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ABSTRACT

The problem of estimating a probability density function from measurements has been widely stud-

ied by many researchers. Even though much work has been done in the area of PDF estimation,

most of it was focused on the continuous case. In this paper, we propose a new model-based

approach for modeling and estimating discrete probability density functions, or probability mass

functions. This approach is based on multirate signal processing theory, and it has several advan-

tages over the conventional histogram method. We illustrate the PDF estimation procedure and

analyze the statistical properties of the PDF estimates. Based on this model, a novel scheme is

introduced that can be used for estimating the PDF in the presence of noise. Furthermore, the

proposed ideas are extended to the more general case of estimating multivariate probability density

functions. Finally, we also consider practical issues such as optimizing the coefficients of a digital

filter which is an integral part of the model. This allows us to apply the proposed model to solve

real world problems. Simulation results are given where appropriate, in order to demonstrate the

ideas. 1

1Work supported in part by the ONR grant N00014-99-1-1002, USA.
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1 Introduction

The problem of estimating a probability density function has been widely studied by many re-

searchers in the mathematics as well as signal processing communities for many decades [1], [2], [3],

[4], [5], [6], [10], [11], [14], [15], [16], [20]. The goal is to obtain a good estimate of a PDF f(v) of a

random variable v from the observations. The most common way to estimate density functions is

the histogram method, and many other methods have been suggested, each with its own advantages

and disadvantages. Even though histograms may give reasonable estimates of the true PDF when

there are enough observations, it is discontinuous in nature, making it less preferable for estimating

continuous random variables. It has been shown that a model-based approach has several advan-

tages compared to the histogram method, especially when the number of observations is limited

[3], [4]. For example, the kernel based method assumes that the PDF f(v) can be represented as

f(v) =
∑
k

ckφ(v − sk, σk) (1)

where φ(v) is called the kernel function. It disperses the mass ck around the center point sk, where

σk decides the extent to which it will disperse the mass. The kernel function φ(v) can be any

appropriate positive function, such as a Gaussian [5], a spline [6], etc. The preceding model tries

to represent the unknown PDF with a linear combination of shifted copies of the fixed function

φ(v). With the shifts sk and the dispersion factors σk typically fixed2, the weighting factors ck are

adjusted based on the measurements of the random variable v, so that the resulting PDF estimate

f̂(v) approximates the original PDF f(v) satisfactorily. One advantage of this method is the fact

that the resulting PDF estimate f̂(v) retains most of the properties of the kernel function. For

example, if we choose a φ(v) with certain smoothness, the estimate f̂(v) will also enjoy the same

property. Let us consider the histogram in Fig. 1(a). This can be considered to be a special case

of (1) where φ(v) is chosen to be a rectangular pulse, σk are fixed so that the width of the pulse

is ∆, and the shifts are uniform satisfying sk = k∆. In this case, the mass ck will be taken to

be proportional to the number of observations that fall in the domain of the kth pulse φ(v − k∆).

Generally, φ(v) will be chosen such that it is smooth so that we can obtain a smooth PDF estimate.

Figure 1(b) shows an example of such a f(v) with uniform shifts and fixed σk. Further discussions

on model-based methods can be found in many references, e.g. [3], [4], [5], [6].

Even though much work has been done in the area of PDF estimation, most of it was focused on

the continuous case. In this paper, we propose a PDF model for discrete random variables, which

are restricted to have uniformly spaced values (assumed to be integers without loss of generality).

Thus if we denote the PDF as x(n), it will be a function of an integer argument n. The proposed
2The shifts sk and the dispersion factors ck may also be adjusted based on the measurements. For example,

reference [7] addresses this in the context of the estimation of Gaussian mixture models.
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Figure 1: (a) Histogram as a special case of kernel based representation when φ(v) is rectangular.
(b) The PDF representation as a linear combination of shifted versions of the kernel φ(v).

model is based on multirate signal processing concepts and it will be shown that it has several

advantages over the traditional histogram based method.

1.1 Outline

In section 2 we introduce the basic multirate filter model for modeling a discrete probability density

function. Analogy to the kernel method and the relation to the wavelet method will be pointed out.

We illustrate how we can get a PDF estimate based on the observations. It will be seen that the

concept of biorthogonal partners [8] plays an important role in the estimation procedure. In section

3 we illustrate the estimation procedure in more detail, considering practical issues such as how to

obtain a positive PDF estimate. Simulation results will be given that clearly show the advantage

of the proposed model. In section 4 we propose an efficient and stable scheme for estimating a

PDF in the presence of noise. The statistical properties of the estimates such as bias and variance

are analyzed in section 5, and compared to the bias and variance of the histogram estimate. The

model-based approach can also be used for modeling and estimating a joint PDF of several random

variables, which will be illustrated in section 6. Finally, in section 7 we consider optimizing the

coefficients of a digital filter that is an integral part of the model, which opens up the way for this

model to be used in practical applications.
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1.2 Notations

All notations are as in [9]. Thus ↓ M and ↑ M represent the M -fold decimator and expander

respectively. Therefore [X(z)]↓M denotes the z-transform of the decimated version x(Mn), and

similarly [X(z)]↑M = X(zM ) denotes the z-transform of the expanded version.

2 Multirate Filter Model for Discrete PDFs

2.1 Basic Model

Let us consider a discrete probability density function x(n) of an integer random variable n. We

assume that this x(n) can be represented as the output of an interpolation filter f(n) preceded by

an M -fold expander as shown in Fig. 2, where F (z) is the z-transform of f(n).

M F(z)c(k) x(n)
expander digital filter

Figure 2: The basic PDF model.

The input signal c(k) is the free parameter that is to be adjusted based on the measurements, while

M and f(n) are fixed. If we let the subspace V0 = span of {f(n − Mk)} where k is any integer,

then x(n) ∈ V0, and can be written as

x(n) =
∑
k

c(k)f(n−Mk) (2)

which is a linear combination of f(n), f(n ± M), f(n ± 2M), and so on. Notice the analogy to

the continuous case in (1). If both the driving signal c(k) and the impulse response f(n) of the

interpolation filter are in `2, the resulting PDF x(n) also belongs to `2, hence V0 is a subset of the

`2 space3. Since this can be viewed as one channel of a M -channel synthesis filter bank, V0 is in

fact a proper subspace of `2. If we choose f(n) to be a lowpass filter, the resulting V0 will be a low

frequency subspace.

