairwise-emission states Pn in the si . . . sj are

paired with the corresponding context-sensitive states Cn. Examples of sub-paths that are considered in

computing γ(i, j, v, w) are shown in Fig. 7 (a). The paths shown in Fig. 7 (b) are not considered due to

unpaired Pn or Cn states, or due to crossing interactions. The variable γ(i, j, v, w) will ultimately lead to

the probability log P (x, s∗|Θ), where s∗ is the optimal path that satisfies

s∗ = arg max
ŝ

P (x, s = ŝ|Θ), (16)

(a)

S S S S S

S P S C C

P C P C C

(b)

S S P P S

P P S C C

P S C C S

S

P

P

S

S

S

Figure 7: Examples of state sequences (a) that are considered in computing γ(i, j, v, w) and (b) those that
are not considered.
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where Θ is the set of model parameters. Additionally, we define the variables λ`(i, j, v, w) and λr(i, j, v, w)

that will be used for tracing back the optimal path s∗.

3.1.1 Computing the Probability of the Optimal Path

Now, the alignment algorithm can be described as follows.

1) Initialization

For i = 1, . . . , L, v = 2, . . . ,M − 1.

γ(i, i, v, v) =
{

log e(xi|v) v ∈ S
−∞ otherwise

λ`(i, i, v, v) = (0, 0, 0, 0)

λr(i, i, v, v) = (0, 0, 0, 0)

2) Iteration

For i = 1, . . . , L− 1, j = i + 1, . . . , L and v = 2, . . . ,M − 1, w = 2, . . . ,M − 1.

(i) v ∈ C or w ∈ P

γ(i, j, v, w) = −∞

λ`(i, j, v, w) = (0, 0, 0, 0)

λr(i, j, v, w) = (0, 0, 0, 0)

(ii) v ∈ P, w ∈ S

γ(i, j, v, w) = max
u

[
γ(i, j − 1, v, u) + log t(u, w) + log e(xj |w)

]
u∗ = arg max

u

[
γ(i, j − 1, v, u) + log t(u, w) + log e(xj |w)

]
λ`(i, j, v, w) = (i, j − 1, v, u∗)

λr(i, j, v, w) = (j, j, w,w)

(iii) v ∈ S, w ∈ C

γ(i, j, v, w) = max
u

[
log e(xi|v) + log t(v, u) + γ(i + 1, j, u, w)

]
u∗ = arg max

u

[
log e(xi|v) + log t(v, u) + γ(i + 1, j, u, w)

]
λ`(i, j, v, w) = (i, i, v, v)

λr(i, j, v, w) = (i + 1, j, u∗, w)

(iv) v = Pn, w = Cm (n 6= m), j < i + 3

γ(i, j, v, w) = −∞

λ`(i, j, v, w) = (0, 0, 0, 0)

λr(i, j, v, w) = (0, 0, 0, 0)

11



(v) v = Pn, w = Cm (n 6= m), j ≥ i + 3

γ(i, j, v, w) = max
u

(
max

k=i+1,...,j−2

[
γ(i, k, v, v̄) + log t(v̄, u) + γ(k + 1, j, u, w)

])
(k∗, u∗) = arg max

(u,k),k=i+1,...,j−1

[
γ(i, k, v, v̄) + log t(v̄, u) + γ(k + 1, j, u, w)

]
λ`(i, j, v, w) = (i, k∗, v, v̄)

λr(i, j, v, w) = (k∗ + 1, j, u∗, w)

(vi) v = Pn, w = Cn, j = i + 1

γ(i, j, v, w) = log e(xi|v) + log t(v, w) + log e(xj |w, xi)

λ`(i, j, v, w) = (0, 0, 0, 0)

λr(i, j, v, w) = (0, 0, 0, 0)

(vii) v = Pn, w = Cn, j > i + 1

γ1 = max
u

(
max

k=i+1,...,j−2

[
γ(i, k, v, v̄) + log t(v̄, u) + γ(k + 1, j, u, w)

])
(k∗, u∗) = arg max

(u,k),k=i+1,...,j−1

[
γ(i, k, v, v̄) + log t(v̄, u) + γ(k + 1, j, u, w)

]
γ2 = max

u1,u2

[
log e(xi|v) + log t(v, u1)

+γ(i + 1, j − 1, u1, u2) + log t(u2, w) + log e(xj |w, xi)
]

(u∗1, u
∗
2) = arg max

(u1,u2)

[
log e(xi|v) + log t(v, u1)

+γ(i + 1, j − 1, u1, u2) + log t(u2, w) + log e(xj |w, xi)
]

γ(i, j, v, w) = max(γ1, γ2)

If γ1 ≥ γ2,

λ`(i, j, v, w) = (i, k∗, v, w)

λr(i, j, v, w) = (k∗ + 1, j, u∗, w).

Otherwise,

λ`(i, j, v, w) = (i + 1, j − 1, u∗1, u
∗
2)

λr(i, j, v, w) = (0, 0, 0, 0).

(viii) v ∈ S, w ∈ S
In this case, the variable γ(i, j, v, w) can be updated using any of the update formulae in (ii) or (iii).

3) Termination

log P (x, s∗|Θ) = max
v,w

[
log t(1, v) + γ(1, L, v, w) + log t(w,M)

]
(v∗, w∗) = arg max

(v,w)

[
log t(1, v) + γ(1, L, v, w) + log t(w,M)

]
λ∗ = (1, L, v∗, w∗) �

12
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Figure 8: Illustration of the iteration step of the algorithm.

As shown in the initialization step of the algorithm, we start by initializing the values of γ(i, i, v, v)

for i = 1, 2, . . . , L and v = 2, 3, . . . ,M − 1. Since we consider only state sequences where all the pairwise-

emission states and the context-sensitive states are paired, the value of γ(i, i, v, v) is set to −∞ for v ∈ P
or v ∈ C. For single-emission states v ∈ S, γ(i, i, v, v) is simply the logarithm of the emission probability

of the symbol xi at state v. Therefore, we set γ(i, i, v, v) = log e(xi|v) for v ∈ S.

