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Abstract.1 It is well-known that certain non bandlimited
signals such as splines can be reconstructed from uniformly
spaced samples similar to bandlimited signals. This usually
requires noncausal IIR filters. We revisit this result and
consider extensions such as derivative sampling theorems
and pulse sampling theorems. It turns out that spline-like
signals can often be reconstructed from joint sampling of
amplitude and derivative using only FIR filters. We also
briefly consider discrete time versions of these results.

1. INTRODUCTION

Consider a continuous-time signal which can be modelled
in the form

x(t) =
∞∑

k=−∞
ckφ(t− k) (1)

where φ(t) is a fixed function. Such signals arise in many
situations. For example, when φ(t) is the sinc function
sinπt/πt, x(t) is a bandlimited (π-BL) signal and is in-
finitely differentiable. When φ(t) is a B-spline function,
x(t) is a spline with limited differentiability everywhere.
For fixed φ(t), the space of signals of the form (1) where
{cn} ∈ 
2 will be called Sφ. Bandlimited signals and
splines are examples of such spaces; under some conditions
on φ(t), a multiresolution analysis can be generated [1].

Suppose φ(t) has the zero-crossing or Nyquist(1) prop-
erty φ(n) = δ(n). In this case x(n) = cn, and

x(t) =
∑

n

x(n)φ(t− n),

so x(t) can be recovered from the samples x(n). This hap-
pens for example when φ(t) = sinπt/πt. For more gen-
eral φ(t) such as splines, this zero crossing property is not
true, but it still turns out to be possible to recover x(t)
from the samples x(n) [1], [9] even though x(t) may not
be bandlimited. The basic idea is that the samples have
the form x(n) =

∑
k ckφ(n − k) which is a discrete time

convolution. We can therefore recover {ck} from {x(n)}
using the digital filter 1/Φd(z) where

Φd(z) =
∑

n

φ(n)z−n (2)
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provided it is realizable. The preceding can be regarded
as a uniform sampling theorem for signals of the form (1),
which in general are not bandlimited. For the case where
φ(t) is a spline, Φd(z) is FIR and has zeros both inside
and outside the unit circle [5]. In order to ensure stability,
1/Φd(z) has been implemented as a noncausal IIR filter.
This idea works well for finite length signals like images.
Unser, et al. not only advanced this technique, but have
shown many applications [6]. Some variations of these sam-
pling theorems have already been reported in the past [2].
In this paper we shall consider further new variations.

2. DERIVATIVE SAMPLING

Suppose we have available both x(t) and the first derivative
ẋ(t). The samples of these obtained at half the rate are
given by

x(2n) =
∑

k

ckφ(2n− k) and ẋ(2n) =
∑

k

ckφ̇(2n− k)

Evidently the total number of samples per unit time is
unity as before. We can regard these samples as the out-
puts of the two channel filter bank shown in Fig. 1 where
the analysis filters are

H0(z) =
∑

n

φ(n)z−n, H1(z) =
∑

n

φ̇(n)z−n.

Under some conditions on these filters, we can recover cn
from x(2n) and ẋ(2n) perfectly. Once this is done, x(t)
can be reconstructed from (1). An advantage is that we can
often obtain FIR reconstruction (i.e., make F0(z), F1(z)
FIR) as we shall demonstrate. Derivative sampling theo-
rems can be useful, for example, when we have measure-
ments of position and velocity of a moving target or car.
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Fig. 1. Two channel filter bank for derivative sampling.

For example consider the case where φ(t) is the quadratic
B-spline given by

b2(t) =



t2/2 0 ≤ t < 1
3/4 − (t− 3/2)2 1 ≤ t < 2
(t− 3)2/2 2 ≤ t < 3
0 otherwise.



In this case φ(1) = φ(2) = 0.5 and φ(n) = 0 otherwise,

so that Φd(z) = 0.5z−1(1+z−1). Recovery of cn from the

full-rate samples x(n) requires the IIR filter 2z/(1 + z−1)
which in addition is unstable (pole at z = −1). Now
consider derivative sampling. We have

H0(z) = 0.5z−1(1 + z−1).