We can add one or more channels to the model, thereby adding more fine scale components to

the probability density function. Figure 3 shows one possible example of such a multi-channel PDF

model. In this model F0(z) and F1(z) occupy different bands in the frequency domain. Suppose we

have a multi-channel model with M channels with an mk-fold expander in the k th channel, where
3Strictly speaking, F (ejω) should be bounded for this.
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 4 F1(z)c1(k)

x(n)

Figure 3: An example of a two channel PDF model.

mk satisfies
M−1∑
k=0

1/mk = 1. (3)

In this case, if the corresponding filters Fk(z) are from a perfect reconstruction filter bank, the

subspace V0 can be the whole `2 space. This, in principle, can be related to the density estimation

method based on wavelet thresholding, which was proposed by Donoho et. al [10]. Since x(n) can be

any function in `2, the model may look degenerate in this case. But the value of the wavelet based

method lies in the fact that nonlinear operations (such as thresholding) can be done in the subbands

to improve the quality of the estimate. In fact, it has been observed that this method suppresses

the estimation error without compromising the sharpness of the underlying density function [10].

2.2 Estimating The PDF

Let us consider again the single channel model in Fig. 2. For a PDF x(n) ∈ V0, how can we get

the best estimate based on the measurements? In order to answer this question, let us consider a

filter G(z) that satisfies

[G(z)F (z)]↓M = 1. (4)

This G(z) is called a biorthogonal partner of F (z) with respect to M [8]. One obvious example of

such a filter is G(z) = 1/F (z). In fact, any G(z) that can be expressed in the form

G(z) =
A(z)

([A(z)F (z)]↓M )↑M
(5)

for some A(z) is a biorthogonal partner of F (z), hence the partner is not unique. It is also possible

to have an FIR biorthogonal partner G(z) under mild conditions on F (z) [8]. A detailed study of

biorthogonal partners can be found in [8].

The importance of biorthogonal partners in estimating the probability density function arises

as follows. Let us consider x(n) in Fig. 2. Its z-transform X(z) can be written as

X(z) = C(zM )F (z). (6)

From this x(n), we can recover the underlying driving signal c(k) by using a biorthogonal partner

G(z) as in Fig. 4. To show this, observe that the output of Fig. 4 has the z-transform
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G(z) M

Figure 4: Reconstruction of the driving signal c(k).

[G(z)X(z)]↓M = [G(z)C(zM )F (z)]↓M

= C(z)[G(z)F (z)]↓M

= C(z) (From Eq. (4)) (7)

hence c(k) is recovered. Figure 4 shows that c(k) can be written as

c(k) =
∑
n

x(n)g(Mk − n). (8)

Notice that the signal x(n) is a probability density function of an integer random variable n.

Therefore the variable n in the equation above should be interpreted as a random variable that is

distributed according to x(n) (instead of as the traditional “time index”). From this point of view,

g(Mk − n) is also a random variable because n is random, and the right hand side of (8) can be

viewed as the expectation of the random variable g(Mk − n) with respect to n. Therefore (8) can

be rewritten as

c(k) = En[g(Mk − n)]. (9)

This kind of interpretation of a signal as the expectation of a random variable naturally appears

in almost any non-parametric density estimation scheme [4], [10], [11], [12], [13], the earliest being

perhaps the work of Čencov [11] in 1962. In fact, this plays an important role in the PDF estimation

method being proposed in this paper, since this allows us to relate the measurements to the PDF

estimate. Assume that we have N measurements of the random variable n, and denote them as

ni, 0 ≤ i ≤ N − 1. Given these measurements, the expectation in (9) can be approximated by its

sample mean as follows

ĉ(k) =
1
N

N−1∑
i=0

g(Mk − ni). (10)

If we define the signal h(n) as the relative occurrence of the integer value n in the measurements

{ni}, we can write ĉ(k) as

ĉ(k) =
∑
n

h(n)g(Mk − n). (11)

Since h(n) is nothing but the histogram obtained from the measurements {ni}, this means that we

can get an estimate of the driving signal c(k) by feeding the histogram h(n) to the decimation filter
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c(k)^

M F(z) x(n)
PDF estimate

h(n)
histogram partner of F(z)

G(z) M ^

model part

Figure 5: Estimation of the driving signal c(k) from the histogram h(n), and subsequent estimation
of the PDF x(n).

g(n) and decimating the output by M . This is shown in Fig. 5. Now that we have the estimate

ĉ(k), this can be used in the original model shown in Fig. 2 to obtain the estimate x̂(n) of the

original PDF. The entire picture is shown in Fig. 5. The following summarizes the procedure of

PDF estimation:

1. We make measurements {ni} of the random variable n.

2. We construct the histogram h(n) from the measurements. Notice that h(n) is a coarse repre-

sentation of the original PDF x(n), and it need not belong to the subspace V0.

3. The histogram obtained from above is passed through the system that is shown in Fig. 5 to

obtain the PDF estimate x̂(n). This PDF estimate belongs to V0 as the original PDF.

Note that if the input to the system in Fig. 5 is x(n) ∈ V0, since G(z) and F (z) are biorthogonal

partners, the output is also x(n). So, if we denote the input-output mapping of Fig. 5 by a linear

operator P, then Px(n) = x(n). Now consider an arbitrary input signal x′(n) ∈ `2 and let us denote

the corresponding output by y(n) = Px′(n). Since y(n) ∈ V0, we have P2x′(n) = P{Px′(n)} =

Py(n) = y(n) = Px′(n). This shows that P2 = P, which means that the operator P is a projection

operator. From this, we can see that the above estimation procedure is just a projection of the

histogram h(n) onto the subspace V0, where the original PDF x(n) belongs.

2.3 The Choice of G(z)

Let us assume that F (z) and M are fixed. Since the biorthogonal partner of a filter F (z) is not

unique, the quality of the estimate x̂(n) may vary depending on the choice of the partner G(z). So,

the natural question that may arise is how to choose G(z) in order to obtain the best PDF estimate

x̂(n), based on the limited number of measurements. To answer this question, let us consider the

following. Given h(n), suppose we wish to find the signal x̂(n) ∈ V0 that is closest to h(n) in least

square sense, i.e. we want to minimize

‖h(n)− x̂(n)‖2 4
=
∑
n

|h(n)− x̂(n)|2. (12)
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The resulting x̂(n) is in fact the orthogonal projection of h(n) onto V0. It can be shown [8] that if

the filter G(z) in Fig. 4 is chosen as

G(z) =
F̃ (z)

([F̃ (z)F (z)]↓M )↑M
(13)

where F̃ (z)
4
= F ∗(1/z∗), then x̂(n) is indeed the orthogonal projection of h(n) onto V0. Since this

G(z) is also a biorthogonal partner of F (z) [8], it is called the least squares biorthogonal partner

(LSBP). If we choose any other biorthogonal partner G(z), the projection P will be “oblique” rather

than orthogonal. The advantage of the orthogonal projection is that the projected signal x̂(n) is

guaranteed to be closer to the original PDF x(n) than the histogram h(n) is. In other words, we

always have

‖h(n)− x(n)‖ ≥ ‖x̂(n)− x(n)‖. (14)

In order to see this, note that since the x̂(n) is the orthogonal projection of h(n) onto V0, we can

write h(n) = x̂(n) + e(n) where e(n) ∈ Vc
0. Therefore, we have h(n) − x(n) = x̂(n) − x(n) + e(n).