Now, let us consider the iteration step. As we can see in (i) and (iv), the variable γ(i, j, v, w) is set to

−∞, whenever the states Pn and Cn do not form pairs. For example, in case (i), if the leftmost state si

of the sub-path si . . . sj is a context-sensitive state, it cannot be paired with the corresponding pairwise-

emission state, since there are no more states to the left of si. This is also true when the rightmost state

sj is a pairwise-emission state. In case (iv), the state sequence is either sisi+1 or sisi+1si+2. As si = Pn

and sj = Cm where n 6= m, the states si and sj cannot form a pair. Moreover, since there are not enough

states between si and sj such that both si and sj can form pairs respectively, the probability of such a state

sequence is zero. Case (ii) in the iteration step deals with the case when si = v is a pairwise-emission

state while sj = w is a single-emission state. Since there can be no interaction between sj and any other

state sk (i ≤ k ≤ j − 1), all the pairwise-emission states and the corresponding context-sensitive states

should form pairs inside the sub-path si . . . sj−1. As γ(i, j − 1, v, u) is the log-probability of the optimal

path among all feasible paths si . . . sj−1, we can compute γ(i, j, v, w) by extending γ(i, j − 1, v, u) to the

right by one symbol. We first take the summation of γ(i, j − 1, v, u) and log t(u, w) and log e(xi|w), and

then compute the maximum value of this sum over all u, as described in (ii) of the iteration step. Fig. 8

(a) illustrates this case, where the shaded area indicates that all Pn and Cn states are paired inside the

sub-path si . . . sj−1. Similar reasoning holds also for the case when si = v is a single-emission state and

sj = w is a context-sensitive state. In this case, γ(i, j, v, w) can be obtained by extending γ(i + 1, j, u, w)

as in (iii) of the iteration step. This is illustrated in Fig. 8 (b).

Fig. 8 (c) depicts the case when si = Pn and sj = Cm, where n 6= m. In this case, the pairwise-

emission state si and the context-sensitive state sj cannot form a pair. Therefore si = Pn should pair with

sk = v̄ = Cn for some k (i + 1 ≤ k ≤ j − 2). Similarly, sj = Cm should form a pair with s` = w̄ = Pm for

some ` (k + 1 ≤ ` ≤ j − 1). Consequently, all pairwise-emission states and context-sensitive states inside

si . . . sk and sk+1 . . . sj have to exist in pairs. Therefore, we can obtain γ(i, j, v, w) by adding γ(i, k, v, v̄),

the transition probability log t(v̄, u), and γ(k + 1, j, u, w), and maximizing this sum over all u and k, as

13
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Figure 9: Illustration of the iteration step of the algorithm for the case when si = Pn and sj = Cn.

shown in (v).

Finally, let us focus on the case when si = Pn and sj = Cn. If j = i + 1, we can simply compute

γ(i, j, v, w) as in (vi) of the iteration step. As si pairs with sj , we consider the emission of the symbols

xi and xj at the same time. In this way, we know the emitted symbol xi, and therefore the emission

probabilities at the context-sensitive state sj = Cn can be decided correspondingly. When j 6= i + 1,

the situation is a little bit more complicated. In this case, we have the following two possibilities. One

possibility is that si forms a pair with sj as shown in Fig. 9 (a). The dotted line that connects si and

sj indicates the pairwise interaction between the two symbols. Since si and sj form a pair, the pairwise-

emission states and the context-sensitive states in si+1 . . . sj−1 should necessarily exist in pairs. Therefore,

the log-probability of the most probable path, where si = Pn and sj = Cn form a pair can be computed as

follows

max
u1,u2

[
log e(xi|v) + log t(v, u1) + γ(i + 1, j − 1, u1, u2) + log t(u2, w) + log e(xj |w, xi)

]
. (17)

Another possibility is that si = Pn pairs with sk = Cn for some k between i + 1 and j − 2. In this case,

sj = Cn has to pair with s` = Pn for some ` between k + 1 and j − 1. Therefore, all Pn and Cn states

inside si . . . sk and sk+1 . . . sj have to exists in pairs as illustrated in Fig. 9 (b). The log-probability of all

feasible paths, where si = Pn does not pair with sj = Cn can be computed by

max
u

(
max

k=i+1,...,j−2

[
γ(i, k, v, v̄) + log t(v̄, u) + γ(k + 1, j, u, w)

])
. (18)

By comparing (17) and (18) as in (vii) of the iteration step, we can compute the log-probability of the

most probable path among all sub-paths si . . . sj with si = Pn and sj = Cn.

Once we have completed the iteration step, the log-probability log P (x, s∗|Θ) of the most probable

path s∗ can be computed by comparing γ(1, L, v, w) for all v, w = 2, 3, . . . ,M − 1. This is shown in the

termination step.

3.1.2 Trace-Back

Now that we have obtained the log-probability of the optimal path, we can trace-back the path s∗ that gave

rise to this probability. The variables λ`(i, j, v, w) and λr(i, j, v, w) are used in the trace-back procedure,

and we also need a stack T . For notational convenience, let us define λt = (i, j, v, w). The procedure can

be described as the following.

14



Case Complexity Number Overall
for one iteration of iterations complexity

i O(1) O(L2M1M) O(L2M1M)
ii O(M) O(L2M1M2) O(L2M1M2M)
iii O(M) O(L2M1M2) O(L2M1M2M)
iv O(1) O(LM2

1 ) O(LM2
1 )

v O(ML) O(L2M2
1 ) O(L3M2

1 M)
vi O(1) O(LM1) O(LM1)
vii O(ML) + O(M2) O(L2M1) O(L3M1M) + O(L2M1M

2)
viii O(M) O(L2M2

2 ) O(L2M2
2 M)

Table 1: Computational complexity of the csHMM alignment algorithm.

