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Abstract.1 In recent years many of the results for band
limited sampling have been extended to the case of non
bandlimited signals. These recent extensions have been
found to be useful in digital signal processing applications
such as image interpolation, equalization of communica-
tion channels, and in multiresolution computation. In this
lecture we give a brief overview of some of these ideas.

1. INTRODUCTION

The uniform sampling theorem for bandlimited signals was
introduced by brilliant minds more than 6 decades ago, and
is the backbone of all digital signal processing and digital
communication systems today. The theorem has been ex-
tended in many directions. This includes nonuniform sam-
pling and derivative sampling of bandlimited signals [6],
and more general multichannel sampling [11]. In recent
years many of these results have been extended to the case
of non bandlimited signals. These recent extensions have
been found to be useful in applications such as image in-
terpolation, equalization of communication channels, and
in multiresolution computation. In this lecture we give a
brief overview of some of these ideas. Detailed overviews
can be found in [25], [26], [20], [21], and [30].2

Notations. Unless mentioned otherwise, all notations
are as in [22]. The subscript d as in xd(n) is used for
discrete time quantities if there is potential confusion. Bold
faced letters denote matrices and vectors. The term σ-
BL refers to signals that are bandlimited to |ω| < σ (i.e.,
Fourier transform is zero outside). We use the notations
[x(n)]↓M and [X(z)]↓M to denote the decimated version

x(Mn) and its z-transform. The expanded version{
x(n/M) n = mul of M,
0 otherwise

is similary denoted by [x(n)]↑M , and its z-transformX(zM )
denoted by [X(z)]↑M . In situations where the z-transform
does not exist in the conventional sense (e.g., ideal filters),

the notation z stands for ejω so that F (z) is the frequency

1Work supported in parts by the NSF grant MIP 0703755
and ONR grant N00014-99-1-1002.

2References [25, 26, 28, 30] can be found under “publications”
at http://www.systems.caltech.edu/EE/Groups/dsp/.

response F (ejω). Any transfer function F (z) can be writ-
ten in the form

F (z) =
M−1∑
k=0

zkRk(zM )

called the (type 2) polyphase representation [22].

2. SIGNAL MODELS

If x(t) is π-BL we can recover it from integer spaced sam-
ples x(n) (Shannon or Nyquist sampling). This corre-
sponds to a sampling rate Ωs = 2π radians/sec (or 1 Hz).
If a signal is not bandlimited, can we still recover it from
samples? The answer depends on what other apriori in-
formation we have. For example, suppose we have the
knowledge that x(t) has the form

x(t) =
∞∑

k=−∞
c(k)φ(t− k) (signal model) (1)

where φ(t) is a known function (not necessarily ban-
dlimited). Suppose φ(t) has the zero-crossing property
φ(n) = δ(n), i.e.,

φ(0) = 1, φ(n) = 0 for other integer n (2)

as demonstrated in Fig. 1(a). This implies in particular
that

x(t) =
∑

k

x(k)s(t− k) (3)

where s(t) = φ(t). Thus reconstruction from samples x(n)
has been possible inspite of the aliasing effects due to
non bandlimitedness. A function φ(t) satisfying the zero-
crossing property (2) is also referred to as a Nyquist(1)
function in the literature. The argument “(1)” signifies
that the zero crossings are separated by one unit of time.
A special case is the example where φ(t) is the sinc funtion
(Fig. 1(b))

φ(t) =
sinπt
πt

(4)

Since this is π-BL, the sum (1) is also π-BL. The sinc
function is Nyquist(1), so the reconstruction formula (3)
holds. This is the familiar Shannon reconstruction.
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Fig. 1. Examples of the function φ(t) in the signal
model. (a) Nyquist(1) function, (b) sin(πt)/πt, and (c)
non Nyquist(1) function.

If a function can be represented as in Eq. (1) where φ(t) is
not Nyquist (Fig. 1(c)), can we still reconstruct x(t) from
samples x(n)? The answer is in the affirmative for a large
class of φ(t). From Eq. (1) we see that the samples of x(t)
are given by

xd(n)
∆=x(n) =

∞∑
k=−∞

c(k)φ(n− k) (5)

which is nothing but a discrete-time convolution equation.
Denoting the discrete time Fourier transforms of the se-
quences x(n), c(n), and φ(n) by Xd(ejω), C(ejω) and

Φd(ejω) we get Xd(ejω) = C(ejω)Φd(ejω). Note that

Φd(ejω) =
∑

n

Φ(ω + 2πn)

If Φd(ejω) �= 0 for all ω we can write

C(ejω) =
Xd(ejω)
Φd(ejω)

(6)

c(n) x(n)
d

φ  (z)

(a) (b)

c(n)x(n) Γ(z)

Fig. 2. (a) Samples of x(t) modelled as the output of a dig-
ital filter, and (b) reconstruction of c(n) from the samples
using the inverse digital filter.