As x̂(n)− x(n) ∈ V0 and e(n) ∈ Vc
0, it follows that

‖h(n)− x(n)‖2 = ‖x̂(n)− x(n)‖2 + ‖e(n)‖2

≥ ‖x̂(n)− x(n)‖2 (15)

hence proving (14). Now, suppose that we are going to choose the decimation filter G(z) to be the

LSBP of F (z) with respect to M as in (13). If we look at the denominator B(z) = ([F̃ (z)F (z)]↓M )↑M
of G(z), we can see that it satisfies

B(z) = B̃(z) = B∗(1/z∗). (16)

Therefore if B(z) has a zero at z0, then there exists another zero at 1/z∗0 . This can be a problem,

since it means that G(z) cannot have all the poles inside the unit circle, and therefore it cannot be

a causal stable filter. One way to get around this problem is to choose F (z) such that its magnitude

square is Nyquist(M), i.e.

[F̃ (z)F (z)]↓M = 1. (17)

In this case, the least squares partner becomes G(z) = F̃ (z), which can be written as g(n) =

f∗(−n) in the time-domain. We can observe that (17) is equivalent to imposing the orthonormality

constraint on the basis functions {f(n − kM)} that span the subspace V0. An interpolation filter

F (z) that satisfies (17) can be designed using one of many known techniques [9].

2.4 The Square-Root Model

However, the use of an F (z) that satisfies (17) suffers from one disadvantage, namely the fact that

the positivity of the outcome x(n) cannot be guaranteed. This is an important point when using
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the estimation process shown in Fig. 5, since the resulting estimate x̂(n) may not be positive. If

we design the filter F (z) as in (17), then f(n) will necessarily have negative coefficients unless it

has order < M . Since the projection x̂(n) consists of a linear combination of shifted copies of f(n),

it is highly probable that x̂(n) will have some negative coefficients as well.

A simple way to overcome this problem is to use the output of the model in Fig. 2 to model the

square-root of the PDF instead of the PDF itself. This is similar to the idea proposed by Good and

Gaskins many years ago for estimating continuous PDFs [14]. In this model, we assume that xs(n)

which is the square-root of the PDF can be represented as the output of the filter F (z) preceded

by an M -fold expander. Therefore we have

xs(n) =
∑
k

cs(k)f(n− kM) (18)

where the probability density function x(n) is

x(n) = {xs(n)}2. (19)

We can still use the model similar to Fig. 5 with slight modifications in the estimation procedure.

The square-root PDF model is elaborated in [15], and it has the advantage that the resulting PDF

estimate is guaranteed to be positive.

Despite this advantage, the square-root model has also several shortcomings. For example, in

order to get a satisfactory estimate from the measurements, we have to adjust the sign of the square-

root of the histogram, before it is used in the estimation procedure [15], [16]. The searching process

for the optimal signature sequence can be computationally very expensive. Another disadvantage

of this model is the fact that the estimation results are not easy to analyze analytically due to the

nonlinearity of the model. In the next section, we consider a method that is free from all these

problems.

3 The FIR Truncation of The LSBP

In this section, we consider a linear model for representing probability density functions, which

ensures that the resulting estimate is positive, and uses only stable and realizable filters in the

estimation procedure. Let us consider again the model in Fig. 2. In order to ensure that the PDF

estimate is non-negative, all the coefficients of the filter f(n) should be non-negative as well as the

driving signal c(k). Now take G(z) to be the least squares partner of F (z) as in (13). We know

from section 2.4 that unless F (z) has a filter order < M , G(z) has poles both inside and outside

the unit-circle, which means that G(z) cannot be a causal stable filter. However, it is possible to

approximate such a filter by an FIR filter by choosing the region of convergence properly, as long as

there are no poles on the unit circle [17]. In order to illustrate the idea, let us consider an all-pole
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Figure 6: Pole-zero plot of Q(z).

filter Q(z) defined as

Q(z) =
∏
i

1
(1− piz−1)

. (20)

Its pole-zero plot may be as in Fig. 6. We assume that there are no poles lying on the unit circle.

Let pin be the pole with the largest modulus among all poles inside the unit circle. Similarly, let

pout be the pole with the smallest modulus among all poles outside the unit circle. We choose the

region of convergence to be the annular region in the z-plane that satisfies |pin| < |z| < |pout|. Then

Q(z) can be expressed as follows using the partial fraction expansion

Q(z) =
∑
|pi|<1

ci

1− piz−1
+
∑
|pi|>1

ci

1− piz−1
. (21)

The first term in the right hand side of (21) corresponds to a right-sided sequence, whereas the

second term corresponds to a left-sided sequence. Using inverse z-transform, (21) will be

q(n) =
∑
|pi|<1

cip
n
i u(n)−

∑
|pi|>1

cip
n
i u(−n− 1) (22)

in the time domain. Now, we may truncate q(n) to get an FIR filter qL(n) as follows.

qL(n) =

{
q(n) if |n| ≤ L
0 otherwise.

(23)

This corresponds to multiplying q(n) with a rectangular window. Note that L should be large

enough such that most of the energy of q(n) is confined in |n| ≤ L. Unless there are poles very

close to the unit circle, it is possible to approximate q(n) with a reasonable length L. For example,

it is shown in [17] that the cubic B-spline filter can be well approximated by a truncated FIR filter

of length only five or seven.
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Returning to our original interest, let us consider again G(z), the least squares partner of

F (z). Let B(z) be the denominator of G(z). If we choose f(n) such that f(n) ≥ 0 and B(z) =

([F̃ (z)F (z)]↓M )↑M has zeros sufficiently away from the unit circle, it is possible to approximate

G(z) by an FIR filter GL(z), by truncating it using a window function. Using this FIR filter GL(z)

in place of G(z) in Fig. 5, we can use a similar estimation procedure as elaborated in section

2.2. However, one more remark remains to be made regarding the positivity of the PDF estimate.

Since the interpolation filter f(n) is non-negative, it is possible to make the output signal also

non-negative by taking a non-negative driving signal c(k). So, when modeling the original PDF

x(n) =
∑

k c(k)f(n−Mk), we can make it a valid PDF by choosing c(k) ≥ 0 and normalizing

x(n) so that it adds up to 1. But when feeding the histogram h(n) into the system shown in Fig.