1) Initialization

si = 0 (i = 1, 2, . . . , L).

Push λ∗ onto T .

2) Iteration

Pop λt = (i, j, v, w) from stack T .

If λt 6= (0, 0, 0, 0)

If si = 0 then si = v.

If sj = 0 then sj = w.

λ`(λt) onto T .

λr(λt) onto T .

If T is empty then goto termination step.

Otherwise, repeat the iteration step.

3) Termination

The optimal path is s∗ = s1s2 . . . sL �

3.1.3 Computational Complexity

Let us examine the computational complexity of the alignment algorithm. The algorithm iterates for all

i = 1, . . . , L−1, j = i+1, . . . , L and v = 2, . . . ,M−1, w = 2, . . . ,M−1. The complexity of each iteration

step depends on the type of the states v and w. Table 1 summarizes the computational complexity of each

case of the iteration step of the alignment algorithm in Sec. 3.1.1. From this table, we can compute the

total complexity of the alignment algorithm as follows

O(L3M2
1 M) + O(L2M1M

2) + O(L2M2
2 M) (19)
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Although the complexity in (19) is higher than O(LM2) of the Viterbi algorithm, it is still a polynomial in L

and M , which is much more efficient than O(LML) of the exhaustive search approach. The computational

complexity of the alignment algorithm for general SCFGs in Chomsky normal form is O(L3M3) [5, 23].

As we can see, the computational cost of both algorithms increases with O(L3M3), in general. However,

the csHMM usually requires less number of states for modeling sequences with certain correlations (e.g.

palindrome language) than the SCFG in the Chomsky normal form (CNF) [14], hence it may have an

computational advantage.

4 Computing the Probability of an Observed Sequence

Another important problem that arises in using HMMs for real-world applications is the following. Given

an observation sequence x = x1 . . . xL, how can we efficiently compute the probability P (x|Θ) that this

sequence was generated by the HMM with the set of parameters Θ? This is typically called the scoring

problem for the following reason. Assume that we have K different models, each with different set of

parameters Θk(k = 1, 2, . . . ,K). Among these K HMMs, which one should we choose such that the

probability of observing x is maximized? In order to choose the best model, we have to score each model

based on the observation sequence x, where the probability P (x|Θ) is the natural choice for the score.

Since P (x|Θ) can be used for scoring different HMMs, the problem of computing this probability is called

the scoring problem.

For regular HMMs, we can use the forward algorithm for solving this problem, whose complexity is the

same as that of the Viterbi algorithm. However, due to the context-sensitive property of csHMMs, this

algorithm cannot be directly used for scoring csHMMs. Even though the forward algorithm cannot be used

for computing the probability P (x|Θ) in context-sensitive HMMs, we can adopt a similar approach that

was previously used in the optimal alignment algorithm. In Sec. 4.1, we propose a dynamic programming

algorithm for scoring csHMM. In addition to this, we also propose the outside algorithm for csHMM in

Sec. 4.2. This algorithm can be used together with the scoring algorithm for training context-sensitive

HMMs, which will be elaborated in Sec. 5.

4.1 Scoring of csHMM

The csHMM scoring algorithm can be viewed as a variant of the alignment algorithm, where the max

operators are replaced by sums. Conceptually, this algorithm is somewhat similar to the inside algorithm

[23] that is used for scoring SCFGs. As in the alignment algorithm, we start from the inside of the

observed symbol sequence and iteratively proceed to the outward direction. During this process, the

pairwise-emission state Pn and the context-sensitive state Cn that interact with each other are considered

at the same time.

In order to describe the algorithm, we use the same notations as in Sec. 3.1. In addition to this, we

define the inside variable α(i, j, v, w) as the probability of all sub-paths si . . . sj with si = v and sj = w. It

is assumed that all pairwise-emission states Pn inside the path are paired with the corresponding context-

sensitive states Cn. Now, the scoring algorithm can be described as follows.
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1) Initialization

For i = 1, . . . , L, v = 2, . . . ,M − 1.

α(i, i, v, v) =
{

e(xi|v) v ∈ S
0 otherwise

2) Iteration

For i = 1, . . . , L− 1, j = i + 1, . . . , L and v = 2, . . . ,M − 1, w = 2, . . . ,M − 1.

(i) v ∈ C or w ∈ P
α(i, j, v, w) = 0

(ii) v ∈ P, w ∈ S
α(i, j, v, w) =

∑
u

[
α(i, j − 1, v, u)t(u, w)e(xj |w)

]
(iii) v ∈ S, w ∈ C

α(i, j, v, w) =
∑

u

[
e(xi|v)t(v, u)α(i + 1, j, u, w)

]
(iv) v = Pn, w = Cm (n 6= m), j < i + 3

α(i, j, v, w) = 0

(v) v = Pn, w = Cm (n 6= m), j ≥ i + 3

α(i, j, v, w) =
∑

u

j−2∑
k=i+1

α(i, k, v, v̄)t(v̄, u)α(k + 1, j, u, w)

(vi) v = Pn, w = Cn, j = i + 1

α(i, j, v, w) = e(xi|v)t(v, w)e(xj |w, xi)

(vii) v = Pn, w = Cn, j > i + 1

α(i, j, v, w) =
∑

u

j−2∑
k=i+1

α(i, k, v, w)t(w, u)α(k + 1, j, u, w)

+
∑
u1

∑
u2

[
e(xi|v)t(v, u1)α(i + 1, j − 1, u1, u2)t(u2, w)e(xj |w, xi)

]
(viii) v ∈ S, w ∈ S
In this case, the variable α(i, j, v, w) can be updated using any of the update formulae in (ii) or (iii).