That is, we can identify c(n) from x(n) using

c(n) =
∑

k

x(k)γ(n− k) (7)

where γ(n) is the convolutional inverse of φ(n) i.e., its

Fourier transform Γ(ejω) = 1/Φd(ejω). Recovery of x(t)
for all t can then be done using (1). Notice that the
sequences x(n) and c(n) are related by digital filters as
shown in Fig. 2.

2.1. Remarks

1. Undersampling a wideband signal. As a special case
of the signal model, suppose φ(t) is 2π-BL, that is,
bandlimited to −2π < ω < 2π. Then x(t) is also
2π-BL. In this case, the Nyquist rate would be 4π,
implying the sample spacing T = 1/2. The preceding
theory shows that the wider sample spacing of T = 1
is actually sufficient! As a specific example, if Φ(jω)
is real and positive in −2π < ω < 2π then Φd(ejω)
is surely nonzero and we can reconstruct x(t) from
these lower rate samples.

2. Lack of shift invariance. For fixed φ(t), let V0 denote
the space of all signals which can be represented as in
(1) for appropriate finite-energy c(k). When φ(t) is
the sinc function we know that any shifted version of
x(t) (e.g., x(t−0.1)) also belongs to the space V0 be-
cause time-shift does not affect bandlimitedness. For
arbitrary φ(t) however, even though reconstruction
from samples is often possible, the shifted versions of
x(t) do not in general belong to the same space V0.

3. Reconstruction filter. Substituting for c(k) from (7)
into (1) and simplifying we get

x(t) =
∞∑

i=−∞
x(i)s(t− i)

where s(t) =
∑∞

m=−∞ γ(m)φ(t − m) is the recon-
struction filter. Thus, we simply pass the samples
x(n) through the continuous-time filter with impulse
respose s(t) as in standard D/A conversion (Fig. 3).

s(t)

   filter with 
imp. resp. s(t)

samples of x(t)

0 1

x(t)

t

Fig. 3. Reconstruction of x(t) from samples.

From the preceding definition we can show that the recon-
struction filter s(t) has the Nyquist(1) property s(n) =
δ(n) similar to the sinc function sinπt/πt.

2.2. Application in interpolation
The preceding discussion also shows this: given a discrete
time signal xd(n) and an arbitrary function φ(t), we can
almost always assume that xd(n) can be written in the
form (5) for appropriate choice of c(k), the only theoretical
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condition being that Φd(ejω) �= 0 for all ω. Thus we can
regard xd(n) as samples of the continuous time signal

x(t)∆=
∑

k

c(k)φ(t− k).

While true for almost any φ(t), this viewpoint is especially
useful for certain choices of φ(t). If φ(t) has smoothness
properties such as a certain degree of differentiability ev-
erywhere, then we can use this to generate an interpolated
version of xd(n). For example, a 256 × 256 image can
be displayed as a 512 × 512 image in this way (interpola-
tion by two). Smoothness of φ(t) usually ensures that the
interpolated result is visually pleasing.

To see how the model can be used for interpolation no-
tice that the samples of x(t) at a finer spacing 1/L are
given by

x(n/L) =
∞∑

k=−∞
c(k)φ(

n− kL
L

) =
∞∑

k=−∞
c(k)fL(n−kL)

(8)
where fL(i) = φ(i/L). The quantity on the right hand
side of (8) can be interpreted as the output of a digital in-

terpolation filter FL(z) =
∑

n fL(n)z−n as shown in Fig.

4(a). Thus we can reconstruct the finer samples x(n/L)
from x(n) as shown in Fig. 4(b): first pass x(n) through
the digital prefilter Γ(z) = 1/Φd(z) to get c(n). Then
use the L-fold expander and interpolation filter FL(z) to
get x(n/L). We see that the interpolation from x(n) to
x(n/L) can be done entirely digitially.

c(n) L x(n/L)

expander interpolator

F (z)L (a)

c(n)
L

prefilter

Γ(z)
x(n) x(n/L)

expander interpolator

F (z)L (b)

Fig. 4. Interpolation of a signal x(n) with digital filters.
The signal is assumed to have a continuous time model
x(t) =

∑
k

c(k)φ(t − k).

Spline interpolation. In image processing, φ(t) is typi-
cally chosen as a B-spline (especially cubic spline) rather
than a bandlimited sinc function. If φ(t) is an N th order
B-spline then x(t) is also an N th order spline, and both
φ(t) and x(t) are continuously differentiable N − 1 times
[12]. The spline φ(t) has finite duration so that Φd(z) is
FIR and the inverse filter Γ(z) IIR. Since φ(t) is symmetric
about its midpoint, Φd(z) has coefficient-symmetry. The
filter Γ(z) therefore has poles both inside and outside the
unit circle. So a noncausal implementation has to be used
to ensure filter stability [10].

Sampling theorems based on the signal model (1) were
observed independently by many authors, e.g., Walter [32]
and Daubechies [4]. While the history of interpolation the-
ory is rather long, some of the fairly recent advances made
by Unser, Aldroubi, and their colleagues have been most in-
fluential in this area [17, 19,1]. For example, spline interpo-
lation of images has been made very simple and attractive.