5, there is no guarantee that the estimate ĉ(k) will be non-negative for ∀k. Correspondingly, the

orthogonal projection x̂(n) may not satisfy the non-negativity condition. In order to guarantee that

the PDF estimate is non-negative, we simply drop the negative values of x̂(n) to obtain a positive

estimate as follows.

x̂p(n) =

{
x̂(n) if x̂(n) ≥ 0
0 otherwise.

(24)

Note that this x̂p(n) may not necessarily belong to V0. However, this is not a problem since by

taking x̂p(n) instead of x̂(n), the PDF estimate gets even closer to the original PDF x(n). To see

this, notice that

‖x̂(n)− x(n)‖2 =
∑
n

|x̂(n)− x(n)|2

=
∑

x̂(n)≥0

|x̂(n)− x(n)|2 +
∑

x̂(n)<0

|x̂(n)− x(n)|2

≥
∑

x̂(n)≥0

|x̂(n)− x(n)|2 +
∑

x̂(n)<0

|x(n)|2

= ‖x̂p(n)− x(n)‖2.

Combining this result with the inequality in (14), we get the following inequality

‖h(n)− x(n)‖ ≥ ‖x̂p(n)− x(n)‖ (25)

which guarantees that the PDF estimate x̂p(n) is always closer to the true PDF x(n) than the

histogram is.

In order to demonstrate the ideas, let us consider the following example. We assume M = 2

and use F (z) = (1 + z)6/26. Notice that this filter leads to the 5th order spline function [18]. G(z)

is chosen to be the least squares partner of F (z), truncated by a rectangular window of length 39.

Since all the poles of G(z) are located far away from the unit circle, the energy - or the square of

the `2 norm - of the truncated filter ‖gL(n)‖2 was almost identical to ‖g(n)‖2 in this case4. By
4In order to preserve a “near-biorthogonality”, L has to be chosen such that ‖gL(n)‖2 is almost identical to

‖g(n)‖2.
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Figure 7: PDF estimation using FIR truncation of the LSBP. Top plot: the original PDF and the
histogram. Bottom plot: the original PDF and the model-based PDF estimate.

choosing an appropriate driving signal c(k) for the sake of generating an example, we obtained a

sample PDF x(n) of length 37. We made 500 measurements of the random variable n according to

x(n), and the histogram h(n) was obtained from the observations. Then the histogram was passed

through the system in Fig. 5 to get the orthogonal projection of the histogram. Finally, negative

values in the output of Fig. 5 were dropped, and the result was normalized to get the PDF estimate

x̂(n). Fig. 7 shows the simulation results. The histogram shown in Fig. 7(top) is quite different

from the original PDF, whereas the model-based estimate is considerably close to the PDF, as can

be seen in Fig. 7(bottom). The estimation error was

∑
n

|h(n)− x(n)|2 = 0.00151128 (26)

for the histogram, and ∑
n

|x̂(n)− x(n)|2 = 0.00017605 (27)

for the model-based estimate, which is only about 12% of the error of the histogram. This clearly

shows that the proposed approach is superior to the conventional histogram method.

4 Estimating The PDF in The Presence of Noise

Another advantage of the PDF model in Fig. 2 is the fact that it gives rise to a simple and efficient

way of removing noise present in the measurements as we shall show next. Suppose that the original
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samples are corrupted by additive noise. Our measurements {mi} can be expressed as

mi = ni + ei (i = 0, 1, ..., N − 1) (28)

where {ni} are the original samples and {ei} are i.i.d. noise that are independent of {ni}. Let the

probability density function of ni be x(n) and let e(n) be the PDF of the noise random variable ei.

Then the density y(n) of the measurement mi is

y(n) = (x ∗ e)(n). (29)

Since the PDF x(n) comes from the model in Fig. 2, y(n) can be represented as the output of the

model shown in Fig. 8. Therefore if we let D(z) = F (z)E(z), we can write Y (z) = C(zM )D(z).

M F(z)c(k)
noise

y(n)E(z)

x(n)

D(z)

Figure 8: The original PDF convolved with the noise PDF.

Now let us define S(z) as the least squares partner of the filter D(z), so that

S(z) =
D̃(z)

([D̃(z)D(z)]↓M )↑M
(30)

We can recover the driving signal c(k) by passing y(n) through S(z) and decimating it by M as

shown in Fig. 9. This can be proved in a similar manner as (7). Knowing the driving signal c(k),

if we pass it through the system in Fig. 2, we can get the original PDF x(n) back. As S(z) has

poles both inside and outside the unit circle (unless D(z) has order < M), it cannot be directly

used. But we can use the FIR truncation SL(z) instead, as in section 3. The whole estimation

procedure is illustrated in Fig. 10. The system in Fig. 10 takes h(n) as the input, which is a coarse

representation of the PDF y(n) of the noisy observations. It eliminates the effect of the noise and

y(n) c(k)S(z) M

partner of D(z)

Figure 9: Reconstruction of the driving signal from the PDF in the presence of noise.
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c(k)^

M F(z) x(n)
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h(n)
histogram partner of D(z)

S(z) M ^

model part

Figure 10: Estimation of the PDF in the presence of noise.

yields an estimate x̂(n) of the original PDF x(n) as expected. In order to ensure that x̂(n) is a valid

PDF, we should drop the negative coefficients and then normalize the PDF estimate as described

in section 3.

Experiment shows that this approach has a considerable advantage over the inverse filtering

method. Knowing the noise PDF e(n), we may use the inverse filter 1/E(z) to filter out the noise

as shown in Fig. 11. Generally, the noise PDF e(n) will be symmetric around n = 0, resulting in

a zero-mean random noise. Due to the symmetry, E(z) will have zeros both inside and outside the

unit circle. Therefore the corresponding inverse filter 1/E(z) will have poles both inside and outside

the unit circle resulting in an unstable filter. In such cases, we may again use the FIR truncation

method as in section 3. But experiment shows that this tends to amplify the estimation error that

is present in the histogram, which makes the PDF estimate very unreliable. The reason why this

did not happen when we were using the least squares partner S(z) in the previous discussion, was

because the whole system worked as an orthogonal projection operator, which tends to suppress

the error instead of amplifying it.