3) Termination

P (x|Θ) =
∑

v

∑
w

t(1, v)α(1, L, v, w)t(w,M) �

At the end of the algorithm, we can obtain the probability P (x|Θ) that the given csHMM will generate

the observation sequence x. The computational complexity of this algorithm is the same as the complexity

of the alignment algorithm, which is shown in (19).
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4.2 The Outside Algorithm

In a similar fashion, we can define the outside variable β(i, j, v, w) to be the probability of all sub-paths

s1 . . . sisj . . . sL, where si = v and sj = w. In other words, β(i, j, v, w) contains the probability of the entire

sequence excluding xi+1 . . . xj−1. This variable is needed for parameter re-estimation of csHMM, which will

be elaborated in Sec. 5. As in Sec. 4.1, we assume that all pairwise-emission states Pn in s1 . . . sisj . . . sL

are paired with the corresponding context-sensitive states Cn in a nested manner. Fig. 10 illustrates the

state sequences that are considered in computing the variable β(i, j, v, w), and the ones that are not taken

into account.

In the outside algorithm, we start computing β(i, j, v, w) from the outside of the sequence and proceed

to the inward direction. As in the scoring algorithm, whenever there is an interaction between two sym-

bols, the emission of these symbols are considered together. The inside variable α(i, j, v, w), which has

been computed previously, is needed for computing the outside variable β(i, j, v, w). Now, we can solve for

β(i, j, v, w) as follows.

1) Initialization

For i = 1, . . . , L, v = 1, . . . ,M .

β(0, L + 1, v, w) =
{

1 v = 1, w = M
0 otherwise

β(i, L + 1, v, w) =
{ ∑

u t(1, u)α(1, i, u, v) w = M
0 otherwise

β(0, i, v, w) =
{ ∑

u α(i, L, w, u)t(u, M) v = 1
0 otherwise

2) Iteration

For i = 1, . . . , L− 1, j = i + 1, . . . , L and v = 1, . . . ,M,w = 1, . . . ,M .

(i) v = 1 or w = M

β(i, j, v, w) = 0

S PP C C S

C PP P C C

S PP C C S

S PP C S C

S PS S C C

P PS S C S

(a) (b)

Figure 10: Examples of state sequences (a) that are considered in computing β(i, j, v, w) and (b) those
that are not considered.
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(ii) v ∈ P, w ∈ P

β(i, j, v, w) =
∑

u

L+1∑
k=j+2

β(i, k, v, u)α(j, k − 1, w, w̄)t(w̄, u)

(iii) v ∈ C, w ∈ C

β(i, j, v, w) =
∑

u

i−2∑
k=0

β(k, j, u, w)α(k + 1, i, v̄, v)t(u, v̄)

(iv) v ∈ C, w ∈ P

β(i, j, v, w) =
∑
u1,u2

i−2∑
k1=0

L+1∑
k2=j+2

β(k1, k2, u1, u2)α(k1 + 1, i, v̄, v)

×α(j, k2 − 1, w, w̄)t(u1, v̄)t(w̄, u2)

(v) v /∈ S, w ∈ S
β(i, j, v, w) =

∑
u

β(i, j + 1, v, u)t(w, u)e(xj |w)

(vi) v ∈ S, w /∈ S
β(i, j, v, w) =

∑
u

β(i− 1, j, u, w)t(u, v)e(xi|v)

(vii) v = Pn, w = Cm(n 6= m)

β(i, j, v, w) = 0

(viii) v = Pn, w = Cn

β(i, j, v, w) =
∑
u1,u2

β(i− 1, j + 1, u1, u2)t(u1, v)e(xi|v)e(xj |w, xi)t(w, u2)

(ix) v ∈ S, w ∈ S
In this case, the variable α(i, j, v, w) can be updated using either (v) or (vi).

3) Termination

P (x|Θ) =
∑
v,w

β(i, i + 1, v, w)t(v, w) for any i �

Let us first look at the initialization step. For the case of an empty string, i.e. when i = 0 and

j = L+1, we set β(0, L+1, 1,M) to unity. When i ≥ 1 and j = L+1, all the pairwise interactions have to

occur inside the sub-path s1 . . . si. Since α(1, i, u, v) is the probability of all sub-paths for x1x2 . . . xi with

s1 = u and si = v, we can compute β(i, L + 1, v, M) by taking the product of the transition probability

from state 1 to state u and the inside variable α(1, i, u, v), and then adding this product over all u. The

case when i = 0 and j ≤ L can be treated similarly. These are shown in the initialization step.

After the initialization of the outside variable β(i, j, v, w), we proceed into the iteration step. Firstly,

consider the case when v ∈ P and w ∈ P. Since all pairwise-emission states have to be paired with the

corresponding context-sensitive states in a nested manner, sj = w has to pair with w̄ between j + 1 and
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Figure 11: Illustration of the iteration step of the outside algorithm. (a) Case (ii). (b) Case (iii). (c) Case
(iv).

k−1 as shown in Fig. 11 (a). As in Fig. 8 and Fig. 9, the shaded regions indicate that all Pn and Cn states

are paired inside each region. Similarly, si = v has to form a pair with v̄ between k and L, and all the

interactions in the sub-path x1 . . . xixk . . . xL should be paired in a nested manner. Since the probability of

each sub-path sj . . . sk−1 and s1 . . . sisk . . . sL is contained in α(j, k − 1, w, w̄) and β(i, k, v, u) respectively,

we can compute β(i, j, v, w) as described in (ii) of the iteration step. Fig. 11 (b) illustrates the case when

v ∈ C and w ∈ C. In this case, β(i, j, v, w) can be updated in a similar manner as shown in (iii). Fig. 11 (c)

shows the case when v ∈ C and w ∈ P. As shown in the figure, si = v has to pair with v̄ between k1 + 1

and i− 1 and sj = w also has to pair with w̄ between j + 1 and k2 − 1. All the other interactions have to

be confined within the state sequence s1 . . . sk1sk2sL. Therefore, β(i, j, v, w) can be computed as in (iv) of

the iteration step.