Such interpolation can now be done with a simple combi-
nation of FIR and IIR filters [17], and sometimes with very
inexpensive FIR filters alone [27]. Many image processing
operations such as rotation, least squares smoothing, and
edge detection have been simplified by this idea [19].

3. BIORTHOGONAL PARTNERS

We now review the notion of biorthogonal partners intro-
duced in [25]. The usefulness of this idea lies in the fact
that it naturally makes a connection between interpola-
tion theory and sampling theorems. This makes it useful
for application in least squares signal modelling. In fact
biorthogonal partners arise in digital communications in
a rather hidden form. This includes fractionally spaced
equalizers (FSE) [15] and filter bank precoders [14,31].
The multi channel version of the biorthogonal partner idea
has further applications, for example, in the equalization
of multiuser channels [28], [29]. The complete theory of
biorthogonal partners can be found in the references given
above, so we shall be brief here. At this point please review
notations in Sec. 1.

Definition 1. Biorthogonal partners. Two transfer func-
tions F (z) and H(z) are said to be biorthogonal partners
of each other with respect to an integer M if[

H(z)F (z)
]
↓M

= 1

This is equivalent to the statement that the product filter

P (z)∆=H(z)F (z) is Nyquist(M), that is, its impulse re-
sponse p(n) has the zero-crossing property p(Mn) = δ(n).
as shown in Fig. 5. ♦

n

p(n)

63−

0 31 2

Fig. 5. Nyquist(M) property of the product fillter P (z)
demonstrated for M = 3.

Referring to Fig. 6, it can be shown that the transfer
function from c(n) to d(n) is given precisely by the quan-
tity [H(z)F (z)]↓M . Thus, biorthogonal partnership means

that this system is an identity system [d(n) = c(n)]. In
other words, the decimation operation shown in the figure
is the inverse of the interpolation operation.

M F(z)

interpolation decimation

x(n)c(n)
H(z) M

d(n)

Fig. 6. Interpreting biorthogonal partnership using block
diagrams.
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3.1. Existence and FIR Solution

Given a transfer function F (z), does a biorthogonal part-
ner exist? Is it unique? Well, the inverse 1/F (z) always
serves as a biorthogonal partner (with respect to any M )

as long as it exits (i.e., as long as F (ejω) �= 0 for any ω).
But the partner is not unique. For example,

H(z) =
1

[F (z)]↓M↑M

is a valid partner assuming the denominator does not van-
ish on the unit circle. The next result, proved in [25],
addresses the existence of FIR partners.

Theorem 1. FIR biorthogonal partner. Let F (z) be

FIR, that is, F (z) =
∑n1

n=n0
f(n)z−n for finite n0, n1.

Express it in the polyphase form F (z) =
∑M−1

k=0 zkRk(zM ).
Then there exists an FIR filter H(z) such that

[H(z)F (z)]↓M = 1

if and only if the greatest common divisor of the M
polyphase components {Rk(z)} is trivial (i.e., has the form

cz−N ). ♦
The condition in the theorem is equivalent to the state-

ment that the M polyphase components do not share a
common zero. For example suppose F (z) = 1 + 4z−1 +
z−2. Then the obvious biorthogonal partner H(z) =
1/F (z) is IIR with poles both inside and outside the unit
circle. So we cannot have a causal and stable implementa-
tion. In this example we can actually find an FIR partner
for M = 2. For this note that the two polyphase compo-
nents of F (z) are R0(z) = 1 + z−1 and R1(z) = 4z−1

so that the condition of the theorem is satisfied. Indeed
the FIR filter H(z) = z2 − 0.25z3 can be verified to be a
partner for M = 2.

In what context do biorthogonal partners arise? Read-
ers familiar with maximally decimated filter banks with
analysis filters {Hk(z)} and synthesis filters {Fk(z)} will
recall that the system has the perfect reconstruction prop-
erty if and only if [Hk(z)Fm(z)]↓M = δ(k − m). This

means in particular that the filters Hk(z) and Fk(z) are
biorthogonal partners for each k. So the property arises
very naturally in filter bank theory. A more appropriate
situation for this lecture is in signal interpolation.

c(n) 2 x(n/2)

FIR 

F (z)
2

2x(n/2)

FIR

H  (z)
2

c(n)

2
x(n/2) c(n)

FIR

L
x(n/L)

FIR 

H  (z)
2

F (z)
L

(a)

(b)

(c)

Fig. 7. (a) Model for the oversampled signal x(n/2),
(b) the inverse which generates c(n) from the oversampled
version x(n/2), and (c) construction of interpolated version
x(n/L) from the oversampled version x(n/2) using only
FIR filters.

3.2. Oversampling And Interpolation

Let us return to the interpolation formula given in Eq. (8).
Figure 4 shows an implementation of this formula. As ex-
plained in Sec. 2.2, if φ(t) is a spline then the prefilter
Γ(z) is an unstable IIR filter unless we use noncausal im-
plementation methods.

Fig. 8. The top image x(n) is a 128 × 128 portion of
the parrot image. Middle image x(n/2) is obtained using
a cubic spline model. This computation requires an IIR
filter Γ(z) (Fig. 4). Bottom image x(n/4) is obtained from
x(n/2) using FIR filtering (Fig. 7(c) with L = 4).