To demonstrate, consider the following example. We assume M = 2, and use the same filter

as in section 3. In addition to this, a sample noise PDF e(n) of length 5 is chosen5. From this,

we compute the filter D(z) = F (z)E(z), and let S(z) be the least squares partner of D(z). We

made 500 measurements ni ∼ x(n) and generated the same number of observations of the random

noise ei ∼ e(n). Adding these measurements respectively, we obtained 500 noisy observations

mi = ni + ei. The histogram was constructed from these observations, as can be seen in Fig.
5The noise PDF e(n) had the following coefficients : [e(0) · · · e(4)] = [0.0532 0.2339 0.3780 0.2660 0.0689].

x(n)
PDF estimate

h(n)
histogram inverse filter

1/E(z) ^

Figure 11: Traditional way to estimate the PDF in the presence of noise using the inverse filter
1/E(z).
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Figure 12: PDF estimation when noise is present. Top plot: the original PDF, the PDF with noise
and the histogram. Bottom plot: the original PDF, the PDF with noise and the model-based PDF
estimate.

12(top). The figure clearly shows that there is a huge difference between the original PDF and the

histogram due to the noise. In addition to this, there exists also a considerable estimation error

between the histogram and the PDF with noise, resulting in an error of

∑
n

|h(n)− y(n)|2 = 0.0068871 (31)

where y(n) = (x ∗ e)(n) is the PDF of the noisy samples. Now, consider the model-based PDF

estimate. The histogram is put into the model in Fig. 10, and the output is normalized after

removing the negative coefficients, to get the final estimate x̂(n). The result is shown in the

bottom plot of Fig. 12. It can be noticed that the noise is effectively removed, resulting in an

excellent estimate of the original PDF. The final estimation error between the estimate x̂(n) and

the original PDF x(n) was ∑
n

|x̂(n)− x(n)|2 = 0.0004767. (32)

Note that this error is much smaller than the initial estimation error between the histogram h(n) and

the PDF with noise y(n). Conventional inverse filtering of the histogram yielded a very oscillatory

output, a considerable portion of which was negative, and therefore we have not shown the result

here.
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5 Bias and Variance of The Estimates

Since the PDF estimates are based on random observations, the estimates themselves are random

as well. Therefore, it is important to understand their statistical properties such as the bias and

the variance. Let θ be the true value (or function) that is to be estimated, and θ̂N be an estimate

based on N observations. An estimate is unbiased if E{θ̂N} = θ [19]. It is desirable to have an

estimate that is unbiased and has a small variance at the same time. In the following sections, we

focus on the model in Fig. 2, analyze its bias and variance, and finally compare them with those

of the histogram method. It will be demonstrated that both methods yield unbiased estimates.

However the model-based method results in a smaller variance, giving us a more reliable estimate

than the histogram method.

5.1 Histogram Method

Let us first consider the histogram method. Assume that we have N observations of a random

variable n, where the underlying PDF is x(n). The probability that the i th observation will be

ni = n is

P{ni = n} = x(n) (33)

for all i = 0, 1, 2, ..., N −1. Therefore if we let t(n) be the number of observations in {ni} that have

the value n, the probability P{t(n) = k} is simply

P{t(n) = k} =

(
N
k

)
xk(n)

(
1− x(n)

)N−k
(34)

and therefore t(n) is a binomial random variable that follows B(N,x(n)). From this, we have

E [t(n)] = Nx(n) and Var[t(n)] = Nx(n)
(
1− x(n)

)
. Notice that the histogram can be represented

as h(n) = t(n)/N . Therefore the expectation of h(n) is

E [h(n)] =
1
N
E [t(n)] = x(n) (35)

which shows that the histogram estimate is unbiased. Also from h(n) = t(n)/N , we get the following

variance for h(n).

Var[h(n)] =
1

N2
Var[t(n)] =

1
N

x(n)
(
1− x(n)

)
. (36)

The variance of the histogram estimate, which is defined as
∑

n Var[h(n)] is therefore

E
[
‖h(n)− x(n)‖2

]
=
∑
n

Var[h(n)] =
1
N

(
1−

∑
n

x2(n)
)
. (37)

From (37) we can see that the variance of the estimate decreases as the number of observations N

increases, as expected.
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5.2 Model-Based Method

Let us consider the model in Fig. 5 again. We can write the output as

x̂(n) =
∑

l

∑
k

h(k)g(Ml − k)f(n−Ml). (38)

Therefore, the expectation E [x̂(n)] can be written as

E [x̂(n)] =
∑

l

∑
k

E [h(k)]g(Ml − k)f(n−Ml)

=
∑

l

∑
k

x(k)g(Ml − k)f(n−Ml). (39)

We can see that the last expression in (39) is the output of Fig. 5 when the input signal is x(n).

Since x(n) ∈ V0 and as passing an input signal through Fig. 5 is just a projection onto V0, the

right hand side of (39) reduces to x(n). This proves that the model-based method results in an

unbiased PDF estimate.

In order to compute the variance of x̂(n), let us first consider E [x̂2(n)]

E [x̂2(n)] =
∑
k1,k2

∑
l1,l2

E [h(k1)h(k2)]g(Ml1 − k1)g(Ml2 − k2)f(n−Ml1)f(n−Ml2). (40)

It can be shown that E [h(k1)h(k2)] is

E [h(k1)h(k2)] =

{
N−1

N x(k1)x(k2) if k1 6= k2
1
N x(k1)

(
1 + (N − 1)x(k1)

)
if k1 = k2.

(41)

Detailed derivation of (41) can be found in the appendix. From this, we get

E [x̂2(n)] =
1
N

∑
k

∑
l1,l2

x(k)g(Ml1 − k)g(Ml2 − k)f(n−Ml1)f(n−Ml2) +
N − 1

N
x2(n). (42)

Since E [x̂(n)] = x(n), we get the following variance for x̂(n)

Var[x̂(n)] = E [x̂2(n)]−
(
E [x̂(n)]

)2

=
1
N

∑
k

∑
l1,l2

x(k)g(Ml1 − k)g(Ml2 − k)f(n−Ml1)f(n−Ml2)−
1
N

x2(n). (43)

Using this, it can be shown that the variance of the PDF estimate is

E
[
‖x̂(n)− x(n)‖2

]
=

∑
n

Var[x̂(n)]

=
1
N

(∑
k

∑
l

x(k + Ml)g(−k)f(k)−
∑
n

x2(n)

)
. (44)

Now, let us compare the variance of the two estimates. It can be shown that the variance of the

model-based estimate is always smaller than that of the histogram. In fact, this is an immediate
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Figure 13: The variance of the histogram and the model-based estimate.

result of (15). If we subtract the variance of the model-based estimate from that of the histogram,

we get

E
[
‖h(n)− x(n)‖2

]
− E

[
‖x̂(n)− x(n)‖2

]
= E

[
‖h(n)− x(n)‖2 − ‖x̂(n)− x(n)‖2

]
= E

[
‖e(n)‖2

]
≥ 0. (45)

This shows that the model-based PDF estimate in Fig. 5 has a smaller variance than the histogram-

based estimate. The reduced variance is due to the fact that the PDF estimate x̂(n) is restricted

to V0, which is a proper subspace of `2.