When w is a single-emission state, β(i, j, v, w) can be obtained simply by extending β(i, j + 1, v, u)

by one sample, as depicted in Fig. 12 (a). As shown in (v) of the iteration step, we first compute the

product of β(i, j +1, v, u) and the transition probability t(w, u) and the emission probability of the symbol

xj at the state sj = w, and add the product over u. β(i, j, v, w) can be computed likewise when v ∈ S, as

described in (vi). If both v and w are single-emission states, we may use either (v) or (vi) for updating

the outside variable β(i, j, v, w). Finally, let us consider the case when v = Pn and w = Cm. Since there

(a)

(b)

v

(c)

i j j+1

w u

1 L

v

i-1 i j

u w

1 L

v

j j+1

w u2

Li-1 i1

u1

Figure 12: Illustration of the iteration step of the outside algorithm. (a) Case (v). (b) Case (vi). (c) Case
(viii).
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can be no crossing interactions, si = Pn and sj = Cm have to interact with each other, as illustrated in

Fig. 12 (c). The dotted line indicates the pairwise interaction between xi and xj . For this reason, n has

to be the same as m, and β(i, j, v, w) is set to zero if n 6= m. For n = m, we can compute β(i, j, v, w) by

extending β(i− 1, j + 1, u1, u2) as shown in (viii) of the iteration step.

Once the iteration step is complete, the termination step of the outside algorithm also yields the

probability P (x|Θ) like the scoring algorithm in Sec. 4.1. The computational complexity of the outside

algorithm is usually not an issue, since it is mainly used for training the model offline.

5 Re-estimation of Model Parameters

In order to apply context-sensitive HMMs to real-world problems, it is crucial to adjust the model pa-

rameters in an optimal way. Therefore, it is important to find a method for optimizing the set of model

parameters Θ, such that the probability P (x|Θ) of the given observation sequence x is maximized. The

process of finding these optimal parameters is typically called “training”. Although it is infeasible to

find an analytical solution for the optimal parameters, we can use the EM (expectation-maximization)

approach for finding parameters that achieve a local maximum of P (x|Θ). In traditional HMMs, Baum-

Welch algorithm [16] has been widely used for iterative update of the parameters. Similarly, there exists

an EM algorithm, called the inside-outside algorithm [23], which can be used for optimizing the model

parameters of a SCFG. Both algorithms compute an estimate Θ̂ of the model parameters based on the

given observation sequence and the current set of parameters Θ. The current set of model parameters Θ

is then updated by this estimate Θ̂, and this re-estimation procedure is repeated until a certain stopping

criterion is satisfied.

A similar approach can also be used for iterative re-estimation of the model parameters in a context-

sensitive HMM. In order to describe the re-estimation algorithm, let us first define the following variables.

τi(v, w) = The probability that si = v and si+1 = w given the model Θ and the

observed symbol string x

σi(v) = The probability that si = v given Θ and x

δv(i, j) = The probability that si = v and sj = v̄ have an interaction with each other

Firstly, τi(v, w) can be computed as follows

τi(v, w) =
β(i, i + 1, v, w)t(v, w)

P (x|Θ)
. (20)

The probability σi(v) can be obtained simply by adding τi(v, w) over all w

σi(v) =
∑
w

τi(v, w). (21)

Finally, the probability δv(i, j) can be written as

δv(i, j) =

∑
u1,u2

α(i, j, v, v̄)β(i− 1, j + 1, u1, u2)t(u1, v)t(v̄, u2)
P (x|Θ)

. (22)
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Based on these probabilities, we can compute the expected number of occurrences of a state v in the path

as well as the number of transitions from a state v to another state w. For example, if we add τi(v, w) over

all locations i, we get

L∑
i=0

τi(v, w) = Expected number of transitions from v to w. (23)

Similarly, if we add σi(v) over all i, we obtain the following

L∑
i=0

σi(v) = Expected number of transitions from v. (24)

Now, we can re-estimate the model parameters of the csHMM using the following method. To begin

with, let us first compute an estimate of the transition probability from v to w, where v ∈ P or v ∈ S. In

this case, the estimate is given by

t̂(v, w) =
Expected number of transitions from v to w

Expected number of transitions from v

=
∑L

i=0 τi(v, w)∑L
i=0 σi(v)

. (25)

For v = Cn, the set of states to which v can make a transition differs depending on whether the corre-

sponding stack is empty or not. If w ∈ En, i.e. if w is a state to which v = Cn can make a transition when

the stack is empty,

t̂(v, w) =
Expected number of transitions from v = Cn to w ∈ En

Expected number of transitions from v = Cn to any state in En

=
∑L

i=0 τi(v, w)∑L
i=0

∑
u∈En

τi(v, u)
. (26)

If w ∈ Fn, then we can obtain the estimate by

t̂(v, w) =
Expected number of transitions from v = Cn to w ∈ Fn

Expected number of transitions from v = Cn to any state in Fn

=
∑L

i=0 τi(v, w)∑L
i=0

∑
u∈Fn

τi(v, u)
. (27)

Now, let us estimate the emission probability e(x|v) and e(x|v, xp). For v ∈ P or v ∈ S, the emission

probability does not depend on the context. Therefore, we can compute the estimate ê(x|v) of the emission

probability as follows

ê(x|v) =
Expected number of times that the symbol x was emitted at state v

Expected number of occurrences of state v

=

∑L
i=1|xi=x σi(v)∑L

i=1 σi(v)
(28)

In contrast, if v is a context-sensitive state, the emission probability is dependent on the symbol xp that was

emitted at the corresponding pairwise-emission state v̄. Bearing this in mind, we can estimate ê(x|v, xp)
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as follows.