Imagine now that x(t) has been oversampled to obtain
x(n/2). From this signal we will show how x(n/L) can
be obtained by FIR filtering alone. From Fig. 4(a) we
see that x(n/2) can be represented as in Fig. 7(a) where
F2(z) has impulse response f2(n) = φ(n/2). Since φ(t)
has finite duration, F2(z) is FIR. Let H2(z) be a biorthog-
onal partner of F2(z) with respect to the integer M = 2.
Then we can construct c(n) from x(n/2) as shown in Fig.

4



7(b). For the example where φ(t) is the cubic spline, it
is demonstrated in [25] that there exists an FIR partner
H2(z). Indeed, in this case it can be verified that F2(z) is

z−1 + 8z−2 + 23z−3 + 32z−4 + 23z−5 + 8z−6 + z−7

48

and its FIR biorthogonal partner is

H2(z) =
3z10 − 24z9 + 68z8 − 88z7 + 47z6

6

Thus c(n) can be computed from x(n/2) using FIR fil-
tering. From c(n) we can then compute x(n/L) for any
L using the FIR filter FL(z). The complete FIR system
is shown in Fig. 7(c). An image interpolation example is
shown in Fig. 8. Please see [25] for all further details.

3.3. Multiresolution Theory And Sampling

Consider again signals of the form x(t) =
∑

k c(k)φ(t−k)
where φ(t) has finite duration. If c(k) has to be com-
puted from the samples x(n), this requires the IIR filter

1/Φd(ejω). We just showed that if the oversampled ver-
sion x(n/2) is available then we can compute c(k) using
only FIR filters. This is an attractive alternative to what
is conventionally done in multiresolution analysis 3 to com-
pute c(k) from a highly oversampled version. To appreciate
the difference between the above FIR construction and the
conventional “highly oversampled construction”, we now
give a brief review of the latter.

Assuming c(k) is in %2 and φ(t) ∈ L2, the set of func-

tions x(t) =
∑

k c(k)φ(t− k) forms a subspace V0 ⊂ L2.
This subspace is spanned by the integer-shifted versions
{φ(t−k)} (Fig. 9(a)). Now consider the squeezed version
φ(2t) and its shifted versions φ(2t − k) sketched in Fig.
9(b). This set also spans a subspace V1 ⊂ L2. In mul-
tiresolution theory φ(t) is chosen such that V0 ⊂ V1. In
particular φ(t) is a linear combination of φ(2t − k), that
is,

φ(t) = 2
∑
m

f(m)φ(2t−m) (9)

This is the familiar dilation equation [4], [8] and translates

in the Fourier domain to Φ(jω) = F (ejω/2)Φ(jω/2). By
repeating this idea we see that x(t) belongs to the space

VJ spanned by {φ(2J t − k)} for any integer J ≥ 0, that
is,

x(t) =
∑

k

cJ(k)2J/2φ(2J t− k) (10)

The multiresolution coefficients cJ(k) at scale J reduce to

the usual c(k) for J = 0. The constant 2J/2 merely en-

sures that the scaled basis functions {2J/2φ(2J t−k)} have
the same energy for all J. Fig. 9(c) shows x(t) and sev-

eral shifted versions φ(2J t− k) for large J . We shall now

argue that the samples x(2−Jk) are approximately propor-

tional to cJ(k). Since x(2−Jn) =
∑

k cJ(k)2J/2φ(n−k),
3We refer the reader to Mallat’s book [8] for an excellent

treatment of multiresolution theory.

the sequence x(2−Jn) is the output of the digital filter

φ(n) in response to the input 2J/2cJ(n). Thus, except
for a constant multiplier, cJ(n) is the output of the in-

verse filter γ(n) in response to the input x(2−Jn). If J
is large enough, then x(2−Jn) is nearly constant in the
region where γ(n) is significant. Thus the output cJ(n) is
also slowly varying, and is nearly proportional to the input,

that is, cJ(k) ≈ αJx(2−Jk). If the oversampling factor 2J

is large enough, this estimate of cJ(k) is very good. The
beauty of the dilation equation is that it allows us to com-
pute the multiresolution coefficients at lower scales

cJ−1(k), cJ−2(k), . . . , c0(k)

successively from cJ(k), and thereby identify c(k) = c0(k).
To see this, substitute (9) into (10). Then

x(t) =
∑

�

∑
k

√
2cJ(k)f(%− 2k)

︸ ︷︷ ︸
cJ+1(�)

2(J+1)/2φ(2J+1t− %)

That is, cJ+1(n) =
√

2
∑

k cJ(k)f(n− 2k), which shows
that we can go from scale J multiresolution coefficients
cJ(n) to the scale J + 1 coefficients cJ+1(n) by using
an interpolation filter as shown in Fig. 10(a), where

F (z) =
∑

n f(n)z
−n. If

√
2F (z) has a biorthogonal

partner
√

2H(z) we can also go from scale J + 1 to J
by using the decimation filter of Fig. 10(b). This shows
that we can compute the coefficients ci(n) for all lower
scales using the multistage decimation system shown in
Fig. 10(c).