Consider again the example given in section 3. We now compute the bias and the variance of

the histogram and the model-based estimate. We made 500 measurements of the random variable

n and constructed the histogram and the model-based estimate. This experiment was repeated

100 times. The mean value of the 100 estimates was almost identical to the original PDF x(n) for

both methods, which verifies that both the histogram estimate and the model-based estimate are

unbiased. Figure 13 shows the variance Var[h(n)] and Var[x̂(n)] at each n. The figure shows that

the variance of the histogram is larger than that of the model-based PDF estimate, at nearly all

points. The variance, or equivalently the mean squared error (MSE), of the histogram estimate

was ∑
n

Var[h(n)] = 0.00191544 (46)

and the variance of the model-based estimate was∑
n

Var[x̂(n)] = 0.00091091. (47)

which is less than half of the variance of the histogram estimate. These values are indeed very close

to the theoritical values computed from (37) and (44). The variances predicted by equations (37)
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Figure 14: The multivariate PDF model.

and (44) are

E
[
‖h(n)− x(n)‖2

]
= 0.00191044, E

[
‖x̂(n)− x(n)‖2

]
= 0.00091044 (48)

which are very close to the values in (46) and (47) obtained from the simulation.

6 The Multivariate PDF Estimation

Up to this point, we have considered only probability density functions of a single random variable

n. However, it is not hard to extend the basic ideas in the univariate PDF estimation to the

multivariate case. Suppose we have K random variables (n0, ..., nK−1), where the joint PDF is

x(n0, ..., nK−1). We may model such a K-dimensional density function, using a K-dimensional

interpolation filter F (z0, ..., zK−1) and a K × K sampling matrix M. This is shown in Fig. 14.

Suppose we are going to use a separable filter

F (z0, ..., zK−1) = F0(z0)F1(z1) · · ·FK−1(zK−1) (49)

and a diagonal sampling matrix

M =


M0 0 · · · 0

0 M1
...

...
. . . 0

0 · · · 0 MK−1

 (50)

for modeling the PDF. In this case, the estimation procedure becomes very similar to that in section

2.2. First of all, we compute the least squares partner of Fi(z) as in (13) for all i = 0, . . . ,K − 1.

Therefore, we have

Gi(z) =
F̃i(z)

([F̃i(z)Fi(z)]↓Mi
)↑Mi

(i = 0, 1, . . . ,K − 1). (51)

As we have seen in section 3, we may approximate this least squares partner by a truncated FIR

filter, if necessary. Now, these filters can be used to construct the following filter

G(z0, ..., zK−1) = G0(z0)G1(z1) · · ·GK−1(zK−1). (52)
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Figure 15: Estimation of a multivariate PDF.

It can be seen that G(z) is a biorthogonal partner of F (z) with respect to the sampling matrix M,

where z = [z0 · · · zK−1]. This is shown in the following.

[G(z)F (z)]↓M = [G0(z0) · · ·GK−1(zK−1)F0(z0) · · ·FK−1(zK−1)]↓M

= [G0(z)F0(z)]↓M0 · · · [GK−1(z)FK−1(z)]↓MK−1

= 1 (53)

Note that we can reconstruct C(z), if we pass x(n) through G(z) and decimate it by the sampling

matrix M. To prove this, notice that when using the filter in (49) and the sampling matrix in (50),

the output X(z) of Fig. 14 can be written as

X(z) = C(zM0
0 . . . z

MK−1

K−1 )F (z). (54)

If we pass it through the filter G(z) and decimate by M, we get

[X(z)G(z)]↓M = [C(zM0
0 . . . z

MK−1

K−1 )F (z)G(z)]↓M

= C(z)[F (z)G(z)]↓M

= C(z).

Now the estimation procedure is as follows. Firstly, we construct the histogram based on the

observations. Next, we pass it through the K-dimensional filter G(z) and decimate the output by

M. This yields the estimate Ĉ(z) of the original driving signal C(z). Then we feed this estimate

to the PDF model in Fig. 14, to get the PDF estimate x̂(n0, ..., nK−1). The entire estimation

procedure can be found in Fig. 15. It has to be noted that, although the filter F (z0, ..., zK−1)

is separable and the matrix M is diagonal, the resulting PDF may not be a separable PDF. For

example, let us choose C(z0, z1), F (z0, z1) as follows

C(z0, z1) = 1 + z−1
0 z−2

1

F (z0, z1) = (1 + z−1
0 )(1 + z−1

1 )

and use the following sampling matrix

M =

[
2 0
0 3

]
. (55)
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Then the output X(z0, z1) will be

X(z0, z1) = (1 + z−2
0 z−6

1 )(1 + z−1
0 )(1 + z−1

1 ) (56)

which is clearly not separable, since it cannot be separated into X(z0, z1) = X0(z0)X1(z1).

In order to demonstrate the idea, consider the following example. We take F0(z) = F1(z) =

(1 + z−1)6/26, and define F (z0, z1) = F0(z0)F1(z1). The sampling matrix M is assumed to be the

following diagonal matrix

M =

[
2 0
0 2

]
. (57)

By feeding a proper driving signal c(k0, k1) into the model in Fig. 14, we obtained the bivariate

PDF x(n0, n1) in Fig. 16(top) as the output. Based on this joint PDF x(n0, n1), we made 5000

measurements of (n0, n1), and computed the PDF h(n0, n1) from these observations. The resulting

two-dimensional histogram is shown in Fig. 16(center). We can see that there are many peaks in

the histogram, which were not present in the original PDF, indicating that the estimation error

has degraded the estimate considerably. Now let us define G0(z) and G1(z) as the least squares

partners of F0(z) and F1(z) respectively, as in (51). The analysis filter in Fig. 15 is chosen to

be G(z0, z1) = G0(z0)G1(z1). The histogram h(n0, n1) is passed through the single channel filter

bank in Fig. 15, which results in the PDF estimate x̂(n0, n1). This is shown in the bottom plot

in Fig. 16. It clearly shows that the model-based approach yields a much better estimate of the

original PDF, by removing most of the peaks in the histogram to give us a smoother output. The

estimation error of each PDF estimate was

∑
n0

∑
n1

|h(n0, n1)− x(n0, n1)|2 = 0.00019012 (58)

and ∑
n0

∑
n1

|x̂(n0, n1)− x(n0, n1)|2 = 0.00003194. (59)

We can see that the proposed method results in a considerably smaller estimation error, which is

only 16.80% compared to that of the histogram method.