ê(x|v, xp) =
Expected number of emissions of x at state v ∈ C given the context xp

Expected number of emissions at state v ∈ C given the context xp

=

∑L
j=2|xj=x

∑j−1
i=1|xi=xp

δv(i, j)∑L
j=2

∑j−1
i=1|xi=xp

δv(i, j)
(29)

Although we derived these update formulae based on a single observation sequence x, they can be easily

extended for multiple training sequences. When we have more than one observation sequence for training,

we simply add all the expected counts over all sequences, and use these numbers for estimating the model

parameters.

Now that we have the estimates t̂(v, w), ê(x|v) and ê(x|v, xc), we can update the model parameters by

these estimates

t(v, w) ←− t̂(v, w)

e(x|v) ←− ê(x|v)

e(x|v, xp) ←− ê(x|v, xp).

We repeat this re-estimation procedure until a certain stopping criterion is satisfied. As mentioned earlier,

the training of the model is performed offline, and therefore the computational cost of the re-estimation

algorithm is usually not a critical issue.

6 Simulation Results

In order to test the proposed algorithms, let us consider the example in Fig. 13. This csHMM generates

sequences with long-range correlations between distant symbols. Such pairwise dependencies are commonly

found in the so-called “iron response elements” in RNA sequences [24]. The model in Fig. 13 has three

single-emission states S1, S2 and S3, and two pairs of pairwise-emission states and context-sensitive states.

Each pair (P1, C2) and (P2, C2) is associated with a separate stack. The transition probabilities are shown

in Fig. 13 along the edges. Each state emits one of the four symbols A = {A,C, G,U}, where the emission

probabilities are as shown in Table 2. Every row in Table 2 contains the emission probabilities that

each output symbol will be emitted at the given state. For example, the first row in Table 2 shows the

probabilities that the symbols A, C, G, and U will be emitted at P1. Therefore, each row adds up to unity.

The emission probabilities at Cn are dependent on the symbol x that was emitted at the corresponding

P1 P2Start EndS1 S2 C2 C1

S3

0.35

0.65

0.15 0.40 0.20
if stack 2 is
not empty

if stack 1 is
not empty

if stack 1
is empty

0.3
(stack 2 empty)

0.7

(stack 2 empty)

0.10

0.90

0.85 0.60 0.80

Figure 13: An example of a context-sensitive HMM.
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A C G U

P1 0.55 0.05 0.05 0.35
S1 0.15 0.35 0.35 0.15
P2 0.40 0.05 0.05 0.50
S2 0.05 0.60 0.30 0.05
S3 0.05 0.10 0.75 0.10

Table 2: Emission probabilities e(x|v).

state Pn. In this example, we set the emission probabilities of C1 and C2 such that they always emit the

“complementary” symbol of x (A↔ U and C ↔ G are complementary to each other).

Now, let us assume that the observed symbol string is x = AUCUACUAAU. What is the optimal state

sequence s∗ = s1s2 . . . s10 that maximizes the probability of observing x based on the specified model?

Using the alignment algorithm elaborated in Sec. 3, we obtained

s∗ = P1P1S1P2P2S2C2C2C1C1, (30)

where the log-probability of s∗ was log2 P (x, s∗|Θ) = −12.2165. In order to check the validity of this result,

we performed an exhaustive search over all possible paths. Since the length of the sequence is L = 10,

and as there are M − 2 = 7 emitting states, we have (M − 2)L = 710 = 282, 475, 249 possibilities. By

comparing the log-probabilities of all paths, we obtained the same optimal path as (30) with the same log-

probability, which shows that the optimal alignment algorithm works as expected. Similarly, we computed

the probability of the sequence x, given the model in Fig. 13. Using the scoring algorithm in Sec. 4, we

obtained

P (x|Θ) = 2.1146× 10−4. (31)

Again, we computed the probability using the brute-force approach by considering all possible paths and

adding the probability of each path. As a result, we obtained

P (x|Θ) =
∑
s

P (x, s|Θ) = 2.1146× 10−4, (32)

which is the same as (31). As we can see from these results, the proposed scoring and alignment algorithms

are capable of finding the same solutions as the brute-force methods in a much more efficient manner.

Now, let us consider the training of the csHMM. In order to test the parameter re-estimation algorithm,

we first generated 200 symbol sequences based on the model in Fig. 13. Then, we randomly initialized the

transition and emission probabilities of the model, and ran the algorithm in Sec. 5 to optimize the model

parameters. Fig. 14 shows the arithmetic mean and the geometric mean of the sequence probabilities after

each iteration. As we can see, the mean values are nearly zero in the beginning, since the parameters have

been randomly initialized. The model parameters quickly converged to the final values after only a few

iterations, and the converged values were very close to the original values. Table 3 shows the estimated

emission probabilities after 10 iterations. By comparing it with Table 2, we can see that the estimated

values are close to the original ones.
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Figure 14: The arithmetic mean (top) and the geometric mean (bottom) after each iteration.

A C G U

P1 0.5503 0.0617 0.0348 0.3533
S1 0.1258 0.4094 0.3481 0.1167
P2 0.4067 0.0628 0.0400 0.4905
S2 0.0477 0.5543 0.3528 0.0452
S3 0.0870 0.1364 0.7073 0.0693

Table 3: Estimated emission probabilities e(x|v) after 10 iterations.

7 Discussion

As we have seen, context-sensitive HMMs can be effectively used for modeling pairwise interactions between

distant symbols in a symbol string. In this section, we consider possible extensions of the basic model and

discuss several interesting issues regarding the csHMM.