(a) t

φ(t) φ(t-1)φ(t+1)

0 1

(b)
t

φ(2t) φ(2t-1)φ(2t+1)

0 1

(c)
t

x(t)

0 1

Fig. 9. (a) The function φ(t) and its integer shifted ver-
sions, (b) the squeezed function φ(2t) and its shifted ver-
sions φ(2t − k), and (c) several shifted and weighted ver-
sions cJ(k)2J/2φ(2J t − k) for 2J = 8, shown along with
x(t) =

∑
k

cJ(k)2J/2φ(2J t − k).

If F (z) is FIR with coprime polyphase components R0(z)
and R1(z) (where F (z) = R0(z2)+zR1(z2)) then we can
find an FIR filter H(z) to implement Fig. 10(c). Notice

finally that if {ηk(n)} = {
√

2f(n−2k)} is an orthonormal
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set then h(n) = f∗(−n) works in the preceding scheme.
In order for the above oversampling strategy to yield good
results, we have to make the oversampling factor large so
that the approximation of cJ(n) is good. Compare this
with the method of Sec. 3.2 which yields exact results
and requires oversampling only by a factor of two, and the
nonuniform method to be presented in Sec. 4, which yields
exact results with no oversampling at all.

(a)

(b)

2c (n)
J

c    (n)
J+1F(z)2

2 c (n)
J

c    (n)
J+1

H(z)2

(c)

2
c (n)

1
H(z)2

c (n)
0

=c(n)
H(z)2

c    (n)
J-1 2

c (n)
J H(z)2 2

Fig. 10. Details of conventional multiresolution compu-
tation. (a) Representation of cJ+1(n), (b) computation
of cJ(n) from cJ+1(n), where

√
2H(z) is a biorthogonal

partner of
√

2F (z), and (c) multistage decimation circuit
for computation of the coefficients ci(n) for all lower-level
scales, upto c0(n) = c(n).

3.4. Oversampling In Digital Communications

Another scenario where biorthogonal partners arise is in
channel equalization. Since the idea is applicable to vector
channels as well, we describe it using matrix-vector nota-
tions. Consider a transfer matrix F(z) representing, for
example, a multi input multi output channel.

(a)

C(z )
x(n)

D(z)
y(n)

e(n)

+

channel SSE

(b)

M F(z ) H(z ) M
x(n) y(n)

w(n)

+

channel FSE

Fig. 11. Application of biorthogonal partners in channel
equalization. (a) Symbol spaced equalizer (SSE), and (b)
fractionally spaced equalizer (FSE). Please see text.

We say that a transfer matrix H(z) is a (left) biorthogonal

partner4 of F(z) with respect to an integer M if [28, 29]

[H(z)F(z)]↓M = I, (11)

where the notation [C(z)]↓M means that each matrix el-

ement Cij(z) is decimated (in time) by M. Imagine that

a vector sequence x(n) of symbols is input to a channel
which can be approximated with an FIR matrix C(z), and
additive noise e(n) (Fig. 11(a)). (Here C(z) and e(n) are
sampled versions from the continuous-time channel). If

4Right biorthogonal partners can be defined in a similar way
but we shall not use them here.

we wish to design an ideal zero-forcing equalizer D(z), it
would have to be a left inverse (i.e., D(z)C(z) = I). Such
an inverse may not be FIR, and may have poles close to
unit circle (it may not even be stable). This could lead to
severe noise amplification. Notice that D(z) is a symbol-
spaced equalizer or SSE.

Consider next the scheme of Fig. 11(b). Here F(z) and
w(n) represent M -fold oversampled versions of the chan-
nel and its noise. The system H(z) is a fractionally spaced
equalizer or FSE for the channel. If this is chosen as a left
biorthogonal partner of F(z) (with respect to M ) then we
have a zero-forcing equalizer because the system function
from x(n) to y(n) is [H(z)F(z)]↓M = I. FIR solutions

for H(z) are more likely to exist in this case than in the
SSE scheme of Fig. 11(a) as we can readily demonstrate
[28]. The FIR FSE is not only convenient, it also results
in less noise amplification.

We can exploit the nonuniqueness of FIR biorthogo-
nal partners to further improve the performance. Assume
F(z) is causal and FIR. In [28] we have established the
conditions for the existence of FIR biorthogonal partners.
For example consider M = 2 and write F(z) in polyphase

form [22] F(z) = F0(z2) + zF1(z2). Then we can show
the following [28, 29]:

Theorem 2. MIMO FIR partner. An FIR partner for
the FIR filter F(z) exists if and only if the polyphase com-
ponents F0(z) and F1(z) are right-coprime, that is, if and
only if the greatest common right divisor (grcd), denoted
R(z), is a unimodular matrix [22]. ♦

Assume this condition is satisfied, and express the part-
ner in polyphase form H(z) = H0(z2)+z−1H1(z2). Then
we can construct infinitely many FIR solutions from this!
The crucial fact that leads to this observation is that when
F0(z) and F1(z) are right-coprime, there exists [22] a uni-
modular matrix U(z) such that[

U11(z) U12(z)
U21(z) U22(z)

]
︸ ︷︷ ︸

U(z)

[
F0(z)
F1(z)

]
=

[
R(z)

0

]

It can then be shown that if the polyphase components of
H(z) are modified to

Ĥ0(z) = H0(z) + A(z)U21(z)

Ĥ1(z) = H1(z) + A(z)U22(z) (12)

the result Ĥ(z) = Ĥ0(z2)+z−1Ĥ1(z2) will remain a FIR
biorthogonal partner of F(z) for any FIR choice of A(z).
This approach gives us infinite freedom to choose A(z) and
optimize the FSE performance.