7 Optimization of F(z)

7.1 Optimizing F(z) for PDF Estimation

We have seen in the previous discussion, that the model-based approach has many advantages over

the traditional histogram method. Knowing that the original PDF x(n) belongs to V0, we could

reduce the estimation error dramatically. Moreover, the model-based approach yielded an unbiased

estimate with a smaller variance. However, in general we do not know in advance what the subspace

V0 will look like. Unless there is a way to choose the interpolation filter f(n) such that it includes

21



0
5

10
15

20
25

0
5

10
15

20
25

0

0.005

0.01

n
0

n
1

P
D

F

0
5

10
15

20
25

0
5

10
15

20
25

0

0.005

0.01

n
0

n
1

P
D

F

0
5

10
15

20
25

0
5

10
15

20
25

0

0.005

0.01

n
0

n
1

P
D

F

Figure 16: Multivariate PDF estimation. Top plot: the original PDF. Center plot: histogram
estimate. Bottom plot: model-based estimate.
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all the PDFs of interest, the estimation procedure elaborated in the previous sections may not

result in a satisfactory PDF estimate. Therefore the need for optimizing the filter coefficients of

the interpolation filter f(n) arises naturally.

Let W0 be a set of I PDFs {xi(n)|i = 0, 1, . . . , I − 1} belonging to a certain class (e.g., samples

from Laplacian PDFs, samples from Poisson PDFs, etc.). We would like our PDF subspace V0

to be such that the orthogonal projections x̂i(n) of xi(n) onto V0 are as close as possible to the

original PDFs xi(n) when averaged over all elements in the given set W0. That is, we would like

to minimize the sum of the `2 norms

∑
i

‖xi(n)− x̂i(n)‖2 (60)

by choosing V0, or equivalently by designing f(n). Since x̂i(n) ∈ V0 and xi(n) − x̂i(n) ∈ Vc
0, we

have

‖xi(n)‖2 = ‖x̂i(n)‖2 + ‖xi(n)− x̂i(n)‖2. (61)

Therefore, minimizing the sum of ‖xi(n) − x̂i(n)‖2 is equivalent to maximizing the sum of the

energies of the projection ‖x̂i(n)‖2. This is in fact an energy compaction problem, which is similar

to the problems addressed in [21], [22], [23].

In order to make this a well-posed optimization problem, let us consider the ith sample PDF

xi(n). Let x̂i(n) be the orthogonal projection of xi(n) onto V0 as before. This projection x̂i(n) can

be obtained by passing xi(n) through the model in Fig. 5 where G(z) is the least squares partner

of F (z). Suppose we let the error ξi be

ξi = ‖xi(n)− x̂i(n)‖2

=
∑
n

|xi(n)− x̂i(n)|2. (62)

Then small ξi implies that the sample PDF xi(n) can be represented by the model in Fig. 2

satisfactorily. Now, the optimization problem can be stated as follows. We want to find the filter

coefficients f(n) that minimize the following objective function

J =
I−1∑
i=0

αiξi (63)

where the error ξi is defined as in (62), and αi is a weighting factor that satisfies
∑

i αi = 1 and

αi ≥ 0.

When minimizing J , there are several constraints that have to be taken into account. We may

first limit the length of the filter to be ≤ R, so that f(n) is zero outside 0 ≤ n ≤ R− 1. Secondly,

we restrict the filter coefficients to be non-negative, i.e. f(n) ≥ 0,∀n. This is necessary in order

to make the PDF estimate non-negative. Thirdly, we impose the constraint on f(n) such that the
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Figure 17: Discrete Laplacian PDFs that are used for optimizing f(n) and testing the performance.

zeros of [F̃ (z)F (z)]↓M are not too close to the unit circle. If this condition is not satisfied, the

least squares partner G(z) will have poles that are close to the unit circle (or even on the unit

circle), in which case the FIR truncation approach is no more practical. We may also impose other

constraints such as f(0) 6= 0 and
∑

n f(n) = 1 in order to make the optimal solution unique.

7.2 Optimization Results for Commonly Used PDFs

In order to demonstrate the idea, we now optimize the coefficients of f(n) for commonly used

probability density functions such as the Laplacian and the Poisson PDF. We assume that a set of

density functions that belong to the same class - based on some criterion, which is not necessarily

known - are given. This set of density functions will serve as the training set for optimizing f(n).

Next, another PDF that belongs to the same group but was not included in the training set will

be chosen in order to test the performance of the model-based estimator.

Let us first consider a set of Laplacian PDFs. The continuous Laplacian density function is

defined as

p(x) =
1√
2σ

e−
√

2|x−µ|/σ. (64)

We may obtain a discrete PDF x(n) by sampling and truncating the above function, and then

normalizing it in order to make the coefficients add up to unity. We obtained several discrete PDFs

from continuous Laplacian density functions with different mean and variance. These are shown in

Fig. 17. Five density functions were used as the training set for optimizing f(n), and the remaining

one was used for evaluating the performance of the model-based PDF estimation.

Choice of M When computing the optimal f(n) based on this training set, we assumed

M = 2 and the length of f(n) was restricted to be ≤ 5 for simplicity. In general, a larger M results
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in increasing the minimum value of the weighted projection error J . However, if the PDFs of our

interest can be well represented by the model in Fig. 2 with the given M and the optimized f(n),

a larger M can result in a smaller estimation error. Therefore, there is a trade-off in choosing

the value of M , and it should be chosen according to the given training set. Once M is decided,

choosing the length of the filter f(n) to be around 2M + 1 usually yields a satisfactory estimation

result. After the optimization process, if the error (63) is too large compared to
∑I−1

i=0 αi‖xi(n)‖2,

we may have to decrease M as well as allow the filter f(n) to have a longer length.