7.1 Emission of multiple symbols

In this paper, we assumed that every state in the csHMM emits only one symbol at a time. Based on

this assumption, we considered only sequences with pairwise dependencies between distant symbols that

are arranged in a nested manner. However, we can easily extend the basic model such that it can also

describe non-pairwise dependencies, by allowing the states to emit two or more symbols at a time. For

example, we may modify the model in Fig. 4 such that the context-sensitive state C1 emits two symbols

at a time. When we enter C1, the symbol x that is on the top of the stack is popped out, and the emission

probabilities of C1 are adjusted so that it emits xx. In this way, the modified model will generate sequences

of the form x1x2 . . . xNxNxN . . . x2x2x1x1. An example of such a symbol sequence is shown in Fig. 15. As

shown in this figure, the correlations still occur in a nested manner, but they are not limited to pairwise

abcccbbaa

Figure 15: An example sequence that can be generated by the modified model of Fig. 4.
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correlations any more. Such modifications can be easily incorporated into the algorithms described in the

previous sections. For example, we may change the second term in the update formula (vii) in Sec. 4.1 to∑
u1

∑
u2

[
e(xi . . . xi+δp

n−1|v)t(v, u1)α(i + δp
n, j − δc

n, u1, u2)

×t(u2, w)e(xj−δc
n+1 . . . xj |w, xi . . . xi+δp

n−1)
]
, (33)

when the csHMM is modified such that the pairwise-emission state Pn emits δp
n symbols at a time and the

corresponding context-sensitive state Cn emits δc
n symbols at a time.

7.2 Modeling crossing correlations

Although we have mainly focused on context-sensitive HMMs that generate sequences with nested cor-

relations, the descriptive power of the proposed model is not restricted to such a correlation structure.

In fact, csHMM can be used to represent sequences with various correlations between symbols, including

crossing dependencies. Fig. 16 shows an example of such a csHMM. Note that the csHMM in Fig. 16 still

uses stacks, but the Pn and Cn states are arranged such that the model gives rise to crossing interactions

between symbols. Furthermore, we may also replace the stack by a queue to represent other types of

interactions. For example, we can describe the copy language by using a csHMM with a queue. The copy

language includes all sequences that consist of the concatenation of two identical sequences. The model il-

lustrated in Fig. 17 can effectively represent such a language. When the given csHMM generates sequences

with crossing interactions, the algorithms in Sec. 3, Sec. 4, and Sec. 5 cannot be directly used. However,

it is possible to extend the proposed algorithms such that they can be used for csHMMs with crossing

interactions as those shown in Fig. 16 and Fig. 17. For example, for scoring such csHMMs, we may define

the variable α(i, j, k, `, u, v, w, x) as the probability of the sub-sequence xi . . . xjxk . . . x` (i ≤ j < k ≤ `),

where si = u, sj = v, sk = w, s` = x and all Pn states are paired with the corresponding Cn states inside the

sub-path si . . . sjsk . . . s`. We can compute α(. . .) in a recursive manner by considering crossing correlations

between si and sk, sj and s`, and so forth. This is illustrated in Fig. 18. In this case, the computational

complexity of the algorithm will be considerably higher than O(L3M3).

P1 C1

Stack 1

Start End

push pop

P2 C2

Stack 2

X
4

X
5

X
6

push pop

X
1

X
2

X
3

abcuvwcbawvu

(a)

(b)

Figure 16: (a) A csHMM that results in crossing interactions. (b) An example of a generated sequence.
The lines indicate the correlations between symbols.
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P1 C1

Queue 1

Start End

write read
X1X2X3

abcdeabcde(b)

(a)

Figure 17: (a) A csHMM that represents a copy language. (b) An example of a generated sequence.

7.3 Comparison with other variants of HMM

As mentioned earlier, there exist many interesting variants of the traditional HMM, which extend the

basic model in various ways [7]-[13]. For example, the hidden semi-Markov model (HSMM) allows us to

associate an explicit state occupancy distribution with each state [7]-[11], instead of using the implicit

geometric state occupancy distribution in the basic HMM. However, the hidden states in the HSMM are

not context-sensitive, and the emission and transition probabilities of the future states do not explicitly

depend on the symbols that have been emitted previously. Therefore, these models cannot explicitly model

pairwise correlations between distant symbols as the csHMM does.

There exists another interesting generalization of the HMM called the pairwise Markov chain (PMC) [12].

The PMC assumes that the pair of the random variables (xi, si) is a Markov chain. This model is math-

ematically more general than the HMM, which is a special case of the PMC, where the hidden state si

satisfies the Markov property. Since the pair (xi, si) is a Markov chain, the probabilities associated with

xi, si, and (xi, si) do not depend on the previous emissions, and the PMC cannot be used for describing

complex correlations such as the ones observed in palindromes. This is also the case with the triplet Markov

chain (TMC) [13], which is a further generalization of the PMC, and there exists a fundamental difference

between the csHMM and the PMC/TMC.

7.4 Comparison with other stochastic grammars

As HMMs are equivalent to stochastic regular grammars (SRG), the csHMM can be viewed as an extension

of the SRG with specific context-sensitive production rules. Therefore, the SRG is a proper subset of the

proposed csHMM. The context-sensitive property of the csHMM enables the model to describe explicit

dependencies between distant symbols, which are beyond the descriptive power of SRGs. As a result, the

csHMM is capable of modeling sequences with nested correlations, which are characteristic of languages

that are described by SCFGs. This implies that the csHMM can be used as a good alternative to SCFGs,

u

j k

w x

i l

v

Figure 18: An illustration of the basic concept of the algorithm that can be used when there exist crossing
interactions. The dotted lines show examples of correlations that can be taken into consideration based on
this setting.
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SRG SCFG

SCSG

csHMM

Figure 19: The csHMM in the Chomsky hierarchy.

in many practical situations. Moreover, the csHMM is also capable of modeling crossing correlations as

illustrated in the examples shown in Fig. 16 and Fig. 17. This cannot be done using a SCFG, and we have

to resort to higher order grammars such as the stochastic context-sensitive grammars (SCSG). However,

there exist also languages that can be described by a context-free grammar but not by a csHMM. One

such example can be found in the appendix. This shows that even though there is a considerable overlap

between csHMMs and SCFGs, neither of them fully includes the other. Finally, the csHMM can be viewed

as a stochastic formal grammar that uses only non-contracting production rules.4 It is known that for any

non-contracting grammar there exists an equivalent context-sensitive grammar [22]. This implies that the

csHMM is a subset of the stochastic context-sensitive grammars (SCSG). The full relationship between the

csHMM and other stochastic grammars is illustrated in the Venn diagram shown in Fig. 19.