Example. To demonstrate this we took a 3 × 3 over-
sampled FIR channel matrix F(z) with oversampling fac-
tor M = 2. The matrix F(z) can be found in [33]. The
normally sampled version C(z) = [F(z)]↓2 has an IIR in-
verse with two poles close to the unit circle. Assume first
this IIR equalizer D(z) is used in the SSE configuration.
For a 16-QAM constellation with signal to noise ratio of
18 dB, the results of equalization are as shown in Fig. 12
(top figure; measurements averaged over all three chan-
nels). Evidently the IIR filter has amplified the noise to a
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point where the symbols are indistinguishable. Next con-
sider the FSE scheme of Fig. 11(b) with M = 2. In this
example there exists an FIR partner H(z) and the result
of equalization is shown in Fig. 12 (middle). This is clearly
an improvement. We can improve this further by exploit-
ing the nonuniqueness of the biorthogonal partner H(z).
We did this by constraining A(z) to be a third order FIR
matrix and theoretically optimizing it for fixed noise statis-
tics. This results in the much improved performance shown
in Fig. 12 (bottom).
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20

30

−4 −2 0 2 4
−4
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−4 −2 0 2 4
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Fig. 12. Channel equalization example with a 16-QAM
constellation. IIR equalizer (top), FIR fractionally spaced
equalizer H(z) (middle), and optimized 3rd order FIR frac-

tionally spaced equalizer Ĥ(z) (bottom).

4. NONUNIFORM SAMPLING

In the multiresolution computation of Sec. 3.3, both IIR
filtering and oversampling schemes can be avoided com-
pletely if the samples of x(t) are allowed to be nonuni-
form. Here we will show how to reconstruct c(n) from
periodically nonuniform samples of x(t) with the help of
FIR filters alone. For example, suppose we consider the
following three sets of samples

x(3n), x(3n+
1
3
), x(3n+

2
3
)

This is equivalent to the nonuniform sampling scheme
shown in Fig. 13, with average rate still equal to unity.

The three sets of samples can be expressed as

x(3n+
i

3
) =

∑
k

c(k)φ(3n+
i

3
− k), i = 0, 1, 2.

Thus we can represent the set of nonuniform samples as
the decimated subband signals of a maximally decimated
analysis bank (Fig. 14(a)) where Hi(z) have impulse re-
sponses

hi(n) = φ(n+
i

3
), i = 0, 1, 2. (13)

If there exists an FIR synthesis filter bank with the perfect
reconstruction property [22] then we can reconstruct c(n)
from these nonuniform samples (Fig. 14(b)), and recover
x(t) =

∑
n c(n)φ(t− n).

t

x(t)

0
3

6

Fig. 13 . Demonstration of nonuniform sampling

H (z)
0 3

H (z)
1

3

H (z)
2 3

c(n)

x(3n+1/3)

x(3n+2/3)

x(3n)

x(3n+1/3)

F (z)
0

F (z)
1

F (z)2

3

3

3

c(n)
x(3n)

x(3n+2/3)

(a)

(b)

Fig. 14. (a) Analysis bank representing nonuniform sam-

pling, and (b) synthesis bank for reconstructing c(n).

Consider the case where φ(t) is the quadratic spline

φ(t) =



t2/2 0 ≤ t < 1
3/4 − (t− 3/2)2 1 ≤ t < 2
(t− 3)2/2 2 ≤ t < 3
0 otherwise.

(14)

Then the analysis filters are

H0(z) =
z−1 + z−2

2
, H1(z) =

1 + 13z−1 + 4z−2

18
,

and H2(z) = z−2H1(z−1). Using standard techniques
from filter bank theory [22] we can obtain the synthesis
filters for perfect reconstruction:

F0(z) =
13 − 5z + 13z2

4
, F1(z) =

−36 + 12z − 12z2

4
,
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and F2(z) = (27 − 3z + 3z2)/4. Thus, c(n) can be
reconstructed from the nonuniform samples of x(t) us-
ing these FIR filters, as shown in Fig. 14(b). By using
x(t) =

∑
k c(k)φ(t − k) we can directly express x(t) in

terms of the nonuniform samples:

x(t) =
2∑

i=0

∞∑
k=−∞

x(3k +
i

3
)si(t− 3k) (15)

Here si(t) are related to the scaling function φ(t) and the

synthesis filters by si(t) =
∑

k fi(k)φ(t− k). We can in-
terpret this reconstruction as a continuous-time filter bank
as shown in Fig. 15: The three sets of samples are passed
through three analog filters s0(t), s1(t) and s2(t) and then
added up to obtain x(t). Since fi(k) have finite durations,
the filters si(t) also have finite durations like φ(t).

x(t)

samples 
x(3n)

samples
x(3n+1/3)

samples
x(3n+2/3)

s (t)
1

s (t)
2

s (t)
0

analog filters

Fig. 15. Reconstruction of x(t) from nonuniform samples.