The quadratic spline is continuously differentiable once,
and the samples of the result are

φ̇(1) = −φ̇(2) = 1, and φ̇(n) = 0 otherwise,

so that
H1(z) = z−1(1 − z−1).

The synthesis filters which give perfect reconstruction are
uniquely given by

F0(z) = z(1 + z) and F1(z) = z(1 − z)/2 (3)

These are simple FIR filters indeed!

3. SAMPLING AN N-TH ORDER SPLINE

There is excellent literature on splines [4]–[6] which allows
us to generalize the preceding idea for splines of arbitrary
orders. In this section we show how.

3.1. Review Of Splines
The N th order B-spline (with integer knots), denoted
bN (t), is merely the result of convolving the unit pulse
p(t) with itself N times (Fig. 2). It is therefore a finite
duration signal, nonzero only in 0 < t < N + 1 and has
the Fourier transform

BN (jΩ) = e−jΩ(N+1)/2
( sin(Ω/2)

Ω/2

)N+1

(4)
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Fig. 2. (a) The pulse p(t) and (b) the Nth order B-spline

bN (t) generated by convolving p(t) with itself N times.

Between any two integers, bN (t) is a polynomial of order
N . These are joined at the integers such that bN (t) is
continously differentiable everywhere N − 1 times; more-
over the N th derivative is a piecewise constant. The closed
form expression for bN (t) is

bN (t) =
N+1∑
k=0

(
N + 1
k

)
(−1)k (t− k)N

N !
U(t− k) (5)

where U(t) is the unit-step. Consider a function x(t) of
the form (1) where φ(t) = bN (t). Then x(t) has two prop-
erties: (i) it is a polynomial between integers, and (ii) it is
continuously differentiable N − 1 times. A function with
these two properties is called an N th order spline.

There is a famous result [4] which says that any N th
order spline can be expressed as in (1) with φ(t) chosen as
the B-spline bN (t). As explained in Sec. 1, the spline x(t)
can be reconstructed from its samples x(n) as long as the
digital filter 1/Φd(z) is realizable. From its definition we
see that bN (t) is symmetric with respect to its midpoint,

so the FIR filter Φd(z) =
∑N

n=1 bN (n)z−n has zeros in

reciprocal pairs (z0, 1/z0). This means that 1/Φd(z) is un-
stable if implemented causally. This motivated noncausal
implementations, which turn out to be quite efficient [5].

3.2. Derivative Sampling For Splines
Imagine now that instead of sampling x(t) at the integers,
we sample x(t) and its N − 1 derivatives at a rate N
times smaller. Then the total number of samples per unit
time is still the same as before. However, it now turns out
that x(t) can be recovered from these samples using digital
filters that are not only stable but in fact FIR. To prove

this note that the samples of the kth derivative, x(k)(Nn),
can be written using (1) as

xk(n)∆=x(k)(Nn) =
∑

i

cib
(k)
N (Nn− i), 0 ≤ k ≤ N − 1

where the superscripts (k) denote the kth derivative. Now

b
(k)
N (i) are nonzero only for 1 ≤ i ≤ N ; define

Hk(z) =
N∑

i=0

b
(k)
N (i)z−i (6)

Then the samples xk(n) are the outputs of the N band
maximally decimated FIR analysis bank shown in Fig.

3. Since the sample b
(k)
N (0) = 0 (see Fig. 2), we can

write Hk(z) = z−1Ĥk(z) where Ĥk(z) is causal FIR
with length ≤ N. The polyphase matrix [7] correspond-

ing to {Ĥk(z)} is therefore a constant (as in a transform
coder). If this matrix is nonsingular, then there exists
an FIR perfect-reconstruction synthesis bank with filters

F̂k(z) =
∑0

n=−(N−1) f̂k(n)z−n. The synthesis bank cor-

responding to {Hk(z)} is then {zF̂k(z)}. In short, we have
an FIR PR filter bank as shown in Fig. 3 where

Hk(z) =
N∑

n=0

hk(n)z−n, Fk(z) =
0∑

n=−N

fk(n)z−n

with hk(0) = fk(0) = 0. This shows that cn can be

reconstructed from the derivative samples x(k)(Nn).
It is insightful to express the spline x(t) directly in

terms of the samples of the derivatives. For this note that
cn =

∑
k

∑
i xk(i)fk(n−Ni). Substituting into the spline

model (1) and simplifying, we get

x(t) =
N−1∑
k=0

∑
i

x(k)(Ni)sk(t−Ni) (7)



where sk(t) =
∑

n fk(n)φ(t− n). We can regard {sk(t)}
to be a bank of continuous-time reconstruction filters.
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Fig. 3. The N channel analysis bank model for the samples

of the derivatives xk(n) = x(k)(Nn), and the synthesis bank
to reconstruct cn from the derivative samples.