The capability of modeling various correlations (including nested and/or crossing interactions) based

on a single framework is a significant advantage of csHMMs over SRGs and SCFGs. Another advantage

of the proposed model is that it can explicitly describe the dependencies between distant symbols. This

allows us to model the symbol sequences of our interest in a simple and a direct way, which can be an

advantage (although arguable) compared to the SCFGs, unless a tree-structured design is preferred for some

reason. When modeling sequences with crossing interactions, this capability stands out more prominently.

Although the SCSGs can represent sequences with crossing interactions, they cannot directly generate the

crossing interactions in the symbol sequence. For example, when modeling the copy language, the crossing

dependencies between symbol pairs cannot be directly generated [5]. Instead, the grammar generates the

two related non-terminals in a non-crossing manner, and applies the context-sensitive re-ordering rules later

on, in order to obtain the final sequence that has crossing correlations. For this reason, context-sensitive

grammars can be quite complex even for simple languages.

8 Conclusion

In this paper, we have introduced the idea of context-sensitive HMMs. They can be viewed as an extension

of the traditional HMM, where some of the states are equipped with auxiliary memory. Symbols that

are emitted at certain states are stored in this memory, and the stored data serves as the context of the

system, which affects the emission probabilities and the transition probabilities of the model. In this way,

we can represent long-range interactions between distant symbols, which cannot be done using traditional

HMMs. The csHMM is a very efficient tool for modeling sequences with complex dependencies, and it
4This means that none of the production rules decrease the length of the symbol string [22].
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can be used as a good alternative to stochastic grammars such as the SCFG and the SCSG. We also

proposed efficient polynomial-time algorithms for finding the optimal state sequence and for computing

the probability of an observed symbol string. These algorithms can be used for solving the alignment

problem and the scoring problem of context-sensitive HMMs with nested interactions. Furthermore, a

parameter re-estimation algorithm has been introduced, which can be used for training a csHMM based

on a number of training sequences. The proposed model has an interesting application in Bioinformatics,

especially in RNA sequence analysis [21].

9 Appendix

In the following, we give an example of a language that can be described by a context-free grammar but not

by a csHMM. Let us consider a context-free grammar that has two non-terminal symbols S, T and three

terminal symbols a, b, c. We begin with the start non-terminal S and apply the the following production

rules

S −→ aTSa | TaSa | TSaa | aTa | Taa

T −→ bT | bc

The grammar shown above can generate any sequence x = x1 . . . xL−NxL−N+1 . . . xL for any given positive

number N , where xL−N+1 . . . xL = a . . . a and x1 . . . xL−N contains N number of ‘a’s and the same number

of subsequences in the form of ‘b . . . bc’. For example, we can generate the following sequences using this

grammar

(N = 3) a bbbc a bc a bbc︸ ︷︷ ︸
x1...xL−N

aaa︸︷︷︸
xL−N+1...xL

(34)

bbc bc a a a bbbbc︸ ︷︷ ︸
x1...xL−N

aaa︸︷︷︸
xL−N+1...xL

(35)

(N = 4) bc a bbbbc a bbc a bc a︸ ︷︷ ︸
x1...xL−N

aaaa︸ ︷︷ ︸
xL−N+1...xL

(36)

bbc bc bbbc bbc a a a a︸ ︷︷ ︸
x1...xL−N

aaaa︸ ︷︷ ︸
xL−N+1...xL

(37)

It is not possible to construct a csHMM that generates only sequences in the above form. This can be seen

from the following. As shown in the above examples, the number of ‘a’s in the tail xL−N+1 . . . xL is always

identical to the number of ‘a’s and the number of subsequences ‘b . . . bc’ in the head part x1 . . . xL−N . As

the transition probabilities at single-emission states Sn and pairwise-emission states Pn do not depend

on past emissions, the only way to ensure the generation of specific number of ‘a’s in the tail is to use

context-sensitive states Cn, which have variable transition probabilities that depend on the context. As

the last N symbols are emitted at context-sensitive states, identical number of symbols in x1 . . . xL−N have

to be emitted at the corresponding pairwise-emission states. Since the number of ‘a’s and the number of

‘b . . . bc’ in the head part are both N , we may consider the following two cases. Firstly, we may consider

using the corresponding pairwise-emission states to generate the ‘a’s in the head part. As the emitted

symbols at these states are used as the context for generating identical number symbols in the tail, the
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Figure 20: Constructions which guarantee that the number of ‘a’s and the number of ‘b . . . bc’ in x1 . . . xL−N

are identical.

subsequences ‘b . . . bc’ cannot make use of this context. Therefore, the only way to guarantee that the

number of ‘b . . . bc’ are also N is to construct the csHMM such that the states that generate ‘b . . . bc’ always

follow (or precede) the pairwise-emission states that generate ‘a’s. This is illustrated in Fig. 20. Although

this construction guarantees that the number of ‘a’s and the number of ‘b . . . bc’ in x1 . . . xL−N are both

N , it cannot give rise to all possible orders of ‘a’s and ‘b . . . bc’s. For example, such a csHMM cannot

generate sequences in (35) and (37). Similar reasoning also holds when the pairwise-emission states, which

correspond to the context-sensitive states used for generating the tail part, are used to generate (part of)

the subsequence ‘b . . . bc’. This leads to the conclusion that a construction which guarantees the emission

of N ‘a’s and ‘b . . . bc’ cannot generate sequences such as (35) and (37). Therefore, the given context-free

language cannot be represented by a csHMM.
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