In our simulations, we used a sequential quadratic programming (SQP) method [24] for opti-

mizing the filter coefficients. Once we obtained the optimal f(n), the corresponding least squares

partner g(n) was computed as in (13). Next, we took the test PDF in Fig. 17 to make 300 mea-

surements of the r.v. n and constructed the histogram based on these observations. Finally, this

histogram was passed through the system in Fig. 5 to get the PDF estimate x̂(n). The result is

shown in Fig. 18. This figure shows that the model-based approach results in an excellent PDF

estimate, whereas the histogram estimate is not very satisfactory. The estimation errors were∑
n

|h(n)− x(n)|2 = 0.00260485 and
∑
n

|x̂(n)− x(n)|2 = 0.00048105 (65)

where the error of the model-based estimate was only 18.47% of the error of the histogram based

estimate. There is another important point that has to be noted. Although the model-based

estimation procedure reduces the estimation error by a considerable amount, it does not compromise

the sharpness of the original PDF, as can be seen in Fig. 18. This is indeed another advantage of
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Figure 18: Top plot: the original Laplacian PDF and the histogram. Bottom plot: the original
PDF and the model-based estimate.
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Figure 19: Poisson PDFs used for optimizing f(n) and testing the performance.

Average Estimation Error
PDF Histogram Model-Based
Laplacian 0.00289717 0.00115754
Gaussian 0.00304934 0.00103529
Rayleigh 0.00298871 0.00119290
Poisson 0.00292003 0.00094862

Table 1: Estimation results using optimized f(n) for various class of PDFs.

the model-based approach, making it more attractive compared to the traditional histogram based

density estimation.

A similar experiment has been performed based on a set of Poisson PDFs. The training PDFs

and the test PDF are shown in Fig. 19. Figure 20 shows the histogram and the model-based

estimate. The estimation errors were

∑
n

|h(n)− x(n)|2 = 0.00170609 and
∑
n

|x̂(n)− x(n)|2 = 0.00024454 (66)

hence the estimation error of the model-based estimate was only 14.33% when compared to that

of the histogram estimate.

Table 1 summarizes the estimation results for several class of density functions. The filter

coefficients f(n) were optimized for each class of PDFs, and we estimated the test PDFs using

this f(n). The estimation errors have been averaged for 10 simulations. This result shows that

the optimization of f(n) yields satisfactory PDF estimates that are significantly better than the

histograms.
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Figure 20: Top plot: the original Poisson PDF and the histogram. Bottom plot: the original PDF
and the model-based estimate.

8 Concluding Remarks

Although many researchers in the mathematics as well as the signal processing communities have

been interested in estimating the probability density function of a random variable v, most of the

results were focused on the continuous case. In this paper, we proposed a new method for the

estimation of discrete probability density functions. The proposed method is based on multirate

signal processing theory, and it makes extensive use of the notion of biorthogonal partners. This

model-based approach has several advantages over the traditional histogram approach. It guaran-

tees a smaller estimation error and it provides an efficient denoising scheme when the observations

are corrupted by additive noise. Furthermore, the analysis of the model-based estimates shows that

they are unbiased and have a smaller variance than the histogram estimates. It was also shown

that the proposed model can be used for modeling and estimating multivariate probability density

functions. Finally, it was demonstrated that the interpolation filter f(n) could be optimized for a

class of density functions. Simulation results show that the use of an optimized filter can decrease

the estimation error dramatically. There are many interesting extensions of the proposed ideas,

which remain to be considered. For example, we may consider modeling and estimating multi-

variate probability density functions with a non-separable filter F (z) and a non-diagonal matrix

M. This will require the concept of multi-dimensional biorthogonal partners. Another interesting

problem is the estimation of a PDF when the noise is dependent on the original samples. These

are topics for future research.
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9 Appendix

In this appendix, we provide the detailed derivation of (41). Let us first compute E [t(k1)t(k2)]. If

k1 = k2, then

E [t(k1)t(k2)] = E [t2(k1)]

= Var[t(k1)] +
(
E [t(k1)]

)2

= Nx(k1)
(
1− x(k1)

)
+ N2x2(k1)

= Nx1

(
1 + (N − 1)x(k1)

)
(67)

Now, if k1 6= k2, then

E [t(k1)t(k2)] =
N∑

m=0

P{t(k1) = m} ·m · E [t(k2)|t(k1) = m]

=
N∑

m=0

P{t(k1) = m} ·m · (N −m)
x(k2)

1− x(k1)

=
x(k2)

1− x(k1)

(
N · E [t(k1)]−

[
Var[t(k1)] +

(
E [t(k1)]

)2])
=

x(k2)
1− x(k1)

(
N2x(k1)−

[
Nx(k1)

(
1− x(k1)

)
+ N2x2(k1)

])
= N(N − 1)x(k1)x(k2) (68)

Since E [h(k1)h(k2)] = E [t(k1)t(k2)]/N2, we obtain (41) by dividing (67) and (68) by N2.

28



References

[1] C. N. Morris, “Natural exponential families with quadratic variance functions: statistical

theory”, Ann. Stat., vol. 11, pp. 515-529, 1983.

[2] G. G. Walter and G. G. Hamedani, “Bayes empirical bayes estimation for natural exponential

families with quadratic variance functions”, Ann. Stat., vol 19, pp. 1191-1224, 1991.

[3] S. T. Chiu, “Bandwidth selection for kernel density estimation”, Ann. Stat., vol. 19, pp. 1883-

1905, 1991.

[4] G. G. Walter and J. K. Ghorai, “Advantages and disadvantages of density estimation with

wavelets”, Comp. Sci. Stat., vol. 24, pp. 234-243, 1993.

[5] B. W. Silverman, “Density estimation for statistics and data analysis”, Monographs on Statis-

tics and Applied Probability, vol. 26, Chapman and Hall, London, 1986.

[6] C. Chen, W. A. Fuller and F. J. Breidt, “Spline estimators of the density function of a variable

measure with error”, Statistics - Simulation and Computation, vol. 32, no. 3, pp. 73-86, Jan.

2003.

[7] J. Bilmes, “A gentle tutorial of the EM algorithm and its application to parametric estima-

tion for Gaussian mixture and hidden Markov models”, Technical Report ICSI-TR-97-021,

University of Berkeley, 1997.

[8] P. P. Vaidyanathan and B. Vrcelj, “Biorthogonal partners and applications”, IEEE Trans.

Signal Processing, vol. 49(5), pp. 1013-1027, May 2001.

[9] P. P. Vaidyanathan, Multirate systems and filter banks, Prentice Hall, Inc., 1993.

[10] D. L. Donoho, I. M. Johnstone, G. Kerkyacharian, and D. Picard, “Density estimation by

wavelet thresholding”, Ann. Stat., vol. 24, pp. 508-539, 1996.
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