3.3. Examples
Let us revisit the example of quadratic splines, where N =
2 and the synthesis filters are as in (3). We have

x(t) =
∑

i

x(2i)s0(t− 2i) +
∑

i

ẋ(2i)s1(t− 2i)

where s0(t) and s1(t) are given by

s0(t) = φ(t+ 1) + φ(t+ 2)
s1(t) = 0.5φ(t+ 1) − 0.5φ(t+ 2).

As a second example consider cubic splines which can be
represented as in (1) where φ(t) = b3(t). Using (5), or the
fact that b3(t) = b2(t) ∗ p(t), we can obtain the samples
of b3(t) and its derivatives and obtain the analysis filters
Hk(z) in (6). Since b3(t) is supported in 0 < t < 4, these
are FIR, and

H0(z) = z−1(1 + 4z−1 + z−2)/6
H1(z) = z−1(1 − z−2)/2
H2(z) = z−1(1 − 2z−1 + z−2)

Using standard techniques [7] the synthesis filters for per-
fect reconstruction are

F0(z) = z(1 + z + z2)
F1(z) = z(1 − z2)
F2(z) = z(2 − z + 2z2)/6

The reconstruction functions sk(t) =
∑

n fk(n)φ(t − n)
can now be obtained. The result is

 s0(t)s1(t)
s2(t)


 =


 1 1 1

1 0 −1
1/3 −1/6 1/3





φ(t+ 1)
φ(t+ 2)
φ(t+ 3)




Having found sk(t), the spline x(t) can be recovered from
the samples x(3n), ẋ(3n) and ẍ(3n) using (7).

4. DISCRETE TIME CASE

As mentioned in Sec. 1 signals which can be represented
by the model of (1) can be recovered from appropriately
sampled versions even though they may not be bandlim-
ited. The discrete time analog of this is also known [8].
One simple example is a signal x[n] that can be mod-
elled as the output of an interpolation filter (Fig. 4). In
the following discussion, we use the polyphase representa-

tion F (z) =
∑M−1

i=0 ziRi(zM ) for convenience. Note that

Ri(z) = [z−iF (z)]↓M , that is, ri(n) = f(Mn− i).

M F(z) x(n)c(n)

Fig. 4. Signal model allowing reconstruction from samples.

Since x(n) =
∑

k c(k)f(n − Mk) this is analogous to
(1) which was obtained by superposition of uniform shifts
of φ(t). One would then expect that x(n) can be recov-
ered from the M -fold decimated version x(Mn). Indeed
we have

x(Mn) =
∑

k

c(k)f(M(n− k)) =
∑

k

c(k)r0(n− k)

where r0(n) = f(Mn). This shows that c(n) can be re-
covered as the output of 1/R0(z) in response to the input
x(Mn). Thus, from x(Mn) we can find c(n), and use

x(n) =
∑

k c(k)f(n−Mk) to find x(n).
This idea succeeds as long as R0(z) has no unit cir-

cle zeros. If this is not the case, we can look for another
polyphase component Ri(z) with this property. Then

x(Mn−i) =
∑

k c(k)f(M(n−k)−i) =
∑

k c(k)ri(n−k)
which shows that c(k) can be recovered from the samples
x(Mn − i) by filtering through 1/Ri(z). If none of the
polyphase components is free from unit circle zeros, then
we can try other combinations of samples. Thus letM = 2
and

F (z) = 1 + z − z2 + z3 = 1 − z2 + z(1 + z2)

which shows R0(z) = 1 − z and R1(z) = 1 + z. Both
of these have unit circle zeros. So we cannot recover x(n)
from the two-fold decimated version x(2n) or from x(2n−
1) in a stable manner. Now consider the signal x(n) and
its first difference x(n) − x(n − 1). If we decimate these
by four we get

x0(n) = x(4n), x1(n) = x(4n) − x(4n− 1).