5. DERIVATIVE SAMPLING

We have seen that signals of the form x(t) =
∑

k c(k)φ(t−
k) can be recovered from integer-rate samples x(n) most
of the time. Suppose we have available both x(t) and the
first derivative ẋ(t). The samples obtained at half the rate
are given by

x(2n) =
∑

k

c(k)φ(2n− k), ẋ(2n) =
∑

k

c(k)φ̇(2n− k)

The total number of samples per unit time is unity as be-
fore. We can regard these as the outputs of the two channel
filter bank shown in Fig. 16 where

H0(z) =
∑

n

φ(n)z−n, H1(z) =
∑

n

φ̇(n)z−n.

Under some conditions on these filters, we can recover c(n)
from x(2n) and ẋ(2n) perfectly. Once this is done, x(t)
can be reconstructed from x(t) =

∑
k c(k)φ(t−k). An ad-

vantage is that we can often obtain FIR reconstruction (i.e.,
make F0(z), F1(z) FIR) as we shall demonstrate. Deriva-
tive sampling theorems can be useful, for example, when
we have measurements of position and velocity of a moving
target or car.

20
H (z)

21
H (z)

c(n)
2 0

F (z)
x(2n)

x(2n)
2 1

F (z)
c(n)

Fig. 16. Two channel filter bank for derivative sampling.

For example consider the case where φ(t) is the quadratic
B-spline given by (14). In this case φ(1) = φ(2) = 0.5 and

φ(n) = 0 otherwise, so that Φd(z) = 0.5z−1(1 + z−1).
Recovery of c(n) from the full-rate samples x(n) requires

the IIR filter 2z/(1 + z−1) which is unstable (pole at z =
−1). Now consider derivative sampling. We have

H0(z) = 0.5z−1(1 + z−1).

The quadratic spline is continuously differentiable once,
and the samples of the result are

φ̇(1) = −φ̇(2) = 1, and φ̇(n) = 0 otherwise,

so that H1(z) = z−1(1−z−1). The synthesis filters which
give perfect reconstruction are uniquely given by

F0(z) = z(1 + z) and F1(z) = z(1 − z)/2 (16)

These are simple FIR filters indeed! Using these filters we
can express c(n) in terms of x(2n) and ẋ(2n). Substitut-

ing into x(t) =
∑
c(n)φ(t− n) we finally obtain

x(t) =
∑

i

x(2i)s0(t− 2i) +
∑

i

ẋ(2i)s1(t− 2i)

where s0(t) and s1(t) are given by

s0(t) = φ(t+ 1) + φ(t+ 2)
s1(t) = 0.5φ(t+ 1) − 0.5φ(t+ 2).

The idea of FIR reconstruction from derivative samples can
be extended for higher order splines [30], [21].

6. DISCRETE TIME CASE

If the Fourier transform of a discrete time signal x(n) is
restricted to |ω| < σ < π we say that x(n) is bandlimited
(σ-BL). If x(n) is bandlimited to π/M we can decimate it

byM without aliasing.5 Even if this is not the case (e.g., if

X(ejω) is nonzero everywhere) it is sometimes still possible
to recover x(n) from the decimated samples x(nM). This
is analogous to the case of non bandlimited continuous time
signals (1) which can be recovered from samples.

6.1. Discrete-Time Non-BL Sampling

The discrete-time analog of the signal model (1) is

x(n) =
∑

k

c(k)f(n− kM)

where f(n) is a digital filter taking the role of φ(t). This
equation means that x(n) can be represented as the output
of an interpolation filter driven by c(n) (Fig. 17).

M F(z)c(n) x(n)

Figure 17. Signal model allowing reconstruction from
samples.

5All quantities in this section are in discrete-time; the sub-
script d is therefore avoided for simplicity.
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If the filter f(n) has the Nyquist(M ) property f(Mn) =
δ(n), then it is clear that x(Mn) = c(n). Thus the un-
dersampled or decimated version x(Mn) can be used to
recover x(n) completely. Even when this Nyquist condi-
tion is not valid, it is still possible to recover x(n) from the
undersampled version x(Mn) under some mild conditions
on the model filter F (z) [23, 26]. To see this note that

x(Mn) =
∑

k

c(k)f(M(n− k)) =
∑

k

c(k)r0(n− k)

where r0(n) = f(Mn). Defining R0(z) to be the filter
with impulse response r0(n), we see that c(n) can be re-
covered as the output of 1/R0(z) in response to the input
x(Mn). Thus, from x(Mn) we can find c(n), and use

x(n) =
∑

k c(k)f(n−Mk) to find x(n).
This idea succeeds as long as R0(z) has no unit cir-

cle zeros. Notice that R0(z) is nothing but the 0th
polyphase component of F (z) in the polyphase represen-

tation F (z) =
∑M−1

i=0 ziRi(zM ). As long as there exists

one polyphase component Ri(z) free from unit circle zeros,
we can use it to write

x(Mn−i) =
∑

k

c(k)f(M(n−k)−i) =
∑

k

c(k)ri(n−k).

Then c(k) can be recovered from the samples x(Mn − i)
by filtering through 1/Ri(z), and then x(n) can be found
from Fig. 17.

6.2. Difference-Sampling

If none of the polyphase components of F (z) is free from
unit circle zeros, then we can try other combinations of
samples. Thus let M = 2 and

F (z) = 1 + z − z2 + z3 = 1 − z2 + z(1 + z2)

which shows R0(z) = 1 − z and R1(z) = 1 + z. Both
of these have unit circle zeros. So we cannot recover x(n)
from the two-fold decimated version x(2n) or from x(2n−
1) in a stable manner. Now consider the signal x(n) and
its first difference x(n) − x(n − 1). If we decimate these
by four we get

x0(n) = x(4n), x1(n) = x(4n) − x(4n− 1).

Together, these two signals still imply an average two-fold
decimation. We will show that x(n) can be recovered from
x0(n) and x1(n) using stable, in fact FIR, filters. This
is analogous to the derivative sampling scheme of Sec. 5.
To prove the preceding claim note that the signal model is
X(z) = C(z2)F (z) so that

X0(z) =
[
C(z)[F (z)]↓2

]
↓2

X1(z) =
[
C(z)

[
(1 − z−1)F (z)

]
↓2

]
↓2

Defining H0(z) = [F (z)]↓2 = 1 − z and

H1(z) = [(1 − z−1)F (z)]↓2 = −2z,

we see that the samples x0(n) and x1(n) can be repre-
sented as the outputs of an analysis bank (Fig. 18). Using
the synthesis filters

F0(z) = 1, F1(z) = −(1 + z−1)/2

we verify that this is a perfect reconstruction system. In
short, c(n) can be recovered from the samples x(4n) and
x(4n)− x(4n− 1) using the FIR filters F0(z) and F1(z).
The original signal x(n) can then be recovered from the
basic model of Fig. 17. This is analogous to the derivative
sampling theorem given in Sec. 5.

20
H (z)

21
H (z)

x(4n)

x(4n)-x(4n−1 )

c(n)
2 0

F (z)

2 1
F (z)

c(n)

Fig. 18. Two channel filter bank for difference-sampling.

6.3. Least Squares Modelling

The relation between the model of Fig. 17 and the con-
cept of biorthogonal partners arises as follows: Suppose
F (z) has a biorthogonal partner H(z) (with respect to
M ). Then we can recover the driving signal c(n) from
x(n) by using the decimation filter shown in Fig. 19. This
follows from the fact that if we cascade this figure to the
right of Fig. 17, then the result is an identity system by
definition of biorthogonal partners (compare with Fig. 6).

MH(z) c(n)x(n)

Fig. 19. Recovery of the driving signal c(n).

Assume next that we have an arbitrary discrete time sig-
nal xarb(n) ∈ %2 which we wish to model as the output
of a fixed interpolation filter F (z). In general there may
not exist c(n) such that the output of Fig. 17 is exactly
xarb(n). One approach would be to find c(n) such that
the error between xarb(n) and the actual output x(n) of
F (z) minimized. More specifically let us say that

∑
n

|xarb(n) − x(n)|2

should be minimized. It can be shown [25] that the driving
signal c(n) which generates this optimal x(n) is precisely
the output of the decimation filter Fig. 19 in response to
the input xarb(n), where H(z) is given by

H(ejω) =
F ∗(ejω)

[|F (ejω)|2]↓M↑M

It is readily verified that this H(z) is a biorthogonal part-
ner of F (z). We call it the least squares biorthogonal
partner for obvious reasons. Please see [25] for further de-
tails. Since the output of F (z) in Fig. 17 has the form
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x(n) =
∑

k c(k)f(n − kM), it belongs to the space FM
spanned by the sequences

ηk(n)∆=f(n− kM)

Assuming that all signals and filters are in %2, the above
optimization has a nice interpretation: the best approxi-
mation x(n) described above is nothing but the projection
of xarb(n) onto FM .

7. CONCLUDING REMARKS

The interpretation of sampling theorems in terms of digital
filters and filter banks has led to new insights, unifications,
and new attractive implementations. In addition several
new applications have been opened up as well. In this
lecture we presented an overview of these. One application
we have not mentioned is the oversampling of bandlimited
signals for noise shaping as in Σ-∆ modulators. A similar
idea works for non BL signals as well [16].

Acknowledgements. I am thankful to Prof. Ahmed
Zayed and Prof. Wasfy Mikhael for inviting me to give
this lecture.
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