Together, these two signals still imply an average two-fold
decimation. We will show that x(n) can be recovered from
x0(n) and x1(n) using stable, in fact FIR, filters. This
is analogous to the derivative sampling scheme of Sec. 2.
To prove the preceding claim note that the signal model is
X(z) = C(z2)F (z) so that

X0(z) =
[
C(z)[F (z)]↓2

]
↓2

X1(z) =
[
C(z)

[
(1 − z−1)F (z)

]
↓2

]
↓2



Defining H0(z) = [F (z)]↓2 = 1 − z and

H1(z) = [(1 − z−1)F (z)]↓2 = −2z,

we see that the samples x0(n) and x1(n) can be repre-
sented as the outputs of an analysis bank (Fig. 5). Using
the synthesis filters

F0(z) = 1, F1(z) = −(1 + z−1)/2

we verify that this is a perfect reconstruction system. In
short, c(n) can be recovered from the samples x(4n) and
x(4n)− x(4n− 1) using the FIR filters F0(z) and F1(z).
The original signal x(n) can then be recovered from the
basic model of Fig. 4.
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Fig. 5. Two channel filter bank for difference-sampling.

5. CONCLUDING REMARKS

In Sec. 3.1 we introduced derivative sampling of splines,
and showed that for quadratic and cubic splines we can
always reconstruct the spline coefficients cn with FIR fil-
ters. We have not proved this formally for arbitrary order
splines. In attempting such a proof, it would be helpful to
note that the N th order spline and its N − 1 derivatives
are supported in 0 < t < N + 1 so that there are at most
N nonzero integer-samples. The problem then reduces to
proving analytically that a certain constant polyphase ma-
trix [7] is nonsingular.

Similar remarks apply for the discrete time model of Sec.
4. Thus, assume that the model filter F (z) is FIR. Given
M and F (z), can we show that there exists an appropri-
ate extension of the M -fold decimation (like the difference
sampling of Sec. 4) from which x(n) can be recovered us-
ing FIR filters alone? This remains an open problem as
well. In attempting this, it might be useful to notice that
FIR reconstruction from nonuniformly decimated versions
have been shown to be possible under some conditions [8].

A final remark we wish to make relates to pulse sam-
pling. The idea has its origin in a homework problem in
[3] pertaining to Shannon sampling of bandlimited signals.
Consider a continuous time signal x(t) bandlimited, say,
to π. It can be recovered from integer samples x(n) using
lowpass filtering (sinc interpolation). Such sampling can be
regarded as multiplication of x(t) with an impulse train.
Suppose a practical sampling system performs multiplica-
tion with a pulse train as shown in Fig. 6 where p(t) is
periodic but not quite an inpulse train. Expressing p(t) as
a Fourier series, it can be shown that we can indeed recover
x(t) from x(t)p(t) for almost any p(t). This follows from
the fact that multiplication with p(t) is equivalent to repli-
cating the Fourier transform X(jΩ) around the harmonics
of p(t). This creates no aliasing as long as the pulse rate
is large enough, and we can isolate one copy by filtering.

A similar result holds for the more general signal model
x(t) =

∑∞
k=−∞ ckφ(t− k) because

y(t) = x(t)p(t) =
∞∑

k=−∞
ckφ(t− k)p(t− k)

where we have exploited the pulse periodicity p(t) = p(t−
k). Thus y(t) =

∑∞
k=−∞ ckφ1(t − k), where φ1(t) =

φ(t)p(t) so that

Y (jΩ) =
∞∑

k=−∞
ck

∫
φ1(t− k)e−jΩtdt

=
∞∑

k=−∞
cke

−jΩkΦ1(jΩ)

= C(ejΩ)Φ1(jΩ)

We can recover ck using C(ejΩ) = Y (jΩ)/Φ1(jΩ) under
some obvious realizability conditions. Once {ck} is known,
x(t) is fully determined.
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Fig. 6. Pulse-sampling of a continuous-time signal x(t).
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